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ON L-IMPLICATIVE-GROUPS AND ASSOCIATED ALGEBRAS OF
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Abstract

The l-implicative-group is a term equivalent definition of the group coming from al-
gebras of logic. In this paper, we study the representability of [-implicative-groups and
of associated algebras of logic. First, we find equivalent conditions for an I-implicative-
group to be representable. Then, we prove that representability at I-implicative-group
level is inherited by the algebras obtained by restricting the l-implicative-group oper-
ations to the negative, positive cones.
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1 Introduction

Pseudo-MV algebras, the non-commutative generalizations of Chang’s MV algebras
[5], were introduced in 1999 [9] and developed in [11] (see also [17]). Pseudo-MV algebras
are particular cases of bounded (non-commutative) residuated lattices and are intervals
[6] ([16], in the commutative case) in [-groups.

On the other hand, pseudo-Wajsberg algebras, the non-commutative generalizations
of Wajsberg algebras [7], are term equivalent [3], [4] to pseudo-MV algebras. Pseudo-
Wajsberg algebras are particular cases of bounded pseudo-BCK(pP) lattices [10], [13]. And
(bounded) pseudo-BCK(pP) lattices are categorically equivalent to (bounded) residuated
lattices [12].

Hence, pseudo-Wajsberg algebras had to be connected to (are intervals in) a notion
that is term equivalent to the [-group: that notion is the [-implicative-group, introduced
and studied in [14], [15].

Note that, usually in the literature, looking from algebraic point of view, the case of
right-pseudo-MYV algebras (the right-algebras in general) is considered, since in po-groups,
[-groups the positive cone is usually considered.
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But, note also that, looking from logical point of view, where the truth is represented
by 1, and not by 0, we arive to consider the case of left-pseudo-MV algebras (the left-
algebras in general) and the negative cone of po-groups, l-groups. The reader finds more
on left-algebras and right-algebras of logic in [13].

Therefore, in [14], [15] we have studied both left- and right-algebras of logic.

In this paper, we present in details some of the results from [15] announced at the Sev-
enth Congress of Romanian Mathematicians, June 29 - July 5, 2011, Brasov, Romania,
namely those concerning the representability of [-implicative-groups and of associated al-
gebras of logic. First, in Section 3, we find equivalent conditions for an [-implicative-group
to be representable (Theorem 3.2). Then, in Section 4, we prove that the representabil-
ity at [-implicative-group level is inherited by the algebras obtained by restricting the
l-implicative-group operations to the negative, positive cones (Theorem 4.2). Another
important result here is Theorem 4.3. Some open problems are presented.

2 Preliminaries

Recall first the following notations from [14], [15] (where ¢ means “dual”), in the case
of pseudo-BCK lattices:

) notation

(pP) Iz 0y ""E " min{z |z <y —F 2z} =min{z | y < z ~F 2},
(pS) y " max{z |2 >y >R 2} = max{z |y >z~ 2},
(PC)  aVy=(z~"y) —Fy=(z ="y ~y,
(
(pprel) (pseudo-prelinearity) (z —%y)V (y =% z) =1= (z ~L y) v (y ~ ),
(pdiv) (pseudo-divisibility) z Ay = (z =L y) Oz =20 (z ~Fy),
(pprel?) (2 —R y) A (y =2 2) = 0= (z 7 y) A (y =R 2)
(pdiv)) zvy=(z ="y or=c® (@ ~"y).

Recall also [13] that condition (pC) implies conditions (pprel), (pdiv) and dually, con-
dition (pC%) implies conditions (pprel?), (pdiv?).

We now recall from [14] some of the necessary results needed in the sequel concerning
the (implicative-) groups.

2.1 Groups, po-groups, [-groups

e Let G = (G,+,—,0) be a group, in additive notation in this paper. We introduced
the new operations — and ~» on G, called “implications”, defined by: for all z,y € G,

zoy Dt ()l =yt (-2), ey D () el = () +y. 21

The two implications satisfy the following properties: for all z,y, z € G,
rty=—(z—=(-y)=(y —z z+ty=—(y~(-2)=(-2)~y, (2.2)
y—z=0@E—-x)w(y—z), ywaz=(Ewa)—(y~a), (2.3)

(y—z)~r=y=(y~z) - (2.4)
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—rz=z—0=x~0, (2.5)
r=y<—=r—-y=0<=x~~y=0, (2.6)
rHy=z<=r=y—oz<=y=x~2z (see[8], page 160). (2.7)

e Let now G = (G, <,+, —,0) be a partially-ordered group (po-group). Then the following
properties hold: for all x,y, 2z € G,

(1) z4y<zerz<y—zey<az~z, and dually (2.8)

(i) zHy>zr>y—z8y>a~2,
r<y = z—zrx<z-oyand z~x <z~ y, (2.9)
r<y = y—z<zrx—ozandy~ z <z~ 2. (2.10)
e Let finally G = (G, V, A, +, —,0) be a lattice-ordered group (I-group). Then we have, for
all z,y,2z € G:

and dually (2.11

(zVz)my=(@—-yAr(z—y), @Vz)wy=(@~yAr(z~y

(FAz)my=@—=y)V(E—y), (@A2)wy=(@~y)V(z~y); 2.12

) (2.11)
( (2.12)
y—(xVz)=y—2)Vy—2), y~(@Vz)=Wy~z)V(y~2) anddualy (2.13)
( (2.14)

y—@nz)=(y—z)A(y—2), y~(@Az)=(y~z)A (Y~ 2). 2.14

2.2 Implicative-groups, po-implicative-groups, /-implicative-groups

e An implicative-group ([14], Definition 4.1) is an algebra G = (G, —,~,0) of type
(2,2,0) such that the following axioms hold: for all x,y,z € G,
My—z=@EF—2)wy—2z), ywz=(wz)—(y~ ),
12)y=(@y—z)~z, y=@H~az) —u
B)r=y<—=zr—-y=0<=x~y=0,
(I4) x - 0=x ~ 0.

The implicative-group is said to be commutative or abelian if —=~-.

Let G be an implicative-group. Then, we have, for all x,y, z € G:
IN0—-x=2=0~ =,

(18) 2~ (y — o) =y — (2 ~ ),
I19)z—2z=0=z~wuz,

z—oax=Yy—z2)—(y—x), z~~x= Yy~ 2)~ (y~ ). (2.15)
The groups and the implicative-groups are termwise equivalent:

Theorem 2.1. ([14], Theorem 4.13)
(1) Let G = (G, 4+, —,0) be a group. Define ®(G) = (G, —,~,0) by: for all z,y € G,

roy L et (y) =@y =y
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2y —((y) +a) = ~(-y+a)=—at.

Then ®(G) is an implicative-group.
(1’) Conversely, let G = (G, —,~>,0) be an implicative-group. Define ¥(G) = (G, +, —,0)
by: for all x,y € G,

oo 0D a0, a4y o (—y) =y~ ().

Then ¥ (G) is a group.
(2) The maps ® and ¥ are mutually inverse.

The implicative-group is commutative if and only if the term equivalent group is com-
mutative.
o A partially-ordered implicative-group (po-implicative-group) ([14], Definition 4.17) is a
structure G = (G, <, —, ~»,0), where (G, —, ~,0) is an implicative-group and < is a par-
tial order on GG compatible with —, ~-, i.e. we have: for all z,y, z € G,
(I5) z <y implies z <z —yand z ~ x < 2~ y.

The po-groups and the po-implicative-groups are termwise equivalent ([14], Theorem
4.23).
e If the partial order relation < is a lattice order relation, then G is a lattice-ordered
implicative-group (l-implicative-group) denoted G = (G, V, A, —,~,0).

The l-groups and the l-implicative-groups are termwise equivalent ([14], Corollary
4.31).

2.3 “Vertical” connections (between group level and algebras of logic
level)

Theorem 2.2. (see [14], Theorem 5.3) Let G = (G,V,\,—,~»,0) be an l-implicative-

group.
(1) Define, for all x,y € G~ :

mHLydgc'(xHy)/\O, xwLyde:f'(xwy)/\O. (2.16)

Then, GF = (G, A, V, =L, ~1 1 =0) is a left-pseudo-BCK (pP) lattice (with the pseudo-
product © = +), lattice that is distributive, verifying condition (pC).
(1°) Define, for all x,y € GT:

x—>Ryde:f'(x—>y)\/0, wayde:f'(:Ewy)\/O. (2.17)

Then, G = (G, v,A, =B~ 0 = 0) is a right-pseudo-BCK(pS) lattice (with the
pseudo-sum @& = +), lattice that is distributive, verifying the dual condition (pCd)
3 Representable [-groups, [-implicative-groups

Recall (see [1], for example) that an I-group is representable if it is a subdirect product
of totally-ordered groups. Recall also the following theorem that gives characterizations
of representable [-groups, some of them needed in the sequel.
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Theorem 3.1. (see [1], Theorem 4.1.1)
Let G = (G,V,N\,+,—,0) be an l-group. The following are equivalent:
(a) G is representable.
(b) For all a,b € G, 2(a Ab) = 2a N 2b;
(b%) For all a,b € G, 2(a \V b) = 2a \V 2b.
(c) For all a,b € G, aA(—=b—a+b) <0;
(¢?) For all a,b € G, aV (=b—a+b) > 0.
(d) Each polar subgroup is normal.
(e) Each minimal prime subgroup is normal.
(f) For each a € G, a >0, a N (=b+a+b) >0, for allb e G;
(f!) For eacha € G, a <0, aV (=b+a+b) <0, for allb € G.

Note that ¢ means “dual”.

Remark 3.1. Note that in commutative [-groups we have, for all a,b € G:

2(aANb)=2aN2b< (b—a)A\(a—0D)
2(aVvb)=2aV2b<= (b—a)V(a—0D)

IN

0.
0.

Y

Indeed, for example:
2(aVvb)=2aV2b<= (aVbh)+ (aVb)=2aV2<+—=
2aV2b=la+ (aVD)]VI[b+ (aVb)] <= 2aV2b=2aV (a+b)V (b+a)V2 <=
2aV20=2aV2bV(a+b) <= 2aV2b>a+b<= (2aV2b) —b>a<=
(2a—b)Vb > a <= [(2a—b)Vb—a >0 < (a—b)V(b—a) >0 <= (b —a)V(a—b) >0

We obtain in the non-commutative case the following results.
Proposition 3.1. Let G = (G,V,A,+,—,0) be an l-group. Then
(b) = (bl) <= (b2), (b)) = (b1?) = (b29),

where:

(b1) for all a,b € G, (b —a)A(a~>b) <OA[b~ a)~ (b—a)l,
(b2) for all a,b € G, (b~ a)A(a—b) <OA[(b—a)— (b~ a)];
(b1?) for all a,b € G, (b— a) V (a~b) >0V [(b~ a)~ (b— a)],
(b2%) for all a,b € G, (b~ a) V (a —b) >0V [(b— a) — (b~ a)].

Proof. (b?) <= (b1%):

2(aVvb)=2aV2b< (aVbh)+ (aVb)=2aV2<—=
[a+(aVDbd)]Vb+(aVd)]=2aV20<=2aV(a+b)V(b+a)V2=2aV2 <=
2aV2bV (a+b)V(b+a)=2aV2b<= 2aV2b>(a+b)V(b+a) <=
(2aVv20)—b>[(a+b)V(b+a)—b<= 2a—b)Vb>aV (b+a—-b)
—a+[(2a—b)Vb>—-a+aV(b+a—0b)] <
(a=b)V(-a+b)>0V(—a+b+a—0b) <
b—a)V(a~b)>—-a+b+[(-b+a)V(a—b)]=—(-b+a)+[(b~a)V(b—a) <=

(b= a)V(a~sb)> (b~ a)~[(ba)V(b—a)] 20V (b a)~ (b a).
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(b?) <= (b2%):
2(aVb)=2aV2b<=...<=2aV20>(b+a)V(a+b) <=
[aV(2b—a)]+a>[bV(a+b—a)]+a<=aV(2b—a)>bV (a+b—a) <=
b+[(-b+a)V(b—a)] >b+[0V(-b+a+b—a)] <=
(=b+a)V((b—a)>0V(-b+a+b—a) <=
(b~a)V(a—b)>[(a—b)V(-b+a)]+b—a<=
(b~a)V(a—b)>[(a—b)V(=b+a)]—(a—0b) =
(b a)V(a—b) > (b—a)—[(b—a)V (b~ a)] =0V [(b— a) — (b a).

The rest of the proof is similar. ]

Remark 3.2. (see Remark 3.1)
Note that

(b1) = (b17), (b2) = (b27); (b1 = (61?9), (2% = (B2P),

where:
(b1”) for all a,b € G, (b — a) A (a~b) <0
(b2”) for all a,b € G, (b~ a) A (a—b) <0
(b197) for all a,b € G, (b— a) V (a ~ b) >0,
(b2%") for all a,b € G, (b~ a) V (a — b) > 0.
Note that the converse implications are not true.
Note also that (b1”) and (b2”) coincide and that (b1?”) and (b2%”) coincide.

Proposition 3.2. Let G = (G,V,A,+,—,0) be an l-group. Then

(c) <= (cl) <= (2), () = (c1?) = (29,
where:
(c1) for all x,y,z,w € G, (x ~ y) A(([((y ~ x) ~ 2) ~ 2] > w) — w) <0,
(c2) for all x,y, z,w € G, (x = y) A(([((y = ) = 2) = 2] ~» w) » w) <O;
(c1?) for all z,y,z,w € G, (x ~ y) V (([((y ~ x) ~ 2) ~ 2] = w) — w) >0,
(c29) for all 2.y, %0 € G, (z — )V ([({(y — 7) — 2) — 2] = w) ~ w) > 0.

Proof. (c¢®) = (c1%): (2~ y) V (([((y ~ x) ~ 2) ~ 2] = w) = w) =
(—z+y)V({([~(=(~y+2)+2)+2] D w) »w)=
(—z+y)V(([~(—z+y+2)+z] = w) —w) =
(—z+y)V({([~z2—y+z+2z] —w) —»w)=
(—z4+y)V(w—[-z—y+x+2]) >w) =
(—z4+y)V(w—z—z+y+2) - w)=
(—z4+y)Vw—(w—z—z+y+2)) =
(—z+y)Vw—z—y+z+z—w)=

—z+y)V((w—2) - ($+y)+(2—w))=

aV(=b— a+b)>0 by (c?).

(c19) = (c?): Take x =0,y = a, 2 =0, w = —b in (c1?); we obtain:
(0~ a) vV (([((a~0) » 0) » 0] = =b) = —b) 20 <=
aV((—a— —b) - —b) > 0 <=
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Vv ((=b ( a)) = =b) 2 0=
V((=b+a) = =) >0

V(=b— (—b+a)) > 0 =

V (=b—a+b) > 0. Thus (c?) < (c19).

() = (29): (z = 9) V (([((y = 2) = 2) = 2] ~» w) » w) =
(y—2)V(([z= (= (z —y)] ~ w) ~ w) =
(y—2)V(([z— (+ty—2)]~w) ~w) =
y—2)V(([z+z—y—2]~w) ~w)=
(y—z)V((—z+z—y—2]+w)~w)=
(y—2)V((z+y—z—2z4+w) ~w) =
(y—2) V(—(z+y—5—2+w) +w) =
y—x)\/(—w+z~l—x—y—z+w):

aV(—=b-— a+b)>0 by (c?).
(c29) = (c¢?): Take 2 =0,y = a, 2 = 0, w = b in (c2?); we obtain:
(0= a) v (([((a = 0) = 0) = 0] ~= b) ~ b) > 0 =
aV ((—a~b)~b) >0
V((a+b)~b) >0+
V (=b—a+b)>0. Thus (c?) <= (c29).
The rest of the proof is similar. ]

We shall say that an [-implicative-group is representable if it is a subdirect product of
totally-ordered implicative-groups. Consequently, an [-implicative-group is representable
if and only if its term equivalent I-group is representable. Then we have the following
result, needed in the sequel.

Theorem 3.2. Let G = (G,V, A\, —,~>,0) be an l-implicative-group. The following are
equivalent:

(a) G is representable, (b1), (b2), (b1%), (b2%), (c1), (c2), (c1%), (c2?).
Proof. By Theorem 3.1 and Propositions 3.1, 3.2. O
We can put together Theorems 3.1 and 3.2 in the following resuming statement:

Theorem 3.3. Let G = (G,V, A, +,—,0) be an l-group or, equivalently, let G = (G, V, A\, —
,~,0) be an l-implicative-group. The following are equivalent:
(a) G is representable.

(b) For all a,b € G, 2(a Ab) = 2a N 2,
(b1) For all a,b € G, (b —a) A (a~>b) <OA[(b~ a)~ (b— a),
(b2) For all a,b € G, (b~ a)A(a—b) <OA[(b—a)— (b~ a)|;
(b%) For all a,b € G, 2(a \V b) = 2a \V 2b,
(b1?) For all a,b € G, (b— a)V (a ~b) >0V [(b~ a) ~ (b— a)],
(b2%) For all a,b € G, (b~ a)V (a—b) >0V [(b— a)— (b~ a).

(¢) For all a,be G, aN(—=b—a+b) <0
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(¢?) For alla,b € G, aV (=b—a+b) >0,
(c1?) For all z,y,2,w € G, (z ~ y) V (([((§y ~ 2) ~ 2) ~ 2] = w) = w) >0,
(c2?) For all x,y,z,w € G, (x — y) V (([((

(d) Each polar subgroup is normal.
(e) Each minimal prime subgroup is normal.

(f) For each a € G, a >0, a A (=b+a+b) >0, for allb € G;
(f!) For eacha € G, a <0, aV (=b+a+b) <0, for allb € G.

4 Connections between the representability at [-implicative-
group level and the representability at negative, positive
cones level

e Recall that in the commutative case:

A left-residuated lattice A" = (A", A, Vv, ®, =% 1) or, equivalently, a left-BCK(P) lat-
tice A = (A¥ A, Vv, —L 1) with the product ®:
(P) there exist z ® y netation min{z | z <y —F 2}, for all z,y € A",
is representable if it is a subdirect product of linearly-ordered ones. It is known that rep-
resentable such algebras are characterized by the prelinearity condition:

(prel) (-t yvy-ta) =1

Dually, a right-residuated lattice A% = (A% v, A, @, =% 0) or, equivalently, a right-
BCK(S) lattice A" = (A% v, A, =%, 0) with the sum @:
(S) there exist z @y notation max{z |z >y —f 2}, for all z,y € AF,
is representable if it is a subdirect product of linearly-ordered ones; representable such

algebras are characterized by the dual prelinearity condition:
(prel®y (@ ="y Ay —-Tz)=0.
Then we have the following result:

Theorem 4.1. Let G = (G, V, A\, —,0) be a representable commutative l-implicative-group.
(1) Define, for all x,y € G~ :

v Ly ™ (@ =y no. (4.18)

Then, GI' = (G, A, V,—% 1 =0) is a representable left-BCK(P) lattice.
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(1°) Define, for all z,y € GT:

x—>Ryd€:f' (x = y) VO. (4.19)

Then, G = (G+,Vv, A, —T,0 =0) is a representable right-BCK(S) lattice.

Proof. (1): By Theorem 2.2, G is a left-BCK(P) lattice. To prove that it is representable,
we must prove that (prel) holds. Indeed, (z —% y)V (y =L z) = [(x — ) AO] V [(y —
) AN0l=[(x = y)V (y — x)] A0 =0, by Theorem 3.1 and Remark 3.1.

(1) By Theorem 2.2, G is a right-BCK(S) lattice. To prove that it is representable,
we must prove that (prel?) holds. Indeed, (z =% y) A (y =T z) = [(x — y) VO] A [(y —

z)VO0l =[x —y)A(y— x)]VO=0, by Theorem 3.1 and Remark 3.1. O

e Recall that in the non-commutative case:

A non-commutative left-residuated lattice A* = (AL A, V,®, =L ~L 1) or, equiv-
alently, a left-pseudo-BCK(pP) lattice AV = (AL A, Vv, =L~ 1) (with the pseudo-
product @) is representable if it is a subdirect product of linearly-ordered ones. C.J.
van Alten [2] proved that such non-commutative algebras are representable if and only if
they satisfy the identity:

(2 5 )V ([((y " @) T 2) b 2] =P w) —F w) = 1, (4.20)

or the identity
(x =Ly v (([((y =T ) = 2) =L 2] wLw) L w) = 1. (4.21)

Dually,
a non-commutative right-residuated lattice A% = (AR,V,/\,EB,—>R,WR,O) or, equiva-
lently, a right-pseudo-BCK(pS) lattice A% = (AT v, A, =~ 0) (with the pseudo-sum
@) is representable if it is a subdirect product of linearly-ordered ones. Representable such
algebras are characterized then by the dual condition:

(@~ ) A (g T ) =T 2) T 2] =T w) =T w) =0, (4.22)

(x =" y) A ([((y =7 2) =7 2) =7 2] =P w) 7 w) 0. (4.23)

We shall prove the following result:

Theorem 4.2. (see Theorem 2.2)

Let G = (G,V,N\,—,~,0) be a representable l-implicative-group. Then,

(1) Gt = (G=,A,V, =L, ~L 1 = 0) is a representable left-pseudo-BCK (pP) lattice
(with the pseudo-product ©® = +).

(1) GF = (G+, Vv, A, =T~ 0 =0) is a representable right-pseudo-BCK (pS) lattice
(with the pseudo-sum & = +).
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Proof. (1): By Theorem 2.2, G¥ is a left-pseudo-BCK(pP) lattice. To prove that G% is
representable, we must prove that condition (4.20), for example, holds. First denote:

AT (y b ) b )

B nota:tion (A _)L w) _)L w,

C nota:tion (m WL y) vV B.

We must prove, by (4.20), that C' = 1. Indeed,
e First proof:
A= ((y b ) b 2) b 2= ([(—y+2) A0 b 2) b 2 =
(—[(—y—|—az)/\0]+z)/\0]sz:
([(—a:—i—y)\/O}—i—z)/\O]w z=
[(—x+y+2) V2] A0 ~l 2=
=z 4+y+2) VA0 +2) A0 =
[—((—z+y+2)Vz) VO +2)A0=
[(—2—y+2) A (—2)] V0] +2) A0 =
===y +2) A (-2 +2) V) 70 =
(mz—y+2x+2)N0 A0 =
(—z—y+z+2) A0
(—z—y+z+2)Vz]AO.
B=(A—-rw) =lw=
(w—A)A0] =F w =
w—[(w—A)AO)) A0 =
w+[(A—w)VO])AO0=
(w+A—w)Vw)AN0=
w+ ([(—z—y+z+2)Vz]A0) —w) Vw] A0 =
+(—z2—y+z+2)Vz]) Aw]—w)Vw] A0 =

)V
V2
A

[(w
[(w=—z—y+z+2)V(w+2)]Aw —w)Vw] A0 =
(w—z—y+zx+z—w)V(w+z—w)]A0)VwAO=
(w—z—y+ax+z—w)AOV[(w+2z—w)A0]Vw A0 =
w—z—y+x+z—w)AOV|[(w+z—w)AO]Vw>
w—z—y+x+z—w)AO0.

Hence,
CZ(Q?wLy)\/BZ
[(—z+y)AO]V][(w—z—y+x+2z—w)A0] =
(—z+y)Vw—z—y+z+2z—-—w)A0=
[aV(=b—a+b)] A0, witha=—-z+y, b=2z—w.
But G is representable, hence by Theorem 3.1 (c¢), for all a,b € G, aV (=b—a+b) >0
Hence C' > 0 and thus C' =0, i.e. C' = 1.
e Second proof: Denote

D nota:tion ((y — .’1’) — Z) 2,

E notgﬁion (D R w) s w.
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By Theorem 3.2 (c1%), we have
(z~y)VE>0. (4.24)

A= ((y L a) L 2) b 2= [([(y ~ 2) A O]~ 2) A O] wF 2 2D
[(((ywx)WZ)\/(sz))/\O] «‘,\_>L‘z:
((ywx) ~s Z)\/z) /\0] L Zdzst:mb.
((ny)Wz)/\O]\/(Z/\O)] Ly
[((y ~ x) ~ 2) AO]V 2]~ 2) A0 P2V
( (2.12)
(

(
Eywx)WZ)AO]wz)A(zwz)Ao =

B=(A—Lw) —Lw=((DVz)A0] - w)A0] —L w2

(DV2) = w) V(0 — w)] A0] =% w =
([[((DV 2) = w) v w] A0] — w) A0 =
([((DV 2) = w) V] —w) V(0 —w) A0 2
(D V 2) = w) — w) A (w — w)] Vw) A0 DL
( —w)Vw]AOVw)]A0=
(DV2) = w) — w) V] A0 =Y
(D — w)A(z—w)] = w) Vw] AO
(D — w) = w) v ((z — w) — w))] Vw] A0 =
EV((z—w)—w)Vw] AO.
C=(x~ly)vB=
[(z ~y) AOVI(EV ((z = w) = w) Vw) AQ]
[(z~y)VEV((z—w) —w)Vw]A0=0,
?znce (x)w 3};) VEV((z - w) - w)Vw > (z ~ y)VE >0, by (4.24), and hence
x~~y)VEN)O=0. Thus, C =1.

~—

~—

E
<
&
l
&

(2.12)

distrib.

(1’) has a similar proof, using Theorem 3.1 (c), in the first proof, and Theorem 3.2
(cl), in the second proof. O

Finaly, we present some intermediary results and an open problem.

Theorem 4.3. (see Theorem 2.2)

Let G = (G,V,N\,—,~,0) be a representable l-implicative-group. Then,

(1) the left-pseudo-BCK (pP) lattice G& = (G—, A, V, =% ~L 1 = 0) (with the pseudo-
product © = + ), verifying condition (pC), verifies also the following conditions: for all
a,be G,

(i) (aVb)2=a?Vb? ie (aVb)®(aVb)=(a®a)V (bOb),
(ii) Condition (i) is equivalent with condition

b =L (a~L(@oa)] Vet b= Bob) =1 (4.25)
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(iii) (b =L a) v (a ~Lb) =1,
(iv) Condition (iii) implies condition (4.25).

(1°) the right-pseudo-BCK(pS) lattice G = (G*,V, A, =B~ 0 = 0) (with the
pseudo-sum @ = + ), verifying the dual condition (pC?), verifies also the following condi-
tions: for all a,b € G,

(1)) 2(a Nb) =2a A2b, ice. (aND)®(aNb)=(ada)A(bdD),
(ii’) Condition (i’) is equivalent with condition

b =T (a~B (a®a))]Va~"0-"(baob) =o0. (4.26)

(iii°) (b —T a) A (a ~B b) =0,
(iv’) Condition (iii’) implies condition (4.26).

Proof. We prove (1). We denote —=— and ~»=~-1,

(i): follows obviously by Theorem 3.3 (b%), since G is representable.

(ii): We shall prove that (i) <= (4.25). Indeed,

(i) = (4.25):
(i) (avb)©(aVb)=(a®@a)V(bOb) —
[(avb)®alV[(aVvbd)©b=(a®a)V (beb) <
a®aVvVbO®aVa®bVbOb=a0aVboOb—

a®bVboOa<a®aVbob. (4.27)
And (427) = a0b<a®aVbOb=b— (a®b) <b— (a®aVbOb) =

a~(b—(adb)<a~(b—(a®aVbeb)). (4.28)
Buta~ (b— (a®b)=b— (a~ (a®b)) <b—b=1,since b <a~ (a®b). Hence,
(428) = a ~ (b— (a®aVbob) =1 2L
0w [(b—a®a)Vd—bob)]=1%Y
[a~(b—a®a)lVia~(b—=-000]=1
b— (a~ (a®a))]Va~ (b— (be®b))]=1,ie.(4.25) holds.
Note that we have used an equivalent condition with (pprel) denoted (pprel-) in [13],

pag. 386:
(pprelsy) 2 — (yVz) = (@ —y)V(z —2)and z ~ (yVz) = (x ~y) V (z ~ 2).

(4.25) = (i):
(4.25) [b— (@~ (a®a))] V]a~ (b— (bObH))] =1 <

[a~ (b— (@@a)]Va~ (b— (bob)] =1 25
a~>b—(a®aVbob) =1+

1<a~ (b= (a@aVbod)—=a=a01<a0la~(b—(a®@aVbob))] (<Pd:w>)
a<aAN(b—(a®aVbob))<a=a=aA(b—(a®aVbOb)) —

a<(b—(@0avbob) = a0b< (b (@oavbob) ob S

aOb<bA(a®aVbOb) <a®aVbOb=—=a0b<a®aVbOb.
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Similarly,
bOa<bObVab®a,
ie. a®@aVb®bis an upper bound of a ® b and b ® a. It follows that
a®bVboOa<a®aVboOb,ie. (4.27) holds. And we have seen above that (4.27) <= (i).
(iii): (b =L a) Vv (a ~Fb) =[(b—a) AO]V [(a ~ b) AO] =
[(b—a)V(a~b]AN0>(0V[b~a)~ (b—a)])AN0=0=1, by Theorem 3.3 ((a) <
(b1).
(iv): Condition (iii) implies condition (4.25). Indeed,
since a < a ~ (a®a) and b < b =L (b ® b) by [13], condition (10.3), it follows

that b = a < b =% [a ~F (a®a)] and a ~" b < a WL b —¥ (b ® b)], hence
1=(0b—-=La)via~Lb <O -=La~"(a @ a))) vV (a ~Y [b =% (b ®b)]), hence
(b=t ot (@oa))V(a~t b= (0ob) =

(1’) has a similar proof. O

Proposition 4.1. (see Theorem 2.2)
Let G = (G,V, N\, —,~,0) be an l-implicative-group.
(1) If G verifies the condition (b19”) from Remark 3.2:
(b1%7) for all a,b € G, (b— a) V (a ~ b) >
then the left-pseudo-BCK (pP) lattice G& = (G AV, =L st 1 = 0) verifies the condi-
tion (i) from Theorem 4.3 (1):
(iii) for all a,b € G=, (b =L a) v (a ~Lb) =1 =0.
(1°) If G wverifies the condition (b1”) from Remark 3.2:
(b1”) for all a,b € G, (b — a) A (a~b) <
then the right-pseudo-BCK (pS) lattice GF* = (G+ V, A, =R 0 = 0) verifies the condi-
tion (iii’) from Theorem 4.8 (1°):
(iii’) for all a,b € GT, (b =T a) A (a ~Fb) =0=0.

Proof. (1): (b—L a)V (a~ELb) =[(b— a) A0 V[(a~ b) A0 distrib.

(b—a)V(a~b]r0 L) 0=1.
(1): (b= a)A(a~Tb)=[b—a) VO A[a~ b) V0=

[(b—a)A(a~b)]vo = 0=o0. O

Open problems 4.2.
( ) Find if there are connections between the representability of G¥ = (G—, A, Vv, —F
~L 1 = 0) (or of the left-pseudo-MV algebra [u’,0]) and the conditions (i) <= (4.25),
(ii).
(1°) Find if there are connections between the representability of GF = (G*, Vv, A, —F
,~+T 0 =0) (or of the right-pseudo-MV algebra [0, u]) and the conditions (i’) <= (4.26),
(iii”).

Open problem 4.3. Find connections between the representability at I-group (I-implicative-
group) G level and the representability at [u/,0] C G~, [0,u] C G level and at G~U{—o0},
G U {+o0} level.
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