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Abstract

We study finitely separable solvable Moufang loops and solved the membership
problem for nilpotent Moufang loops.
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1 Indroduction

The set L of elements with operations of multiplication of the right and left divisions
·, , \, / is called loop, if there exists an element e in L, is for cloth e · x = x · e = x,
and if the x = xy/y = y\(yx) = x/y · y = y · (y\x) for all elements x, y in L. Similarly
for groups, we say that that subloop H of a loop L is finitely separated from the element
x /∈ H if there is homomorphism ϕ of L into a finite loop for which xϕ /∈ Hϕ. Loop with
all non-trivial finite separable subloops we call finite separable. The condition of finite
separability is stronger than the condition of finite approximability (loop L is called finite
approximated (residually) finite if for x 6= e the is homomorphism of L into a finite loop
that aϕ 6= e. In this paper we study in detail the structure of finite separable soluble
Moufang loops. In particular, it appears that solvable Moufang loops with maximum
condition for subloops finite separable, which amplifies results from the theory of residual
finite theory ([1], [2]). It turned out that in a Hausdorff topology all subloops of finite
separable solvable Moufang loop are closed sets. At the end prove the existence of an
algorithm to solve the membership problem for nilpotent Moufang loops (commutative
Moufang loops or nilpotent A-loops).

Its results of this work were presented at the 7th Congress of Romanian Mathematicians
(Brashov, June 29 – July 5, 2011).

2 Notations, observations and comments

Let H be a subset of elements of the loop L. The set of elements of L which may
be obtained applying a finite number of basic operations to elements of H is said to be
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a subloop generated by the elements of H. If this set coincides with H, i.e. for each pair
of elements x and y of H, the elements x · y, y/x and x\y also belong to H, then H is a
subloop of the loop L.

The substitutions Tx, Rx,y, Lx,y, where x and y are elements of the loop L, are defined
by means of the following relations:

Tx = RxL
−1
x , Rx,y = RxRyR

−1
xy , Lx,y = LxLyL

−1
yx ,where yLx = xRy = x · y.

All these substitutions of the loop L generate the group of inner substitutions J(L) ([3],
[4]).

A subloop H of the loop L is named normal in L if

(1) xH = Hx, Hx · y = H · xy, x · yH = xy ·H

for any x, y ∈ L.
It is clear that conditions (1) are equivalent to the conditions:

HTx = H, HRx,y = H, HLx,y = H

for any x, y ∈ L. That is why we may say that the subloop H of the loop L is normal in
L if H is invariant with respect to the inner substitution of the group J(L) [3].

For elements x, y and z of the loop L, the associator [x, y, z] and the commutator [x, y]
are defined, respectively, by means of the following equations:

[x, y, z] = (x · yz)\(xy · z), [x, y] = (yx)\(xy).

The subloop of L generated by all the associators and commutators of L is called associant-
commutant of the loop L and will be denoted by L′. The center of the loop L is said to
be the subset

Z(L) = {x ∈ L|[x, y, z] = [y, z, x] = [x, y] = e ∀ y, z ∈ L}.

It is easy to see that the associant-commutant L′ and the center Z(L) are normal subloops
in L. We mention also: each subloop of the loop L which belongs to the center Z(L) or
contains the associant-commutant L′ is normal in L.

Let L be a loop and n a natural number. A sequence of subloops

(2) {e} = H0 ⊆ H1 ⊆ . . . ⊆ Hn−1 ⊆ Hn = L

is said to be normal if for each i ∈ {0, 1, . . . , n} the subloop Hi is normal in L. The number
n is called the length of the sequence, the subloops Hi, i ∈ {0, 1, . . . , n} are named terms
of the series, while the factor-loops Hi/Hi−1 ∈ {1, 2, . . . n} are called the factors of the
sequence. A natural sequence (2) is said to be central if all its factors are central, i.e.

Hi/Hi−1 ⊆ Z(L/Hi−1) ∀ i ∈ {1, 2, . . . n}

or equivalently
[Hi, L] ⊆ Hi−1 ∀ i ∈ {1, 2, . . . , n}
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where [A,B] means the normal subloop generated in L by all the associators and com-
mutators of the form [x, y, z],[y, z, x] and [x, y](x ∈ A; y, z,∈ B). A loop L is called
(central-)nilpotent if it has a (finite) central sequence, while the least length of all its
central sequences is named the nilpotence class of the loop L. A loop having a normal
sequence with Abelian factors is said to be solvable, while the least length of such sequence
is called class of solvability.

For a loop L we define subloops

(3) L1 = L, Li+1 = [Li, L], for i ≥ 1,

(4) Z0(L) = {e}, Zj+1(L)/Zj(L) = Z(L/Zj(L)), for j ≥ 0.

For simplicity, let us denote Zj(L) = Zj . It is clear that if a certain subloop Zj coincides
with the whole loop L or a certain sobloop Lj coincides with the unity subloop {e}, then
the loop L is nilpotent. Conversely, let L be a nilpotent loop and let (2) be an arbitrary
central sequence of the loop L. The definitions from above and hypothesis imply the
following inclusions: H0 ⊆ Z0, H1 ⊆ Z1, . . .; L1 ⊆ Hn, L2 ⊆ Hn−1, . . . It is evident that
(3) and (4) represent normal sequences, i.e. each of them contains the unitary subloop
{e} and the loop L and its number of terms is equal to the class of nilpotence. As for the
group, these sequences are said to be central descending and central ascending.

If the loop L is truly one of the following identities

x(y · xz) = (xy · x)z, (xy · z)y = x(y · zy), xy · zx = x(yz · x), xy · zx = (x · yz)x,

it is called a Moufang loop (see their study [3], [4], [5]).

3 Some properties of Moufang loops

Here we formulate the properties in the form of lemmas. In the beginning we present
some known properties of Moufang loops, which are needed in the future.

Lemma 1. ([3], [4]). In Moufang loop any three elements linked by associative law gener-
ates a group. In particular, a Moufang loop is di-associative, i.e. each pair of its elements
generates an associative subloop.

Lemma 2. ([3]). In Moufang loop are true identities:

(5) xTy = x[x, y],

(6) xLz,y = x[x, y, z]−1

Now we prove the following lemmas.

Lemma 3. If L is a nilpotent (Moufang) loop and H is a subloop normal in L and different
from the unity, then H ∩ Z 6= 1.
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Proof. Let k be the least natural number which verifies the condition H ∩ Zk 6= 1. Then

[H ∩ Zk, L] ⊆ H ∩ Zk−1.

But H ∩ Zk−1 = 1, hence H ∩ Zk ⊆ Z and k = 1.

Lemma 4. In any nilpotent Moufang loop L the set P of all periodic elements is a normal
subloop.

Proof. Indeed, let a, b ∈ P . According to Lemma 1 the subloop generated by the elements
a, b is associative and, since it is nilpotent, it is finite. Hence, a−1 and ab have finite orders,
so they belong to P . Now, if m is the order of the element a and α is an arbitrary inner
substitution of the group J(L), which according to [3], [4] is a semi-automorphism, then
(aα)m = (am)α = 1, so aα ∈ P .

From Lemmas 3 and 4 it follows that if a nilpotent Moufang loop contains periodic
elements different from the unity, then also the center of this loop contains periodic ele-
ments.

Lemma 5. If a nilpotent Moufang loop L is torsion-free (i.e. without elements of finite
order), then the factor loop L/Z is torsion-free too.

Proof. If the conclusion of the lemma is not true, then, according to the corollary of
Lemmas 3 and 4, the center of the factor loop L/Z contains periodic elements, so there
exists an element a such that a ∈ Z2, a /∈ Z and an ∈ Z for a certain integer n > 0. Then,
for arbitrary elements b, c ∈ L, the associator [a, b, c] belongs to the center Z and it follows
that (according (5), (6) to Lemma 2)

an = an[an, b, c]−1 = anLc,b = (aLc,b)n = (a[a, b, c]−1)n = an[a, b, c]−n

and
[a, b, c]n = 1.

Similarly we obtain

an = an[an, b] = anTb = (aTb)n = (a[a, b])n = an[a, b]n

and
[a, b]n = 1.

But, since [a, b, c] and [a, b] belong to the center Z and Z is torsion-free, then

[a, b, c] = 1, [a, b] = 1.

i.e. a ∈ Z. By this contradiction we finished the proof of the lemma.
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4 Limited Moufang loops

Next we shall show that the following assertion is trues: the subloops, the factor loops
and the direct product of a finite number of finitely separable loops are also finitely sepa-
rable.

It is clear that all the subloops of a finitely separable loop L will be finitely separable.
Let us consider now a normal subloop H of L. Let us denote L̄ = L/H, let K̄ be a
certain subloop of L̄ and ā ∈ L̄, ā /∈ K̄. Let K be the complete pre-image of K̄ in L
by the morphism φ : L → L/H, and a the pre-image of the element ā in L by the same
morphism φ. It is easy to see that a /∈ K by hypothesis; in L we shall find a normal
subloop N such that L/N be finite and aN /∈ K/N . Let ψ be the loop morphism of
the loop L with the kernel HN . Then Lψ is finite and at the same time representing a
contradiction. Since Kerφ ⊆ Kerψ, there exists a loop morphism λ of the loop L̄ on Lφ

such that aψ = aφ, ∀ a ∈ L. Then aψ /∈ Kψ implies aφλ /∈ Kφλ, i.e. ā /∈ K̄λ.
We prove the theorem. For this it is enough to investigate the direct product of two

loops L = H × K. Let A be a certain subloop of L, B and C be the corresponding
projections of H and K. We denote M = A ∩ H and let a ∈ L, a /∈ A, a = bc, b ∈ H,
c ∈ K. If a /∈ BC, then b /∈ B or c /∈ C and in order to prove the theorem it is enough
to consider the factor loop L/K or L/H. In order to do it suppose that a ∈ BC. Let
b0c ∈ A, b0 ∈ B. Then a/b0c = b/b0 /∈ A, so tb/b0 /∈ M . According to the hypothesis,
the element b/b0 and the subloop M ⊆ H, which does not contain this element, are
separable in H. This means that in H there is a normal loop H0 such that the factor
loop H/H0 is finite and b/b0 /∈ H0M . Let us show that a /∈ H0A. Assume the contrary,
a = h · b1c1 = hb1 · c1, h ∈ H0, b1c1 ∈ A, hence b = hb1, c = c1. Since b1c ∈ A and b0c ∈ A,
then b1/b0 ∈ A ∩H = M . Therefore, b/b0 = hb1/b0 ∈ H0M contradicts the selection of
H0. Thus, by the canonical mapping of L = H × K onto H/H0 × K, the image of the
element a does not belong to the subloop A. Applying once more the argument indicated
for the product H/H0 ×K, we obtain that the image of the element a does not belong to
the image of the subloop A in the finite loop H/H0×K/K0; but this is what it was to be
proved.

We investigate now an example where we indicate an finitely approximable non-
separable loop. In the variety of commutative nilpotent of class 2 Moufang loops we
consider the free loop F of strictly countable rank and the loop L given by the generators
x, xi, i = 1, 2, . . ., and the relations

x3
i = 1, [xi, x2i, x3i] = x, i = 1, 2, . . . ,

[xj , xk, xl] = 1, (j, k, l) /∈ {(i, 2i, 3i)|i = 1, 2, . . .} .

This loop L has the associant-commutant H = {1, x, x2}, which coincides with its center.
But the factor loop of L by its center is the direct sum of an infinite number of cyclic groups
of order 3. Hence, L/H and H are Abelian groups with finitely separable subgroups. We
show now that L is not finitely separable. Indeed, let N be a certain normal subloop of
finite index of L. Then, for certain i, j, i 6= j, xi = xjmodN or xix−1

j ∈ N . From here
x = [xi, x2i, x3i] = [xix−1

j , x2i, x3i] ∈ N , i.e. all the normal subloops contain the element
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x and then L is not finitely separable. At the same time, an approximable finite loop F ,
which is mapped homomorphically onto L, can not be finitely separable.

According to [6], Abelian groups, the orders of all elements which are powers fixed
prime number is called primary. Abelian group G is called limited if all its primary peri-
odical part of P are finite, and the factor group G/P is finitely separable Abelian group.

Definition 1. Loop L is called limited if it has at least one finite series whose factors are
limited Abelian groups.

From the proof of the last assertion and Schreier theorem about the thickening of the
normal sequence for loops (see [3]) it follows that the factors of any finite normal sequence
of a limited solvable loop are limited Abelian groups. Hence, it follows that : the subloops,
the factor subloops and the direct product of a finite number of limited solvable loops are
limited solvable loops.

A.I. Mal’cev in [7] studied limited solvable groups, and proved that a limited solvable
group is finitely separable. In the following we will show that this result can be extended
to limited solvable Moufang loops.

Lemma 6. Let L be a Moufang loop and Ln be the subloop generated by n-th powers
of all the elements of L. If the loop L is solvable and limited, then the factor loops
L/Ln, n = 1, 2, . . ., are finite.

Proof. Indeed, according to [6], Ln is normal in L, then L/Ln is a solvable limited loop,
the orders of its elements dividing n. Hence it follows that the factors of the normal
sequence of L/Ln have only a finite number of primary components and then are finite,
and together with them is finite the loop L/Ln itself.

Lemma 7. If the associant-commutant L′ of a Moufang loop L is finite, then in L the
following identities hold [

xm!, y, z
]

= 1,
[
xm!, y

]
= 1,

where m = |L′|.

Proof. Indeed, let a, b be arbitrary elements of L. Then in the sequences of elements

[a, b, c], [a2, b, c], . . . , [am+1, b, c]

and
[a, b], [a2, b], . . . , [am+1, b]

not all the pairs of elements are different. Hence, for certain i, j, k, l ≤ m+ 1, i 6= j, k 6= l

[ai, b, c] = [aj , b, c], [ak, b] = [al, b].

From these relations and (5), (6) we obtain

am!Lc,b = (aj−iLc,b)m!/j−i =
[
ajLc,b(aiLc,b)−1

]m!/j−i =
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(aja−i)m!/j−i = am!,

am!Tb = (al−kTb)m!/l−k =
[
alTb(akTb)−1

]m!/l−k
=

(ala−k)m!/l−k = am!,

hence
[am!, b, c] = 1, [am!, b] = 1

and the lemma is proved.

Lemma 8. A solvable limitated Moufang loop is finitely approximable.

Proof. For Abelian groups the lemma is true. We shall apply the induction method,
assuming that the given Moufang loop L is solvable of class n and that for Moufang loops
with solvability class less than n the lemma is true.

Let b be an arbitrary element of L. If a does not belong to L′, then the image ā of the
element a in the factor loop L/L′ will be different from the unity. Since L/L′ is an Abelian
group, there exists a normal subgroup N/L′ with finite index which does not contain the
element ā, and we obtained what we untented. Let a ∈ L′. By hypothesis, in L′ there
is a normal subloop M of a certain finite index s which does not contain the element a.
According to Lemma 6, the subloop L

′s is normal in L′ and has a certain finite index s′.
The subloop L

′s is normal in L and L
′s ⊆M . Let H = L/L

′s, K and b the corresponding
images of L′ and a in H. We have b 6= 1, b /∈ K,K is a normal finite subloop in H and
H/K is an Abelian group. Then the power of the associant-commutant of the loop H
is equal to a finite number s′. Now, if b /∈ Hs′! on account of Lemma 6, the complete
preimage in L of Hs′! will be the subloop we are looking for. Let b ∈ Hs′!. According to
Lemma 7, the generating elements of the loop Hs′! belong to the center of the loop H.
Therefore, all the subloops of Hs′! are normal in H. Since Hs′! is a limited Abelian group,
it follows that it is finitely approximated. Hence, taking into account that in H this group
has a finite index, it follows that H is also finitely approximated.

From Lemma 8, in particular we obtain the following

Corollary 1. Each finite subloop of a limited solvable Moufang loop L is finitely separable.

Proof. Indeed, let a /∈ H,H = {h1, . . . , hm}. According to Lemma 8, in L there is a

normal subloop Ni of finite index such that h−1
i a /∈ Ni, i = 1, . . . ,m. Then N =

n⋂
i=1

Ni,

will be a normal subloop of finite index in L for which a /∈ HN , we looked for.

Theorem 1. All the subloops of a limited solvable Moufang loop are finitely separable.

Proof. For Abelian groups the theorem is true, so we shall apply the induction, assuming
that the given Moufang loop is solvable of class n > 1 and that for solvable Moufang loops
of class smaller than n the theorem is proved.

Let B be a subloop of a Moufang loop L, a ∈ L and a /∈ B. If a /∈ BL′, than in the
Abelian group L/BL′ we shall find a normal subloop N/BL′ of finite index which does
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not contain the element a. Then the normal subloop N may be considered as the loop we
look for and which separates a from B.

Suppose that a ∈ BL′. Then a = bh, where b ∈ B, h ∈ L′, T = B ∩ L′. Since h /∈ T
and the Moufang loop L′ is solvable of class n − 1, we shall find in L′ a normal subloop
of finite index M for which h /∈ TM . Let us denote by s the index of M in L′. Then the
factor loop L′/L

′s is finite according to Lemma 6, L
′s is normal in L and h /∈ TL

′s. If it
happens that a ∈ BL′s, then a = b0h0, where b0 ∈ B, h0 ∈ L

′s, and we shall have

bh = b0h0, h = b−1 · b0h0 = (b−1b0 · h0)
[
b−1, b0, h0

]
,

b−1b0 = h
[
b−1, b0, h0

]−1 · h−1
0 ∈ B ∩ L′ = T, h ∈ TL′s,

which contradicts the hypothesis. Thus a /∈ BL′s.
Let us denote L/L

′s = H and let the considered images of the loops L′, B and of
the element a in H be, respectively, K,C, b. Then we have: K is a normal subloop in
H, the factor H/K is an Abelian group, b /∈ C, KC is a normal subloop in H. Let
us denote m = |K| and N = (KC)m!. The subloop N is normal in H. We show that
N ⊆ C. Let K = f1, . . . , fm and f, c be arbitrary elements, respectively, of K,C. Then

in the sequence fc, (fc)2, . . . , (fc)m+1 of elements of FC =
m⋃
i=1

fiC there are two elements

(fc)i, (fc)m+1, i 6= j, i ≤ m+ 1, j ≤ m+ 1, which belong to the same set fkC for a certain
k ≤ m. Thus

(fc)i = fkc
′, (fc)′ = fkc”,

where c′, c” ∈ C. Then
(fc)ic′−i = (fc)jc”−1,

(fc)i−j = c”−1c′ ∈ C,
hence

(fc)m! ∈ C.
Therefore, all the elements generating the subloop (KS)m! belong to C, so (KS)m is
contained in C. Let us denote N = (KS)m! and consider the factor loop H/N = H1. Let
C1 and b1 be the images of C and b in H1. Since b1 /∈ C1, and C1 is finite, according to
Corollary 1, there exists in H1 a normal subloop N1 such that b1 /∈ C1N1. In this way,
we constructed the chain of loop morphisms L → H → H1 → H1/N1. The result of the
morphism of this chain is the loop morphism of L onto the finite loop H1/N1, for which the
image of the element a is not contained in the image of the subloop B, as we wanted.

Corollary 2. Limited solvable Moufang loops is not only sufficient but also necessary for
the finite separability subloops in the case of Moufang loops without torsion.

Proof. In fact, let L be a solvable Moufang loop without torsion. finitely separable. Separa-
bility of loops L involves the separability of subloops and factor loops L and, consequently,
the separability factors in the normal soluble series L ⊃ L′ ⊃ L′′ ⊃ . . . ⊃ L(n) = {e} where
L′ = [L,L], L′′ = [L′, L′], . . . , L(n) = [L(n−1), L(n−1)]. Since by Lemma 5, all the factors
L/L′, L′/L′′, . . ., L(n−1)/L(n) are Abelian groups without torsion, sou are limited, There-
fore, considered Moufang loop L is limited.
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From Theorem 1, in particular, resulted finite separation of Moufang loops with maxi-
mality condition for subloops (a condition in which every increasing number of its subloops
terminates). Of these loops are, for example, finitely generated nilpotent Moufang loops,
finitely generated commutative Moufang loops and finitely generated nilpotent A-loops.
Maximality condition for these loops are proved in [8], [9], [10]. We can assume that
similar results are Lemmas 3, 4, 5, 6, 7, 8 and Theorem 1 can also be proved for the
A-loops.

5 Applications

a) Following [1], we build on a finite approximate loop a topology. Indeed, let L
is a finitely residual loop and S = {Hi | i ∈ I} – a system composed from all of its
normal subloops. Under the definition of opened sets we can understand adjacent classes
of normal subloops from S, also any reunion of adjacent classes. We ca notice that the
intersection of ani two sub-loops from S belong also to the S sets and intersection of all
sub-loops from S according to the finitely residuality of L, is the unity subloop. From
these proprieties results that the open sets define the L as a Hausdorff topology where the
basic operations of the loop are continuous. By this way the loop L transforms itself in a
topologic loop. Let’s suppose that the L loop contains a H subloop and a ∈ L, a /∈ H.
Let’s suppose that for a specific homomorphism ϕ of L loop in a finite loop aϕ /∈ Hϕ and
let it be N = kerϕ = {x ∈ L | xϕ = e} the nucleus of this homomorphism. Then the
adjacent class [a] that corresponds to the normal subloop N does not intersect with the
H subloop. Taking in consideration that that the set [a] is an opened one than the H is
finitely separable from the element a. Particularly, we obtain the following: the finitely
separability of H in relation to the all elements of L that do not belong to H is equal to
the fact that H should be closed in finitely topology. In conclusion the loops with finitely
separable subloops are those loops whose subloops in finite topology are finite sets. Now
according to Theorem 1, we can affirm the following statement.

Theorem 2. All subloops of finite separability solvable Moufang loops are closed sets.

b) Let the loop L be given by a finite system of generators a1, . . . , am, and a finite
system R of relations. Suppose that besides this, we give a finite number of elements of L,
which are represented as words u, u1, . . . , un from the generators a1, . . . , am of this loop L.
The problem about the membership of an element u to the subloop B, generated by the
elements u1, . . . , un, consists in indicating an algorithm in order to establish if the element
u belongs or does not to B.

Theorem 3. If the nilpotent Moufang loop (commutative Moufang loop or nilpotent A-
loop) L is defined by a finite number of generators and by a finite number of relations,
then for the loop L the membership problem of a subloop element is algorithmic solvable.

In order to prove this is it sufficient to use a solvable process whose step 2s−1 consists
in what follows. From the beginning, according to McKinsey known method, we distribute
all finite and nilpotent Moufang loops Li in a sequence L1, L2, . . .. Now in each loop Ls we
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choose, in all possible ways, as much elements asi ∈ Ls, i = 1, . . . ,m, as are given generators
a1, . . . , am in the loop L. Assuming that the words u, u1, . . . , un of a1, . . . , am are fixed, we
distribute in a sequence all the words v1, v2, . . . of u1, . . . , un. We consider now the loop Ls
and see if as1, . . . , a

s
m are the generators of Ls and if the relations of L are verified for them.

If not, then we pass to the next step. If yes, then we determine if the element u(as1, . . . , a
s
m)

belongs to the subloop generated in Ls by u1(as1, . . . , a
s
n), . . . , un(a

s
1, . . . , a

s
m). If not, then

the process is interrupted and in the loop L the element u does not belong to the subloop
generated by the elements u1, . . . , un. If yes, we pass to the step of the algorithm with
the number 2s, which consists in determining if in L holds the equality u = vs. Since
Moufang loop is nilpotent, according to [8]([9], [10]) there exists the solvability algorithm
of equality problem of two words. If u 6= vs, then we pass to the next step.

Since a finitely generated and nilpotent Moufang loop is limited, Theorem 1 assures
that the process, after a finite number of steps is interrupted and the problem of the
membership of u to the subloop generated in L by the elements u1, . . . , un is solvable.

Results Theorems 1, 2, and 3 can be transferred to the CH-quasigroups and quasi-
group distribution using structural links with the commutative Moufang loops, which are
described in [12], [13], [14], [15]. Mention, notion finite separable quasigroups is defined
analogous to the universal algebras.

Finally I want to bring thanks Prof. Mitrofan Chioban for good will to discuss this
paper and for valuable comments.
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