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ON REPRODUCTIVE SOLUTIONS OF POSTIAN AND STONEAN
EQUATIONS
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Abstract

A theorem due to Löwenheim provides the general reproductive solution of a
Boolean equation whenever a particular solution is known. This theorem has been
generalized either by passing from Boolean algebras to Post algebras and Stone alge-
bras, or by using a parametric solution instead of a particular solution, or by combining
the two directions. In the present paper we survey this research and generalize every-
thing to Stone algebras.
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1 Introduction

The concept of a reproductive solution, introduced by Löwenheim [10], [11] in the
case of Boolean equations, can be defined in a very general framework, for any kind of
equations.

Consider a set U (“universe of discourse”) and two entities t (“true”) and f (“false”).
An equation over U is a function e : U −→ {t, f}; its solutions are the elements x ∈ U such
that e(x) = t. By a general solution of the equation is meant a parametric representation
of the solution set S = {x ∈ U | e(x) = t}, that is, a function ϕ : U −→ U such that
ϕ(U) = S. This means that ϕ(x) ∈ S for all x ∈ U and conversely, for every x ∈ S
there is p ∈ U such that x = ϕ(p). If the latter condition is fulfilled in the stronger
form x ∈ S =⇒ x = ϕ(x), then ϕ is called a general reproductive solution, or simply a
reproductive solution.

We also use expressions of the form “x = ϕ(p) is a general/reproductive solution of
the equation e(x)”.

Note that in contrast with general solutions and reproductive solutions, we refer to an
element of S as a particular solution of the equation.
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The theory of Boolean equations, which begins with Boole himself, studies (systems
of) Boolean equations over an arbitrary Boolean algebra (not necessarily the two-element
one). By Boolean equations we mean equations expressed by Boolean functions. The latter
term designates the algebraic functions of the Boolean algebra, i.e., functions obtained
from variables and constants by superpositions of the basic operations ∨ (disjunction), ·
(conjunction) and ′ (negation) of the Boolean algebra. For the theory of Boolean equations
and their applications we refer the reader e.g. to the monographs [13] and [14].

Let (B,∨, ·,′ , 0, 1) be an arbitrary Boolean algebra; the conjunction · is also denoted by
juxtaposition. Every system of Boolean equations over B is equivalent to a single Boolean
equation of the form f(x1, . . . , xn) = 0 (and also to an equation g(x1, . . . , xn) = 1).
Löwenheim proved [10], [11] that if (ξ1, . . . , ξn) ∈ Bn is a particular solution of the equation
f(x1, . . . , xn) = 0, then

(1) xi = tif
′(t1, . . . , tn) ∨ ξif(t1, . . . , tn) (i = 1, . . . , n)

is a reproductive solution of the equation; here ′ is the operation defined by f ′(x1, . . . , xn) =
(f(x1, . . . , xn))′ .

It is convenient to use a compact vectorial notation like X = (x1, . . . , xn) and to equip
the vector set Bn with the operations ∨, · defined componentwise and with the “scalar
multiplication” aX = (ax1, . . . , axn).

Using this notation, the Löwenheim theorem above says that if Ξ ∈ Bn is a particular
solution of the Boolean equation f(X) = 0, then formula

(2) X = Tf ′(T ) ∨ Ξf(T )

is a reproductive solution of the equation.

The Löwenheim reproductive solution was generalized (in chronological order) to Post
algebras by Carvallo [7], [8], Bordat [6] and Serfati [15], and to Stone algebras by Beazer
[5].

Of course, if a general solution G(X) of equation f(X) = 0 is known, we can choose a
(convenient) particular solution Ξ in order to apply formula (2). Yet Banković [1] proved
that if P : Tn −→ Tn is an arbitrary transformation, then formula

(3) X = Tf ′(T ) ∨G(P (T ))f(T )

is also a reproductive solution of equation f(X) = 0. Later on, Banković [2] generalized
this theorem to Post algebras and proved also the converse: every reproductive solution
of equation f(X) = 0 is of the form (3) for a suitably chosen P .

Now recall a concept from universal algebra. A function f : An −→ A, where A is
an abstract algebra, is said to have the congruence substitution property (CSP for short)
if for every congruence ∼ of A, if X, Y ∈ An satisfy X ∼ Y (meaning xi ∼ yi for
i = 1, . . . , n), then f(X) ∼ f(Y ). It is well known that every algebraic function satisfies
CSP, but the converse does not hold in general. However Grätzer proved [9] that in every
Boolean algebra the algebraic functions (known as Boolean functions) coincide with the
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CSP functions, i.e., the functions satisfying CSP. More generally, this also happens in Post
algebras, as was proved by Beazer [4].

Recall also that a lattice (L,∨, ·, 0) with zero is said to be pseudocomplemented if for
every element x there is a (necessarily unique) element x∗, called the pseudocomplement of
X, such that for every y we have xy = 0 ⇐⇒ y ≤ x∗. A pseudocomplemented distributive
lattice satisfying the identity x∗ ∨ x∗∗ = 1 is called a Stone algebra. In particular every
Post algebra is a Stone algebra; see e.g. [14]. Proposition 5.1.12.

Beazer [5] studied CSP functions and equations expressed by CSP functions in Stone
algebras. In particular he generalized Löwenheim’s reproductive solution (2) to this frame-
work.

In the sequel we work with Stone algebras and equations f(X) = 0 expressed by CSP
functions f . We prove a theorem from which all the results mentioned above are obtained
within this more general framework, along with the simpler reproductive solution

(4) X = Tf∗(T ) ∨G(T )f(T ) .

Finally we prove a theorem which joins two other theorems, due to Banković [2] and
Marinković [12], respectively, and we state an open problem.

2 The new results

Recall that if L is a Stone algebra, then x∗∨x∗∗ = 1 and the closure operator x 7→ x∗∗ is
a homomorphism of L onto the Boolean algebra B(L) = {x ∈ L | x∗∗ = x} = {x∗ | x ∈ L}
of Boolean (i.e., complemented) elements of L. Thus (x ∨ y)∗∗ = x∗∗ ∨ y∗∗, (xy)∗∗ =
x∗∗y∗∗, x∗∗∗ = x∗, and 0, 1 ∈ B(L). Other important properties of the pseudocomplement
x∗ are (x ∨ y)∗ = x∗y∗, (xy)∗ = x∗ ∨ y∗, 0∗ = 1 and 1∗ = 0. Consequently x = 0 ⇐⇒
x∗∗ = 0. More generally:

Remark 1. xy = 0 ⇐⇒ x∗∗y = 0, because

xy = 0 =⇒ x∗∗y∗∗ = (xy)∗∗ = 0 =⇒ x∗∗y = 0 =⇒ xy = 0 .

We will also use the following property: if β : Bn −→ B is a Boolean function, then
β(ax ∨ bx′) = β(a)x ∨ β(b)x′.

Notification In the sequel f(X) = 0 is an equation in a Stone algebra L and f : Ln −→ L
is a CSP function. We use the notation f∗(X) = (f(X))∗.

As was done in [12], we use the following result:

Lemma 1. (Beazer [5]) If f : Ln −→ L is a CSP function in a Stone algebra L, then
f : B(L)n −→ B(L) defined by f(X∗∗) = f∗∗(X) is a Boolean function and f(X) = 0 ⇐⇒
f(X∗∗) = 0 (⇐⇒ f∗∗(X) = 0).

We are now in a position to prove:
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Theorem 1. Let f : Ln −→ L be a CSP function and Φ,Ψ : Ln −→ Ln. Then

(5) H(X) = Φ(X)f∗(X) ∨Ψ(X)f(x)

is a general solution of equation f(X) = 0 if and only if

(6) f(Φ(X))f∗(X) = 0 ,

(7) f(Ψ(X))f(X) = 0 .

Proof. We have
H∗∗(X) = Φ∗∗(X)f∗(X) ∨Ψ∗∗(X)f∗∗(X) ,

f(H(X)) = 0 ⇐⇒ f(H∗∗(X)) = 0

⇐⇒ f(Φ∗∗(X))f∗(X) ∨ f(Ψ∗∗(X))f∗∗(X) = 0

⇐⇒ f∗∗(Φ(X))f∗∗∗(X) = 0 & f∗∗(Ψ(X))f∗∗(X) = 0

⇐⇒ (f(Φ(X))f∗(X))∗∗ = 0 & (f(Ψ(X))f(X))∗∗ = 0

⇐⇒ f(Φ(X))f∗(X) = 0 & f(Ψ(X))f(X) = 0 .

Remark 2. In view of Remark 1, condition (7) is equivalent to

(7 ′) f(Ψ(X))f∗∗(X) = 0 .

Here are a few consequences of Theorem 1.

Corollary 1. The transformation

(8) H(X) = Xf∗(X) ∨Ψ(X)f(X)

is a general solution of equation f(X) = 0 if and only if the identity (7) holds, in which
case H(X) is a reproductive solution.

Proof. The first claim follows from Theorem 1 with Φ(X) := X. If f(X) = 0 then (8)
implies H(X) = X, therefore the solution is reproductive.

Corollary 2. If Ψ(X) is a general solution of equation f(X) = 0, then the transformation
(8) is a reproductive solution of equation f(X) = 0.

Proof. By Corollary 1, since f(Ψ(X)) = 0.

Corollary 2 expresses the basic idea of Banković for passing beyond the Löwenheim
theorem : replace the particular solution Ξ by a general solution Ψ(X). However in [1], [2]
and [12], formula (8) appears in a slightly more complicated form, with Ψ(P (X)) instead
of Ψ(X); we will come to this point in the next section of the paper.

Corollary 3. The transformation
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(9) H(X) = Xf∗(X) ∨X∗f(X)

is a general solution of equation f(X) = 0 if and only if f(X∗)f(X) = 0, in which case it
is a reproductive solution.

Proof. By Corollary 1 with Ψ(X) := X∗.

The next corollary generalizes Theorem 6 in [3].

Corollary 4. The transformation

(10) H(X) = Xf∗(X) ∨X∗f∗∗(X)

is a general solution of equation f(X) = 0 if and only if f(X∗)f∗∗(X) = 0, in which case
it is a reproductive solution.

Proof. By Corollary 3 with f := f∗∗, taking into account that f∗∗∗(X) = f∗(X), f(X) =
0 ⇐⇒ f∗∗(X) = 0, and finally Remark 1.

3 An open problem

Two more theorems, due to Banković and Marinković, can be joined in the following
form:

Theorem 2. Let L be a Stone algebra, f : Ln −→ L a CSP function, Ψ(X) a general
solution of equation f(X) = 0, and P : Ln −→ Ln. Set

(11) H(X) = Xf∗(X) ∨Ψ(P (X))f∗∗(X) .

1) If P satisfies

(12) Ψ(P (X)) = H(X) ,

then H(X) is a reproductive solution of equation f(X) = 0.
2) If L is a Post algebra and H(X) is a reproductive solution of equation f(X) = 0,

then H(X) is of the form (11), where P satisfies (12).

Proof. 1) We have f(X) = 0 =⇒ H(X) = X by (11) and f(H(X)) = 0 by (12).
2) We have

(13) H(X) = Xf∗(X) ∨H(X)f∗∗(X)

by Lemma 2 in [2]. Now (11) follows from (13) and (12).

Theorem 2 reduced to Post algebras is essentially the main Theorem 6 in [2]. Simillary,
Part 1) of Theorem 2 is essentially the main Theorem 4 in [12]. As a matter of fact, the
proofs in [2] and [12] specify how to obtain (12): for each X such that f(X) = 0 choose
T such that X = Ψ(T ) and put P (X) = T , otherwise P (X) is arbitrary. Indeed, we get
Ψ(P (X)) = Ψ(T ) = X = H(X).

The open problem mentioned in the Introduction is the generalization of Part 2) of
Theorem 2 to Stone algebras.
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