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LIE ALGEBRAS AND YANG-BAXTER EQUATIONS

Florin NICHITA'!

Abstract

At the previous congress (CRM 6), we reviewed the constructions of Yang-Baxter
operators from associative algebras, and presented some (colored) bialgebras and
Yang-Baxter systems related to them.

The current talk deals with Yang-Baxter operators from (G, 6)-Lie algebras (struc-
tures which unify the Lie algebras and Lie superalgebras). Thus, we produce solutions
for the constant and the spectral-parameter Yang-Baxter equations, Yang-Baxter sys-
tems, etc.

Attempting to present the general framework we review the work of other authors
and we propose problems, applications and directions of study.
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16B50.
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1 Introduction

Quantum Groups can be identified with quasitriangular Hopf Algebras. This notion is
due to Drinfeld, motivated by developments in mathematical physics. The significance of
the quasitriangular condition is that it gives an explanation for the Yang-Baxter equation
(see [13, 12, 16]). This equation plays a role in Theoretical Physics ([21]), Knot Theory
([15]), Quantum Groups ([17, 19, 18]), etc.

In the next section, we review the constructions of Yang-Baxter operators from asso-
ciative algebras, the associated bialgebras and some results on Yang-Baxter systems (from
[18] and [22]).

Section 3 deals with Yang-Baxter operators from (G, #)-Lie algebras (structures which
unify the Lie algebras and Lie superalgebras). We produce solutions for the constant and
the spectral-parameter Yang-Baxter equations and Yang-Baxter systems (see [22]).

Finally, we present the general framework, results of other authors, and our new results.
We discuss about an extension for the duality between Lie algebras and Lie coalgebras,
Poisson algebras, and the classical Yang-Baxter equation.

In this paper we propose problems, applications and directions of study.
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2 Non-linear equations and bialgebras

This section is a survey on Yang-Baxter operators from algebra structures and some
related topics: connections to knot theory, FRT constructions, coloured Yang-Baxter op-
erators and Yang-Baxter systems.

The Yang-Baxter equation first appeared in theoretical physics, in a paper (1968) by
the Nobel laureate C.N. Yang, and in statistical mechanics, in R.J. Baxter’s work (1971).
Later, it turned out that this equation plays a crucial role in: quantum groups, knot theory,
braided categories, analysis of integrable systems, quantum mechanics, non-commutative
descent theory, quantum computing, non-commutative geometry, etc. In the quantum
group theory, the solutions of the constant QYBE lead to examples of bialgebras via the
FRT construction [6, 12]. Non-additive solutions of the two-parameter form of the QYBE
are referred to as a coloured Yang-Baxter operators. Yang—Baxter systems ([8, 9, 10])
emerged from the study of quantum integrable systems, as generalisations of the QYBE
related to nonultralocal models.

2.1 The constant QYBE

Throughout this paper k is a field, and all tensor products are defined over k. For
V a k-space, we denote by 7: V®V — VRV, vQw — w®v the twist map, and by
I :V — V the identity map of the space V. For R : V®V — V®V a k-linear map, we
use the following notations: R'? = R®I, R} = IQR, R*® = (I®7)(RRI)(I®T).

Definition 1. An invertible k-linear map R : VRV — VQ®V is called a Yang-Baxter
operator if it satisfies the equation

R12 o R23 o R12 — R23 o R12 o R23 (1)

Remark 1. The equation (1) is usually called the braid equation. The operator R satisfies
(1) if and only if RoT satisfies the constant QYBE (if and only if To R satisfies the constant
QYBE):

R20 R136 R2 — R2 o RI3 , R12 2)

Let A be an associative k-algebra, and «, 8,y € k. We define the k-linear map:

RA, : A®A — A®RA, R, (a®b) = aab®1 + Sl@ab — ya®b.

Theorem 1. (S. Dascdlescu and F. F. Nichita, [3]) Let A be an associative k-algebra
with dim A > 2, and o, 3,7y € k. Then Ré‘ﬂﬁ is a Yang-Baxter operator if and only if one
of the following holds:

(i) a=~#0, B#0;

(ii) a = =0, v#0.

If so, we have (R4, )™' = R4

oy 1 in cases (i) and (i), and (]%(‘]4707,Y)_1 = R4 | in

1 1
7; 0’07;

Q=

case (iit).



Lie algebras and YBE 197

Remark 2. The Yang—Baxter equation plays an important role in knot theory. Turaev has
described a general scheme to derive an invariant of oriented links from a Yang—Baxter
operator, provided this one can be “enhanced”. In [15], we considered the problem of
applying Turaev’s method to the Yang—Bazter operators derived from algebra structures
presented in the above theorem.

Remark 3. In dimension two, the Theorem 1 leads to the following R-matrix:

1 0 0 0
0 1 0 0
0 1—qg g O (3)
n 0 0 —¢q

where n € {0, 1}, and q € k — {0}.

The FRT bialgebras associated to (3) have the following independent commutation
relations:
(i) the case n =0

ba = qab, ac = ca, [a,d] = (1 — q)cb, (14 ¢)b* = 0,

be = qeb,bd = —qdb, (1 + q)c* = 0,dc = —cd

(ii) the case n =1
ba = qab, ab = dc + cd, [a,c] = db,a® — d* = (1 + q)c?,

[(1, d] = (1 - Q)va b2 = 07 be = qua bd = _de

where [a,c] = ac — ca, [a,d] = ad — da.
The comultiplication §(T) =T @ T and counit e(T') = Iy form the underlying coalge-

bra structure, where T = (Z Z) and I, = <(1) ?) The coquasitriangular structure is

associated in the standard way.

2.2 The two-parameter form of the QYBE

Formally, a coloured Yang-Baxter operator is defined as a function R : X x X —
End,V ® V, where X is a set and V is a finite dimensional vector space over a field k. We
consider three operators acting on a triple tensor product VeVeV, R (u,v) = R(u,v)®I,
R®B(v,w) = I ® R(v,w), and similarly R'3(u,w) as an operator that acts non-trivially on
the first and third factor in V@V ® V. R is a coloured Yang-Baxter operator if it satisfies
the two-parameter form of the QYBE,

R¥2(u, v) R (u, w)R® (v, w) = R*(v,w)R™(u, w)R?(u,v) (4)

for all u,v,w € X.
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Theorem 2. (F. F. Nichita and D. Parashar, [19]) For any two parameters p,q € k, the
function R: X x X — EndiA® A defined by

R(u,v)(a®b) =plu—v)l ®ab+q(u —v)ab® 1 — (pu— qu)b X a, (5)

satisfies the coloured QYBE (4).

Algebraic manipulations of the previous theorem lead to the following result.

Theorem 3. (F. F. Nichita and B. P. Popovici, [22]) Let A be an associative k-algebra
with dim A > 2 and q € k. Then the operator

SN (a®@b) = (e —1)1®ab+q(e* —1)ab® 1 — () —¢)bDa (6)
satisfies the one-parameter form of the Yang-Baxter equation:
S12(A — X2)SB(A — A3)SP (Mg — N\3) =

=SBy — A3)SB3 (A1 — X2)S2 (A — \a). (7)

If e*+#q, %, then the operator (6) is invertible.
Moreover, the following formula holds:

er—
ST M@ b) = o Egba ® 1+ A1 @ ba— Fbaa.

Remark 4. The operator from Theorem & can be obtained from Theorem 1 and the Bax-
terization procedure from [5] (page 22).
Hint: Consider the operator RAl 1 ARA — ARA, a®b — qab®1 + %@ab — %a@b

"qq
and its inverse, R:?l .
767

2.3 Yang-Baxter systems

It is convenient to describe the Yang-Baxter systems in terms of the Yang-Baxter
commutators.

Let V, V', V" be finite dimensional vector spaces over the field k, and let R : V@V’ —
VeV, S: VeV - VeV"and T : V'@V" — V'®@V” be three linear maps. The constant
Yang-Baxter commutator is a map [R,S,T]: VV'@V" — VeV'@V"” defined by

[R,S,T] := R12$"37% — 72515 R12, (8)

Note that [R, R, R] = 0 is just a short-hand notation for the constant QYBE (2).
A system of linear maps W : V@V — V@V, Z:V'V' —VeV, X: VeV —
VeV’ is called a WX Z-system if the following conditions hold:

W, W.W] = [2,2,Z) = W, X, X] = [X, X, Z] = 0. (9)
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It was observed that W X Z-systems with invertible W, X and Z can be used to con-
struct dually paired bialgebras of the FRT type leading to quantum doubles. The above
is one type of a constant Yang—Baxter system that has recently been studied in [19] and
also shown to be closely related to entwining structures [2].

Theorem 4. (F. F. Nichita and D. Parashar, [19]) Let A be a k-algebra, and A\, i € k.
The following is a W X Z—system:

W :ARA — A®A, W(a®b) = ab®1 + \1®ab — bR®a,

Z: ARA — A®A, Z(a®b) = pab®1 + 1®ab — b®a,

X A®A — A®A, X(a®b) = ab®1 + 1®ab — b®a.

Remark 5. Let R be a solution for the two-parameter form of the QYBE, i.e.

R (u, v) R (u, w) R* (v, w) = R (v, w) R (u, w) R (u,v) V u,v,w € X.

Then, if we fix s,t € X, we obtain the following W X Z —system.:
W = R(s,s), X = R(s,t) and Z = R(t,t).

Remark 6. The Section 5 of [18] provides connections between the constant and coloured
Yang-Bazter operators and Yang-Baxter systems from algebra structures, which were dis-
covered while presenting the poster [20] at the Isaac Newton Institute for Mathematical
Sciences, University of Cambridge, in 2006.

3 YANG-BAXTER OPERATORS FROM (G,#)-LIE AL-
GEBRAS

The (G, #)-Lie algebras are structures which unify the Lie algebras and Lie superal-
gebras. We use them to produce solutions for the quantum Yang—Baxter equation. The
spectral-parameter Yang-Baxter equations and Yang-Baxter systems are also studied. The
following authors constructed Yang-Baxter operators from Lie (co)algebras and Lie super-
algebras before: [14], [1], [16], etc.

3.1 Lie superalgebras

Definition 2. A Lie superalgebra is a (nonassociative) Zo-graded algebra, or superalgebra,
over a field k with the Lie superbracket, satisfying the two conditions:

[2,y) = —(=1)1"W[y, 2]

(D), [y, 2] + ()W, [z, 2]) + (1) Pz, 2, 4] = 0

where x, y and z are pure in the Zo-grading. Here, |z| denotes the degree of = (either 0
or 1). The degree of [x,y] is the sum of degree of x and y modulo 2.
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Let (L,[,]) be a Lie superalgebra over k, and Z(L) ={z € L: [z,2] =0 YV z € L}.
For z € Z(L), |z| =0 and « € k we define:

oL . LeL — L®L

[0}

2@y = alz, Yoz + (-1)" Wy .

Its inverse is:

oL el — LeL

«

TRy az® [r,y| + (—1)|Z|‘y|y Rx

Theorem 5. (F. F. Nichita and B. P. Popovici, [22])
Let (L,1,]) be a Lie superalgebra and z € Z(L),|z| =0, and o € k. Then ¢k is a YB
operator.

Theorem 6. (F. F. Nichita and B. P. Popovici, [22]) Let (L,[,]) be a Lie superalgebra,
z€Z(L),|z2|=0,X Ck, and o, : X x X — k. Then, R: X x X — EndyL ® L defined
by

R(u,v)(a ©b) = a(u,v)[a,b] @ z + Bu,v)(—1)"Pla® b, (10)
satisfies the colored QYBE (4) <= p(u,w)a(v,w) = a(u, w)B (v, w).

Remark 7. a(u,v) = f(v) and B(u,v) = g(v) is a solution for the above condition.
Letting u = v, we obtain that:

¢hs o L®L — L®L

2@y — ofz,y®z + (-1)" W gyes .

and its inverse:

Ly el — IeL

o 1
TEY 2 ® [z, y] + (*1)””3"53/@9:

are Yang-Baxter operators.

Remark 8. Let us consider the above data and apply it to Remark 2.10. Then, if we let
s,t € X, we obtain the following W X Z —system:

W(a®b) = R(s,s)(a®b) = f(s)[a,b] @ z + g(s)(—1)l*’lq @ b, and

Z(a®b) = R(t,t)(a®b) = X(a®b) = R(s,t)(a®b) = f(t)[a,b]®@2z+g(t)(-1)*Plaxb.
Remark 9. The results presented in this section hold for Lie algebras as well. This is

a consequence of the fact that these operators restricted to the first component of a Lie
superalgebra have the same properties.
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3.2 (G,#0)-Lie algebras

We now consider the case of (G, #)-Lie algebras as in [11]: a generalization of Lie
algebras and Lie superalgebras.

A (G, 6)-Lie algebras consists of a G-graded vector space L, with L = @yecgly, G a
finite abelian group, a non associative multiplication (..,..) : L x L — L respecting the
graduation in the sense that (Lg, Lp) C Lgtp, Va,b € G and a function § : G x G — C*
taking non-zero complex values. The following conditions are imposed:

e ¢-braided (G-graded) antisymmetry: (x,y) = —6(a, b)(y, x)

e O-braided (G-graded) Jacobiid: 6(c,a){(x, (y, z))+0(b, c)(z, (x, y))+0(a, b){y, (z,x)) =
0

0(a +b,c) = 6(a,c)d(b,c)
e 0:G x G — C* color function ¢ 6(a,b+ c¢) =0(a,b)d(a,c)
0(a,b)0(b,a) =1

for all homogeneous x € L,,y € Ly, z € L. and Va,b,c € G.
Theorem 7. (F. F. Nichita and B. P. Popovici, [22]) Under the above assumptions,

Rz ®y) =alr,y] ® z+ 0(a,b)x @y, (11)

with z € Z(L), satisfies the equation ( 2 ) <= 0(g,a) = 6(a,g) = 0(g,9) =1, Vo € L,
and z € Lg.
The inverse operator reads: R~z ®y) = aly, 2] ® 2 + 0(b,a)z @y

Proof. If we consider the homogeneous elements © € Ly, y € Ly, t € Le,
R2RBRB(zoyet) = RBRBR2 (z0yot)

is equivalent to

0(a, g)[z, [y, t]]@z@z + (b, ¢)[[x, t], y|@2®2z = 0(g, 9)[[, y], ]Rz@z (12)
0(a, 9)0(a,b+ c)z®[y, t]j@z = 0(a,b)f(a, c)z® [y, t|@z (13)

0(b,c)0(a + ¢, b)[z, tjl@yRz = 0(a,b)d(b, g)[z, t|@yRz (14)
0(b,c)b(a,c)[z,y|@z@t = O(a + b, c)0(g, ¢)[x, y|@zt (15)

Due to the conditions (L,, Ly) C L,y the above relations are true if 6(a, g) = 6(b, g)
0(g,c) =0(g,g) =1 is assumed. O

4 Applications. Problems. Directions of study

4.1 A Duality Theorem for (Co)Algebras

Our aim in this subsection is to present an extension of the duality of finite
dimensional algebras and coalgebras to the category of finite dimensional Yang-Baxter
structures, denoted f.d. YB str.
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Definition 3. We define the category YB str (respective £.d.YB str) whose objects are
4-tuples (V, o, e, €), where
i) Vs a (finite dimensional) k-space;
1) p: VeV ->V®V isa YB operator;
iii) ecV  suchthat pz®e)=e®z, ple@r)=ac®e Yo eV ;
w) €€V —k isak-map such that (I @e)op=e®I, (c®@I)op=1®c.
A morphism f : (V, ¢, e, ) — (V', ¢, €, €') in the category YB str is a k-linear map
f:V — V' such that:
v) (f@flop=¢o(fef);
vi)  fle)=¢;

vii) €of=ce.

Remark 10. The following are examples of objects from the category YB str:
(i) Let R:V @V -V @V isa YB operator. Then (V, R, 0, 0) is an object in the
category YB str.

(ii) Let V' be a two dimensional k-space generated by the vectors ey and ey . Then
(V, T,e1,es) is an object in the category f.d. YB str.

Theorem 8. (F. F. Nichita and S. D. Schack, [23]) i) There ezists a functor:
F:.:k—alg — YB str
(A, M, u)— (A pa, u(l) =14,0€ A*)  where pa(a®b) =ab@1+1Rab—a®b.
Any k-algebra map fis simply mapped into a k-map.
it) F is a full and faithful embbeding.

Theorem 9. (F. F. Nichita and S. D. Schack, [23]) i) There exists a functor:
G :k —coalg — YB str
(C,Aye) — (C, e, 0€ C, e € C) where Yo =ARe+e®@ A — L.
Any k-coalgebra map f is simply mapped into a k-map.
it) G is a full and faithful embbeding.

Theorem 10. (F. F. Nichita and S. D. Schack, [23]) (Duality Theorem )
i) The following is a duality functor: D : f.d. YB str — f.d. YB str°?
(V. g, e, 8) = (V¥ iy o™ vy, 6, G) where ¢V —k, C(g) = gle) Vg e V™.

Note that: D(f)y=f*, for f:(V,p,e,e)— (V' ¢, €, ).
it) The following relations hold:
D( (A7 PA, 14, O)) = (A*) 7vbA"y 0, ClA)

D((Cv ¢Ca 07 5)) = (C*a pox, € = 1C*7 O)

Remark 11. We extended the duality between finite dimensional algebras and coalgebras
to the category f.d. YB str. This can be seen bellow, in the following diagram:
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D=()"
f.d. YB str . N f.d. YB str°PP
D=()
F G
()
f.d. k—alg . > f.d. k — coalg®PP

()
4.2 A Duality Theorem for Lie (Co)Algebras

In [4], the authors considered the constructions of Yang-Baxter operators from Lie
(co)algebras, suggesting an extension (to a bigger category with a self-dual functor acting
on it) for the duality between the category of finite dimensional Lie algebras and the
category of finite dimensional Lie coalgebras. This duality extension is explained using
the terminology of [16] below.

Let (L,[,]) be a Lie algebra over k. Then we can equip L' = L & kxp with a Lie
algebra structure such that [z, xo] =0 Vz € L’. We define:

¢d=0o¢p : (L& krg)®(L®kry) — (LD kro)R(L® ko)
@Y — [z, y|®x0 + YT

Theorem 11. i) There exists a functor:
F . f.d. Lie alg — f.d. YB str
(L. L)) — (L& kzo), 6, 0, 0).
Any Lie algebra map fis simply mapped into a k-map.
it) F is a full and faithful embbeding.

Proof:
i) First, we show that (L', ¢r/,x0, 0) is an object in the category YB str :
or(x®x0) = 2@, (T @ T) = TR,
(I®0)o¢y=0=001, (0&)ody=0=1Ic0.
Now, for f:L; — Lo a morphism of Lie algebras, we prove that
f (LY, ¢y, 20, 0) = (Ly, éry, 0, 0) is a morphism in the category YB str.
We extend f such that f(zg) = 29 . Now, 0o f =0 . It only remains to prove that
(f@[f)odr = ¢ o(f®f).
(fefeor) (xoy) = (fe )z ylozo+y@r) = f(lz,y]) © f(xo) + f(y) © f(z) =
f(lzy]) @ zo + f(y) ® f(x)
(01 0 (f @ ))(z®y) = [f(2), f(y)] @ x0 + f(y) @ f(z).
Since f : Ly — Lo is a morphism of Lie algebras, it follows that (f ® f) o ¢, =
oy o (f® f).
ii) If two Lie algebras (L1, [,]1) and (Lg, [,]2) project in the same object in
the category YB str (i.e., F'[(L1, [,]1)] = F[(L2, [,]2)]) then they have the same ground
vector space and the same operation. So, F is an embedding.
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Obviously, for two distinct Lie algebra maps f,g : L1 — Ly we get two distinct
YB str maps.

Now, for f: (L], brss o, 0) — (L5, b1y, To, 0) a morphism in YB str it follows
(F & ) o b1) (¢ ®) = (b 0 (f © ) (z@y): 50,

(f & N(2.9] ® 20 +y©2) = [f(2), Fy)] & 20+ F(1) © F(a).

Thus, f([z,y]) = [f(2), f(y)]. O

A Lie coalgebra is a dual notion to a Lie algebra. It has a comultiplication, called
“cobracket”. We refer to [16] for more details and references.

Let (M, A) be a Lie coalgebra over k. Then we can equip M’ = M @ kxg with a Lie
coalgebra structure such that A(zg) =0 € M'®@M’. Observe that for v = (x¢)* : M' — k
the following relation holds: (v®I)o A =0= (I®v)o A.

Theorem 12. i) There exists a functor:
G : f.d. Lie coalg — f.d. YB str
(M, A)— (M @ kxo),9, 0, v), where
Vo (M@ kxy)(M B kxy) — (M@kxo)R(M Dkxy), zQy+— Alx)v(y) +yRz .
Any Lie coalgebra map f is simply mapped into a k-map.
it) G is a full and faithful embbeding.

Proof: The proof is dual to the previous proof, and we will briefly explain only its
key points. By Theorem 5.2.1 of [16], it follows that v is an Yang-Baxter operator.
(I @v)oyyy =vel, (vl)oyyy =1®v follow from (v®@I)oA =0= (IQv)oA.
The proof of ii) follows by direct computations.
Otherwise, it can be viewed as a consequence of the Section 2 of [3]. Thus, the theory of
Yang-Baxter operators from (Lie)algebras can be transfered to the Yang-Baxter operators
from (Lie) coalgebras. O

Remark 12. We extend the duality between finite dimensional Lie algebras and Lie coal-
gebras to the category f.d. YB str. This can be seen in the following diagram:

D=()
f.d. YB str . N > f.d. YB str°PP
D=()
F G
()"
f.d. Lie alg = > f.d. Lie coalg®PP

4.3 Poisson algebras

Poisson algebras appear in quantum groups, Hamiltonian mechanics, the theory of
Symplectic manifolds, etc.
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Definition 4. A Poisson algebra is a vector space over k, V', equipped with two bilinear
products, * and { , }, having the following properties:
- the product x forms an associative k-algebra;
- the product { , }, called the Poisson bracket, forms a Lie algebra;
- the Poisson bracket acts as a derivation on the product *, i.e.
{z, yxz} ={x, y}xz+y=*{x, 2} Va,y,zeV.

Examples.

1. Any associative algebra with the commutator [z, y| = xy—yz turns into a Poisson
algebra.

2. For a vertex operator algebra, a certain quotient becomes a Poisson algebra.

Remark 13. A Lie algebra (L, [,]) has a Poisson algebra structure such that the Poisson
bracket equals the associative product (i.e., [x,y] = x*xy Vr,y € L) <= [z,y] €
Z(L) Vz,y € L.

Theorem 13. Let A be a Poisson algebra with a unity, 1 = 14, for the product *, such
that {x, 14} =0 Vz € A. Then, we have the following W X Z-system:

W(zoy)={z, y}®l + z®y;

X(z®y) =1{z, y} + z®y;

Z(z®y)=10xxy + x*xy®l — y.

Proof. It follows from Theorem 1, Theorem 5, and from the fact that the Poisson
bracket acts as a derivation on the product x*. O

4.4 Other results and comments

Motivated by the need to create a better frame for the study of Lie (super)algebras
than that presented in [24], this paper generalizes the constructions from [14] (to (G, #)-Lie
algebras). Applications of these results could be in constructions of FRT bialgebras and
knot invariants, and in the study of the classical Yang-Baxter equation (see below).

Theorem 14. Let (L,[,]) be a Lie algebra, z € Z(L) and o € k. Then
r:LQL — LQL, zQyr [z,y|®z+ ar®y
satisfies the classical Yang-Bazter equation:
[10127 7413] 4 [70127 7"23] 4 [7‘13, 7“23] =0.

Proof. It follows that  [r'2) r3(u®@z®y) = ([[u,y], 2] — [[u, 2], y]) @2z,
2

[r2, 12 (uz@y) = [u, [z, y]]®2@z, [, r®)(uer®y) =0,
and we observe that ([[u, y], ] —[[u, x], y]) + [[u, [z, y]] = 0 is equivalent with the Jacobi
identity.

An interpretation of the proof and its applications are work in progress. O
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