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TH-WAVES PROPAGATION IN CRYSTALS SUBJECT TO INITIAL
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Olivian SIMIONESCU-PANAIT1

Abstract

In this paper we are dealing with the study of the coupling conditions for propa-
gation of planar guided waves in a piezoelectric semi-infinite plane subject to initial
electro-mechanical fields. We analyze the propagation of non-piezoelectric TH waves
in anisotropic crystals, subject to an initial mechanical field, for two cases: parallel-
sided plate, resp. layer on a substrate. Last case is related to the well known Love
type wave described in seismology problems. We obtain and analyze the dispersion
relations for various classes of anisotropy.
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1 Introduction

The problems related to electroelastic materials subject to incremental fields super-
posed on initial mechanical and electric fields have attracted considerable attention last
period, due their complexity and to multiple applications. Last decade we dealt with var-
ious problems in the field, such as progressive waves and attenuated waves propagation in
piezoelectric crystals subject to an electromechanical bias, and the propagation of waveg-
uides in monoclinic crystals subject to initial fields (see papers [9]-[23], or the chapter [8]
for an overview of our results).

In this paper we present new results related to guided waves propagation in anisotropic
crystals subject to initial fields. We analyze here the propagation of non-piezoelectric TH
waves subject to initial mechanical field for two cases: parallel-sided plate, resp. layer
on a substrate. Our results generalize in the second case, for initial mechanical fields,
the classical results from seismology concerning Love waves propagation (see [6] and [7]).
Using the general results obtained in chapter [8], we obtain and analyze the dispersion
relations into a parallel-sided plate, resp. into a layer on a substrate, for various classes of
anisotropy.

1Dept. of Mathematics, Bucharest University, Romania, e-mail: osimion@fmi.unibuc.ro
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2 Fundamental equations. Geometric hypotheses

We assume the material to be an elastic dielectric, which is nonmagnetizable and
conducts neither heat, nor electricity. Consequently, we shall use the quasi-electrostatic
approximation of the equations of balance. Furthermore, we assume that the elastic
dielectric is homogeneous, and that we apply on initial large homogeneous deformations
and an initial large homogeneous electric field.

To describe this situation we use three different configurations : the reference con-
figuration BR in which at time t = 0 the body is undeformed and free of all fields; the
initial configuration

◦
B in which the body is deformed statically and carries the large initial

fields; the present (current)configuration Bt obtained from
◦
B by applying time dependent

incremental deformations and fields. In what follows, all the fields related to the initial
configuration

◦
B will be denoted by a superposed ”◦”.

In this case the homogeneous field equations take the following form:

◦
ρ ü = div Σ, div ∆ = 0

rot e = 0 ⇔ e = −grad ϕ

(1)

where
◦
ρ is the mass density, u is the incremental displacement from

◦
B to Bt, Σ is the incre-

mental electromechanical nominal stress tensor, ∆ is the incremental electric displacement
vector, e is the incremental electric field and ϕ is the incremental electric potential. All
incremental fields involved into the above equations depend on the spatial variable x and
on time t.

We suppose the following incremental constitutive equations:

Σkl =
◦
Ωklmn um,n+

◦
Λmkl ϕ, m

∆k =
◦
Λkmn un,m+

◦
εkl el =

◦
Λkmn un,m−

◦
εkl ϕ, l.

(2)

In these equations
◦
Ωklmn are the components of the instantaneous elasticity tensor,

◦
Λkmn are the components of the instantaneous coupling tensor and

◦
εkl are the com-

ponents of the instantaneous dielectric tensor. The instantaneous coefficients can be ex-
pressed in terms of the classical moduli of the material and on the initial applied fields as
follows:

◦
Ωklmn=

◦
Ωnmlk= cklmn+

◦
Skn δlm − ekmn

◦
El −enkl

◦
Em −ηkn

◦
El

◦
Em,

◦
Λmkl= emkl + ηmk

◦
El,

◦
εkl=

◦
εlk= δkl + ηkl,

(3)

where cklmn are the components of the constant elasticity tensor, ekmn are the components
of the constant piezoelectric tensor, εkl are the components of the constant dielectric tensor,
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◦
Ei are the components of the initial applied electric field and

◦
Skn are the components of

the initial applied symmetric (Cauchy) stress tensor.
From the previous field and constitutive equations we obtain the following fundamental

system of equations:

◦
ρ ül =

◦
Ωklmn um,nk+

◦
Λmkl ϕ,mk,

◦
Λkmn un,mk−

◦
εkn ϕ,nk = 0, l = 1, 3. (4)

In what follows we shall describe the geometric hypotheses for our problem. The
crystal is assumed to be semi-infinite, occupying the region x2 > 0, and the waves are
supposed to propagate along x1 axis. The plane x1x2 containing the surface normal and
the propagation direction is called sagittal plane. Furthermore, we suppose that the guide
of waves has the properties invariant with time t and with x1 variable. In these conditions,
if the material behaves linearly and without attenuation, the normal modes will have the
form:

uj(x, t) = u0
j (x2, x3)exp[i(ωt− kx1)], j = 1, 4. (5)

Here u1, u2, u3 are the mechanical displacements, while u4 stands for the electric potential
ϕ. In the previous relations k represents the wave number, ω defines the frequency of the
wave and i2 = −1. Using these hypotheses, the equations (4) become:

◦
Ωklmn um,nk+

◦
Λmkl ϕ,mk = −

◦
ρ ω2ul,

◦
Λkmn un,mk =

◦
εkn ϕ,nk, l = 1, 3. (6)

We define the non-dimensional variable X2 = kx2 and we neglect the effects of diffrac-
tion in x3 direction, so that ∂/∂x3 = 0. From the other hypotheses it yields the derivation
rules ∂/∂x1 = −ik and ∂/∂x2 = k∂/∂X2. Finally, we introduce the phase velocity of the
guided wave as V = ω/k.

3 Coupling conditions for waveguide propagation in crystals

To analyze the coupling of plane waveguide, using the previous hypotheses, we intro-
duce the differential operators with complex coefficients, as follows:

◦
Γil=

◦
Ω1il1 −

◦
Ω2il2

∂2

∂X2
2

+ i(
◦
Ω1il2 +

◦
Ω1li2)

∂

∂X2
,

◦
γl=

◦
Λ11l −

◦
Λ22l

∂2

∂X2
2

+ i(
◦
Λ12l +

◦
Λ21l)

∂

∂X2
,

◦
ε=

◦
ε11 −

◦
ε22

∂2

∂X2
2

+ 2i
◦
ε12

∂

∂X2
.

(7)

In these conditions, after a lengthy, but elementary calculus, we obtain that the dif-
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ferential system (6) has the following form:
◦
Γ11 −

◦
ρ V 2

◦
Γ12

◦
Γ13

◦
γ1

◦
Γ12

◦
Γ22 −

◦
ρ V 2

◦
Γ23

◦
γ2

◦
Γ13

◦
Γ23

◦
Γ33 −

◦
ρ V 2

◦
γ3

◦
γ1

◦
γ2

◦
γ3 − ◦

ε




u1

u2

u3

u4

 = 0. (8)

Here the coefficients are defined by relations (7). The system (8) is a homogeneous differ-
ential system of four equations with four unknowns, i.e. the components of the mechanical
displacement and the electric potential, having as coefficients complex differential oper-
ators in non-dimensional variable X2. It generalizes the similar system from the case
without initial fields, derived in [7].

In what follows we shall analyze the coupling conditions of the guided plane wave
propagation in two particular cases.

3.1 Sagittal plane normal to a direct axis of order two

In this case, we suppose that the sagittal plane x1x2 is normal to a dyad axis (x3 in our
case). Then, the elastic constants with one index equal to 3 are zero (see [7] for details).
After a short inspection of the coefficients of the system (8), using Voigt convention, we
find:

◦
Γ13= −[e15 + i(e14 + e25)

∂

∂X2
− e24

∂2

∂X2
2

]
◦
E1 −[η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

]
◦
E1

◦
E3,

◦
Γ23= −[e15 + i(e14 + e25)

∂

∂X2
− e24

∂2

∂X2
2

]
◦
E2 −[η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

]
◦
E2

◦
E3 .

(9)

We can easily observe that
◦
Γ13 and

◦
Γ23 does not depend on the initial stress field compo-

nents, but on the initial electric field components, only. Thus,
◦
Γ13=

◦
Γ23= 0 if

◦
E1=

◦
E2= 0.

Moreover, if we suppose that the dyad axis is direct (this means that the sagittal plane
is normal to a direct axis of order two), it follows that the crystal belongs to the class 2 of
the monoclinic system (A2 || x3). In this particular case the piezoelectric constants with
no index equal to 3 are zero (as described in [7]). Therefore, we obtain:

◦
γ1= (η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

)
◦
E1,

◦
γ2= (η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

)
◦
E2 . (10)

So, we obtain that
◦
γ1=

◦
γ2= 0 if

◦
E1=

◦
E2= 0.

In conclusion, we derive the following result concerning the decomposition of the fun-
damental system (8):

If the axis x3 is a direct dyad axis and if
◦
E1=

◦
E2= 0, the system (8) reduces to two

independent subsystems, as follows:
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a) The first subsystem:( ◦
Γ11 −

◦
ρ V 2

◦
Γ12

◦
Γ12

◦
Γ22 −

◦
ρ V 2

)(
u1

u2

)
= 0. (11)

defines a non-piezoelectric guided wave, polarized in the sagittal plane x1x2, which depends
on the initial stress field, only. We shall denote it by

◦
P 2. These characteristics are due to

the form of the involved coefficients:

◦
Γ11= c11+

◦
S11 +2i(c16+

◦
S12)

∂

∂X2
− (c66+

◦
S22)

∂2

∂X2
2

,

◦
Γ12= c16 + i(c12 + c66)

∂

∂X2
− c26

∂2

∂X2
2

,

◦
Γ22= c66+

◦
S11 +2i(c26+

◦
S12)

∂

∂X2
− (c22+

◦
S22)

∂2

∂X2
2

.

(12)

b) The second subsystem:( ◦
Γ33 −

◦
ρ V 2

◦
γ3

◦
γ3 − ◦

ε

)(
u3

u4

)
= 0. (13)

has as solution a transverse-horizontal wave, with polarization after the axis x3, which
is piezoelectric and electrostrictive active, and depends on the initial mechanical and

electrical fields. It is denoted by
◦

TH and generalizes the famous Bleustein-Gulyaev wave
(see [7], to compare). The components involved into this equation have the form:

◦
Γ33= c55+

◦
S11 +2i(c45+

◦
S12)

∂

∂X2
− (c44+

◦
S22)

∂2

∂X2
2

−2[e15 + i(e14 + e25)
∂

∂X2
− e24

∂2

∂X2
2

]
◦
E3 −[η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

]
◦
E

2

3,

◦
γ3= e15 + i(e14 + e25)

∂

∂X2
− e24

∂2

∂X2
2

+ [η11 + 2iη12
∂

∂X2
− η22

∂2

∂X2
2

]
◦
E3,

◦
ε=

◦
ε11 +2i

◦
ε12

∂

∂X2
− ◦

ε22
∂2

∂X2
2

= 1 + η11 + 2iη12
∂

∂X2
− (1 + η22)

∂2

∂X2
2

.

(14)

3.2 Sagittal plane parallel to a mirror plane

We suppose now that the sagittal plane x1x2 is normal to an inverse dyad axis (x3

in our case) or, equivalently, if the sagittal plane is parallel to a mirror plane M . It
follows that the crystal belongs to the class m of the monoclinic system (M ⊥ x3). In
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this particular case the elastic constants with one index equal to 3 are zero, as well as the
piezoelectric constants with one index equal to 3, which vanish (see [7] for details).

Analyzing the coefficients of the system (8) in this case, we find:

◦
Γ13= −[e11 + i(e21 + e16)

∂

∂X2
− e26

∂2

∂X2
2

]
◦
E3 −[η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

]
◦
E1

◦
E3,

◦
Γ23= −[e16 + i(e26 + e12)

∂

∂X2
− e22

∂2

∂X2
2

]
◦
E3 −[η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

]
◦
E2

◦
E3,

◦
γ3= (η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

)
◦
E3 .

(15)

It yields that
◦
Γ13=

◦
Γ23= 0 and

◦
γ3= 0 if

◦
E3= 0.

Thus, if the axis x3 is an inverse dyad axis and if
◦
E3= 0, the fundamental system (8)

splits into two parts, as follows.
a) The first subsystem has the form:

◦
Γ11 −

◦
ρ V 2

◦
Γ12

◦
γ1

◦
Γ12

◦
Γ22 −

◦
ρ V 2

◦
γ2

◦
γ1

◦
γ2 − ◦

ε


 u1

u2

u4

 = 0. (16)

It has as solution a guided wave with sagittal plane polarization, associated with the
electric field (via the electric potential u4 = ϕ), providing piezoelectric and electrostrictive

effects, and depending on the initial stress and electric fields. It is denoted by
◦
P 2. The

electric field, associated with this wave, is contained in the sagittal plane, since E3 =

∂ϕ/∂x3 = 0. This fact is consistent with the hypothesis
◦
E3= 0. These features of

◦
P 2

wave are obtained from the analysis of the corresponding coefficients:

◦
Γ11= c11+

◦
S11 −2e11

◦
E1 −η11

◦
E

2

1 +2i[c16+
◦
S12 −(e16 + e21)

◦
E1 −η12

◦
E

2

1]
∂

∂X2

−(c66+
◦
S22 −2e26

◦
E1 −η22

◦
E

2

1)
∂2

∂X2
2

,

◦
Γ12= c16 − e16

◦
E1 −e11

◦
E2 −η11

◦
E1

◦
E2 +i[c12 + c66 − (e12 + e26)

◦
E1

−(e21 + e16)
◦
E2 −2η12

◦
E1

◦
E2]

∂

∂X2
− (c26 − e22

◦
E1 −e26

◦
E2 −η22

◦
E1

◦
E2)

∂2

∂X2
2

,

◦
Γ22= c66+

◦
S11 −2e16

◦
E2 −η11

◦
E

2

2 +2i[c26+
◦
S12 −(e26 + e12)

◦
E2 −η12

◦
E

2

2]
∂

∂X2

−(c22+
◦
S22 −2e22

◦
E2 −η22

◦
E

2

2)
∂2

∂X2
2

,

(17)
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respectively:

◦
γ1= e11 + η11

◦
E1 +i(e16 + e21 + 2η12

◦
E1)

∂

∂X2
− (e26 + η22

◦
E1)

∂2

∂X2
2

,

◦
γ2= e16 + η11

◦
E2 +i(e12 + e26 + 2η12

◦
E2)

∂

∂X2
− (e22 + η22

◦
E2)

∂2

∂X2
2

,

◦
ε=

◦
ε11 +2i

◦
ε12

∂

∂X2
− ◦

ε22
∂2

∂X2
2

= 1 + η11 + 2iη12
∂

∂X2
− (1 + η22)

∂2

∂X2
2

.

(18)

b) The second subsystem reduces to a single equation, as follows:

(
◦
Γ33 −

◦
ρ V 2)u3 = 0. (19)

Its root corresponds to a transverse-horizontal wave, non-piezoelectric, and influenced by

the initial stress field, only. It is called
◦

TH wave. In this equation:

◦
Γ33= c55+

◦
S11 +2i(c45+

◦
S12)

∂

∂X2
− (c44+

◦
S22)

∂2

∂X2
2

. (20)

4 The decoupling of mechanical and electric boundary con-
ditions

In this section we analyze the decomposition of the mechanical, resp. electric boundary
conditions at the surface x2 = 0.

4.1 Mechanical boundary conditions

On the boundary surface x2 = 0 the mechanical conditions are supposed to concern
the surface stresses Σ2i with i = 1, 3. Following the incremental constitutive equations
(2)1, we find in this case that:

Σ21 =
◦
Ω2111 u1,1+

◦
Ω2121 u2,1+

◦
Ω2131 u3,1+

◦
Ω2112 u1,2+

◦
Ω2122 u2,2+

◦
Ω2132 u3,2

+
◦
Λ121 u4,1+

◦
Λ221 u4,2,

Σ22 =
◦
Ω2211 u1,1+

◦
Ω2221 u2,1+

◦
Ω2231 u3,1+

◦
Ω2212 u1,2+

◦
Ω2222 u2,2+

◦
Ω2232 u3,2

+
◦
Λ122 u4,1+

◦
Λ222 u4,2,

Σ23 =
◦
Ω2311 u1,1+

◦
Ω2321 u2,1+

◦
Ω2331 u3,1+

◦
Ω2312 u1,2+

◦
Ω2322 u2,2+

◦
Ω2332 u3,2

+
◦
Λ123 u4,1+

◦
Λ223 u4,2.

(21)
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a) For a sagittal plane normal to a direct axis of order two and if
◦
E1=

◦
E2= 0 we obtain:

Σ21 = −ki[(c16+
◦
S12)u1 + c66u2] + k

∂

∂X2
[(c66+

◦
S22)u1 + c26u2],

Σ22 = −ki[c12u1 + (c26+
◦
S12)u2] + k

∂

∂X2
[c26u1 + (c22+

◦
S22)u2],

Σ23 = −ki[(
◦
S12 +c45 − e25

◦
E3 −e14

◦
E3 −η12

◦
E

2

3)u3 + (e14 + η12

◦
E3)u4]

+k
∂

∂X2
[(c44+

◦
S22 −2e24

◦
E3 −η22

◦
E

2

3)u3 + (e24 + η22

◦
E3)u4].

(22)

Consequently, the mechanical boundary conditions on the plane x2 = 0, under the previous
conditions, reduce to the equalities (22), for given stresses Σ2i with i = 1, 3.

As regards the boundary conditions associated with the waves previously derived, for
◦
P 2 wave we have relations (22) with u3 = u4 = 0 (it yields that Σ23 = 0 for this wave),

while for
◦

TH we have the same relations with u1 = u2 = 0 (it results that Σ21 = Σ22 = 0
in this case).

b) For a sagittal plane parallel to a mirror plane and if
◦
E3= 0 we derive:

Σ21 = k[(−i)(c16+
◦
S12 −e16

◦
E1 −e21

◦
E1 −η12

◦
E

2

1) + (c66+
◦
S22 −2e26

◦
E1

−η22

◦
E

2

1)
∂

∂X2
]u1 + k[(−i)(c66 − e26

◦
E1 −e16

◦
E2 −η12

◦
E1

◦
E2) + (c26 − e22

◦
E1 −e26

◦
E2

−η22

◦
E1

◦
E2)

∂

∂X2
]u2 + k[(−i)(e16 + η12

◦
E1) + (e26 + η22

◦
E1)

∂

∂X2
]u4,

Σ22 = k[(−i)(c12 − e12

◦
E1 −e21

◦
E2 −η12

◦
E1

◦
E2) + (c26 − e22

◦
E1 −e26

◦
E2

−η22

◦
E1

◦
E2)

∂

∂X2
]u1 + k[(−i)(c26+

◦
S12 −e12

◦
E2 −e26

◦
E2 −η12

◦
E

2

2) + (c22+
◦
S22 −2e22

◦
E2

−η22

◦
E

2

2)
∂

∂X2
]u2 + k[(−i)(e12 + η12

◦
E2) + (e22 + η22

◦
E2)

∂

∂X2
]u4,

Σ23 = k[(−i)(c45+
◦
S12) + (c44+

◦
S22)

∂

∂X2
]u3.

(23)
Consequently, the mechanical boundary conditions on the plane x2 = 0, under the

previous conditions, reduce the the equalities (23), for given stresses Σ2i with i = 1, 3.

For
◦
P 2 wave we have relations (23) with u3 = 0 (it yields Σ23 = 0 for this wave), while

for
◦

TH wave we obtain the boundary conditions from (23) with u1 = u2 = u4 = 0 (it
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results Σ21 = Σ22 = 0 in this case).
We conclude that the stresses on the horizontal surface x2 = 0, associated with the

guided waves polarized in the sagittal plane (i.e.
◦
P 2 and

◦
P 2), become decoupled from those

associated with transverse horizontal waves (i.e.
◦

TH and
◦

TH), when x3 is a dyad axis
normal to the sagittal plane x1x2. Our results generalizes the classical boundary conditions
for piezoelectric guided waves without initial fields, as described in [7].

4.2 Electric boundary conditions

On the boundary surface of the domain we suppose the electric boundary condition of
the type:

∆n = ∆ini = −w ,with i = 1, 3, (24)

where the normal component of the electrical displacement ∆n is related to the surface
density of electric charge w.

In our case, as the boundary of the domain x2 > 0 is the plane x2 = 0, the previous
boundary condition becomes:

∆2 = w on x2 = 0. (25)

Using the constitutive equation (2)2 and the derivation rules, we find that:

∆2 =
◦
Λ2nm um,n−

◦
ε2l ϕ,l = k(−i

◦
Λ211 +

◦
Λ221

∂

∂X2
)u1 + k(−i

◦
Λ212 +

◦
Λ222

∂

∂X2
)u2

+k(−i
◦
Λ213 +

◦
Λ223

∂

∂X2
)u3 + k(i

◦
ε12 −

◦
ε22

∂

∂X2
)u4.

(26)

a) For a sagittal plane normal to a direct axis of order two and if
◦
E1=

◦
E2= 0 we obtain

the following electrical boundary condition:

k[(−i e25 + e24)+
◦
E3 (−i η12 + η22)

∂

∂X2
]u3 + k(i

◦
ε12 −

◦
ε22

∂

∂X2
)u4 = w on x2 = 0. (27)

It is obvious that this type of boundary condition suits to the
◦

TH wave, only.

b) For a sagittal plane parallel to a mirror plane and if
◦
E3= 0 we derive the following

electrical boundary condition:

k[(−i e21 + e26)+
◦
E1 (−i η12 + η22

∂

∂X2
)]u1 + k[(−i e26 + e22)

+
◦
E2 (−i η12 + η22

∂

∂X2
)]u2 + k(i

◦
ε12 −

◦
ε22

∂

∂X2
)u4 = w on x2 = 0.

(28)

It is evident that this kind of boundary condition is specific to the wave
◦
P 2, only.
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5
◦

TH wave propagation

We remind the case of monoclinic crystals with the sagittal plane parallel to a mirror
plane and

◦
E3= 0. There, the fundamental system (8) splits into two subsystems, the

second one reducing to a single equation:

(
◦
Γ33 −

◦
ρ V 2)u3 = 0. (29)

Its root corresponds to a transverse-horizontal wave, non-piezoelectric, and influenced by

the initial stress field, only. It is called
◦

TH wave. In this equation:

◦
Γ33= c55+

◦
S11 +2i(c45+

◦
S12)

∂

∂X2
− (c44+

◦
S22)

∂2

∂X2
2

. (30)

Substituting X2 = kx2, V = ω/k and denoting u3 = u(x2), the previous equation has
the form:

(c44+
◦
S22)

d2u

dx2
2

− 2ki(c45+
◦
S12)

du

dx2
+ [

◦
ρ ω2 − k2(c55+

◦
S11)]u = 0. (31)

In order to simplify the resolution of equation (31), we suppose that the medium is
isotropic in relation with TH waves. This is the case when x3 is along a crystal tetrad or
hexad axis, or when the whole medium is isotropic. So that, c45 = 0 and c55 = c44.

In this case the equation (31) becomes:

(1 +
◦
S22

c44
)u′′ − 2ki

◦
S12

c44
u′ + [

ω2

v2
T

− k2(1 +
◦
S11

c44
)]u = 0, (32)

where vT =

√
c44
◦
ρ

is the TH wave velocity in the case without initial fields. This equation

is related to the boundary condition (23)3, which has here the form:

(−ki)
◦
S12 u + (c44+

◦
S22)u′ = Σ23, on x2 = 0. (33)

The equation (32), with the boundary condition (33), will be solved for the following
particular problems.

5.1 Parallel-sided plate

The plate is located between the surfaces x2 = 0 and x2 = −h. We suppose that we
have homogeneous boundary condition of type (33), i.e. Σ23 = 0, on x2 = 0 and x2 = −h.

We suppose that the solution is sinusoidal, with the form:

u(x2) = u0 cos[
nπ

h
(x2 + h)], n = 0, 1, 2, ... (34)
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In this way, the homogeneous boundary conditions are satisfied if the initial shear stress
◦
S12= 0. Moreover, for n even (odd) the displacement is symmetric (antisymmetric).

Substituting relation (34) into the equation (32) we obtain the dispersion relation:

(nπ/h)2 =
(ω/vT )2 − k2(1+

◦
S11 /c44)

1+
◦
S22 /c44

, n = 0, 1, 2, ... (35)

which has, in normalized variables, the form:

(
ωh

πvT
)2 = (

kh

π
)2(1 +

◦
S11

c44
) + n2(1 +

◦
S22

c44
). (36)

An alternate form of the dispersion relation may be obtained using f = ω/(2π) as wave
frequency and λ = 2π/k as wave length:

2fh

vT
=

√
(
2h

λ
)2(1 +

◦
S11

c44
) + n2(1 +

◦
S22

c44
). (37)

These forms of the dispersion relation for
◦

TH wave propagation in a parallel-sided
plate generalize classical results (see [7]).

The velocity oh the guided
◦

TH wave:

V = ω/k = vT

√
1 +

◦
S11

c44
+ (

nπ

kh
)2(1 +

◦
S22

c44
) (38)

depends on the frequency, except the mode of order zero, which has the velocity
◦
vT =

vT

√
1 +

◦
S11

c44
.

5.2 Layer on a substrate. Love waves

We suppose an elastic layer (−h < x2 < 0) bonded to an elastic substrate (x2 > 0),

which are isotropic in relation with TH waves. Moreover, we suppose that
◦
S12= 0.

In the substrate the displacement must vanish for x2 →∞. So, we seek the solution
of the equation (32) in the form:

u(x2) = u0 exp(−kχx2), Re[kχ] > 0, x2 > 0. (39)

The corresponding characteristic equation is:

k2χ2(1 +
◦
S22

c44
) +

ω2

v2
T

− k2(1 +
◦
S11

c44
) = 0, (40)



270 Olivian Simionescu-Panait

which implies

V =
ω

k
< vT

√
1 +

◦
S11

c44
(41)

under the realistic hypotheses |
◦
S11 |/c44 < 1 and |

◦
S22 |/c44 < 1.

Moreover, we obtain:

χ =

√√√√√√√√√
1 +

◦
S11

c44
− V 2

v2
T

1 +
◦
S22

c44

. (42)

For the layer, we distinguish the variables using a hat. We seek the solution of the
equation (32) in a sinusoidal form:

u(x2) = û0 coskχ̂(x2 + h), −h < x2 < 0. (43)

The mechanical stress Σ̂32 = (ĉ44+
◦
S22)u′(x2) = 0, at the free surface x2 = −h, where the

displacement is maximal.
From the characteristic equation we obtain:

(kχ̂)2 =

ω2

v̂2
T

− k2(1 +
◦
S11

ĉ44
)

1 +
◦
S22

ĉ44

> 0. (44)

This implies that

V =
ω

k
> v̂T

√
1 +

◦
S11

ĉ44
, (45)

where v̂T =

√
ĉ44
◦
ρ

.

The inequalities (41) and (45) shows us that the velocity of the TH wave in the sub-
strate is greater that of the TH wave in the layer: vT > v̂T .

Consequently, the Love wave velocity V satifies the following fundamental inequalities:

v̂T

√
1 +

◦
S11

ĉ44
< V < vT

√
1 +

◦
S11

c44
. (46)

Moreover, we obtain:

χ̂ =

√√√√√√√√√
V 2

v̂2
T

− (1 +
◦
S11

ĉ44
)

1 +
◦
S22

ĉ44

. (47)
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At the interface x2 = 0 between layer and substrate we suppose the continuity of
displacement, so we obtain

û0 =
u0

cos(kχ̂h)
,

and the continuity of stress, which yields the relation

(c44+
◦
S22)u0 χ = (ĉ44+

◦
S22)û0 χ̂ sin(kχ̂h).

Hence, we obtain the dispersion relation in the form:

tan(kχ̂h) =
(c44+

◦
S22)χ

(ĉ44+
◦
S22)χ̂

, (48)

which is influenced by the initial mechanical fields (see the expressions (42) and (47) of χ
and χ̂). This dispersion equation has an infinite number of solutions given by:

(kh)n =
1
χ̂

tan−1[
(c44+

◦
S22)χ

(ĉ44+
◦
S22)χ̂

] + n
π

χ̂
, n = 0, 1, 2, ... (49)

A detailed analysis of the obtained solution, as well as the study of the energy balance
on the Love wave will be given in a forthcoming paper.

6 Conclusions

In this work we dealt with the study of the coupling conditions for propagation of planar
guided waves in a piezoelectric semi-infinite plane subject to initial electro-mechanical
fields. These results were obtained together with Dr. Iulian Ana, and are published in
papers [21, 22].

If the sagittal plane is normal to a direct, resp. inverse dyad axis, we derived that
the fundamental equations’ system decomposes for particular choices of the initial elec-
tric field. In this way we obtained mechanical and piezoelectric waves generalizing the
classical guided waves from the case without initial fields. Furthermore, we obtained a
similar decomposition of mechanical and electrical boundary conditions, which enable us
to characterize the obtained guided waves.

Here we reported new results concerning TH-waves propagation in prestressed lay-
ered materials. Our results generalize, for initial mechanical fields, classical results from
seismology concerning Love waves propagation (see [6] and [7]). Using the general results
obtained in chapter [8], we obtain and analyze the dispersion relations into a parallel-sided
plate, resp. into a layer on a substrate, for various classes of anisotropy.
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