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EXISTENCE OF POSITIVE SOLUTIONS FOR A NONLINEAR
HIGHER-ORDER MULTI-POINT BOUNDARY VALUE PROBLEM

Johnny HENDERSON! and Rodica LUCA?

Abstract

We investigate the existence of positive solutions of a system of higher-order non-
linear ordinary differential equations, subject to multi-point boundary conditions.
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1 Introduction

In recent years, the multi-point boundary value problems for second-order or higher-
order differential or difference equations/systems have been investigated by many authors,
by using different methods such us fixed point theorems in cones, the Leray-Schauder
continuation theorem and its nonlinear alternatives and the coincidence degree theory.

In this paper, we consider the system of nonlinear higher-order ordinary differential
equations

(S) { u™ (t) 4+ Ae(t) f(u(t),v(t)) =0, t € (0,T), n€N, n>2,

o™ (t) 4+ pd(t)g(u(t),v(t)) =0, t € (0,T), meN, m >2,

with the multi-point boundary conditions

p—2
uw(0) = w/(0) = --- = ul"D(0) =0, w(T) = au(&), peN, p>3,

(BC) ot
0(0) =v/(0) =+ =oM=D(0) =0, v(T) = buw(n;), q€N, ¢=>3.

=1

We give sufficient conditions on A, u, f and g such that positive solutions of (S)—(BC)
exist. By a positive solution of problem (S) — (BC') we mean a pair of functions (u,v) €
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C™([0,T7) x C™([0,T]) satistying (S) and (BC') with u(t) > 0, v(t) > 0 for all ¢t € [0,T]
and |lul| + ||v|| > 0, where |ju|| = sup |u(t)|. This problem is a generalization of the
te[0,T]

one studied in [19], where n = m, p = ¢, a; = b;, & = n; for all i = 1,...,p — 2.
The system (S) with n = m, f(u,v) = f(v), g(u,v) = §(u) (denoted by (S)) and the
boundary conditions (BC) with p = ¢, a; = b;, & = n;, i@ = 1,...,p — 2 (denoted by
(BC)) has been investigated in [16]. In [4], the authors studied the system () with
T = 1 and the boundary conditions u(0) = «/(0) = --- = v("2(0) = 0, u(1) = au(n),
v(0) = v'(0) = --- = v 2(0) = 0, v(1) = aw(n), where 0 < < 1,0 < an™ ! < 1. We
also mention the paper [20], where the authors used the fixed point index theory to prove
the existence of positive solutions for the system (S) with A = 4 = 1 and (BC), where
3<G<E< <<, s<m<p<-<n <L

The system (S) with n = m = 2 and the boundary conditions au(0) — fu/(0) =

0, u(T) = Zaiu(&), m > 1, y(0) — ' (0) =0, v(T) = Zbiv(m), n > 1, has been
—1 i=1

1= =
investigated in [2]. Some particular cases of the last problem were studied in [6], [8], [9],
[17]. In [5], the authors investigated the system (S) with n = m = 2 and the boundary
conditions au(0)—Fu/(0) = 0, av(0)—pF0'(0) =0, yu(l)+du'(1) =0, yv(1)+dv'(1) =0,
with «, 8, v, § >0, a+B+~v+0 > 0. For the discrete problem corresponding to (S) with
n =m = 2 and various boundary conditions, we would like to mention the papers [3], [7],
[10], [14], [15], [18].

In Section 2, we present some auxiliary results which investigate two boundary value
problems for higher-order equations (the problems (1)-(2) and (3)-(4) below). In Section
3, we give some existence theorems for the positive solutions with respect to a cone for
our problem (S)-(BC). The proofs of these results are similar to those of Theorems 3.1
and 3.2 from [1]. These theorems are based on the Krasnoselskii fixed point theorem (see
[12], [13]), which we present now.

Theorem 1. Let (X, ||-||) be a normed linear space, K C X a cone, 0 < a < b two given
numbers and K(a,b) = {x € K, a < |z|| < b}, K, = {z € K, ||z| = a}, K = {z €
K, ||z|| =b}. Let T : K(a,b) — K be a completely continuous operator such that one of
the following conditions is satisfied:

i) | Tx| <zl if v € Ko and ||Tz|| = [lz|| if © € Ky;

it) [|[Tx|| > ||z|| if v € Kq and ||Tz|| < ||z| if x € Kp.
Then T has a fized point in K(a,b).

Finally, some examples are presented in Section 4 to illustrate our main results.

2 Auxiliary results

In this section, we present some auxiliary results from [11] and [16], related to the
following n-order differential equation with p-point boundary conditions

u™ () +y(t) =0, te(0,T), (1)
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p—2

uw(0) = u'(0) = --- = u""D(0) = 0, w(T) =) au(&). (2)
i=1

p—2

Lemma 1. ([11], [16]) Ifd = T" ' = > ' #0, 0 < & < -+ < & 2 < T and
i=1

y € C([0,TY)), then the solution of (1)-(2) is given by

-1 T B -1 X6 n
u(lt):d(n_l)!/0 (T — s)" 1y(3)ds—d(n_1)!;ai/o (& — )" y(s) ds

_(n—11)v/0 (t— )" ly(s)ds, 0<t<T.

Lemma 2. ([11], [16]) Under the assumptions of Lemma 1, the Green’s function for the
boundary value problem (1)-(2) is given by

(

tn—l . p—2 » 1 »
m (T—s) _i;rlai(&_S) — (n—l)!(t_s) 7
if §<s<gu, s<t
tn—l . p—2 B
Galtos) = { =Ty [T 72" 2 elei=a™

Zf €j§8<£j+17 Sztu j:_oa"‘p_ga

tn—l 1
(T - n—l_it_ n—1 - L <s<T <t
d<?ni11>!( VGt W s ssTosst
W(T—@nil, if & o<s<T, s>t (&=D0).

Using the above Green’s function the solution of problem (1)-(2) is expressed as u(t) =

T
/0 Gi(t, s)y(s)ds.

Lemma 3. ([11], [16]) If a; > 0 foralli=1,....,p—2,0< & < -+ <& 2 <T,d>0
andy € C([0,T]), y(t) > 0 for allt € [0,T], then the solution u of problem (1)-(2) satisfies
u(t) >0 for all t € 10,T).

Lemma 4. ([16]) If a; > 0 foralli =1,...,p—2,0< & < - < &2 <T,d >0,
y € C([0,T)), y(t) > 0 for all t € [0,T], then the solution of problem (1)-(2) satisfies

n—1 T
u(t) < d(Z;—l)'/O (T — s)" 'y(s)ds, Vte[0,T],

gt T r 1 o
u(&5) > d(nj—l)'/ (T —s)" y(s)ds, Vj=1,p—2.

517—2
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Lemma 5. ([11]) Assume that 0 < & < -+ < &2 <T,a; >0 foralli=1,...,p—2,
d>0 andy € C([0,T]), y(t) > 0 for allt € [0,T]. Then the solution of problem (1)-(2)
satisfies 6inf . u(t) > yil|ul|, where

te

p—25 }

. Japo(T —&2) ap—2
mm{ T—ay 2ty Tnl , of Za1<l

o g™l &5
min o1 ’TI’)T , of Za121

We can also formulate similar results as Lemma 1 - Lemma 5 above for the boundary
value problem

o™ (t) + h(t) =0, t e (0,T), (3)
q—2

v(0) =0/(0) =+~ = o™ (0) =0, v(T) =) bw(m). (4)
=1

Ife=Tm"1— me;n*l #0,0<m < - <ng—2 <T and h € C([0,T]), we denote by

(2
G2 the Green’s function corresponding to problem (3)-(4). Under similar assumptions as

those from Lemma 5, we have the inequality  inf v(f) > 72]/v||, where v is the solution
€[Mg—2,

of problem (3)-(4) and -2 has a similar form as ; from Lemma 5 with n, p and a; replaced
by m, q and b;, respectively.

3 Main results
In this section, we give sufficient conditions on A, u, f and g such that positive solutions

with respect to a cone for our problem () — (BC) exist.
We present the assumptions that we shall use in the sequel.

p—2
(H)0 <& <+ <&a<Tiap>0, i=Tp-2d=T""-) a& " >0,
=1
q—2 '
0<m < <Mga<T,b; >0, ¢:1,q—2,e:Tm*1—me;“ L>o.
=1

(H2) The functions ¢, d : [0,T] — [0,00) are continuous and there exist t1, ta € [6p,T]
such that c(¢1) > 0 and d(t2) > 0, where 6y = max{{,—2,74—2}.

(H2') The functions ¢, d : [0,T] — [0, 00) are continuous and there exist t; € [§,—2,T],
ty € [ng—2,T] such that ¢(t;) > 0 and d(t2) > 0.

(H3) The functions f, g : [0,00) x [0,00) — [0, 00) are continuous.
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Throughout this section, we let

f§= limsup flu, U), g5 = limsup g(u,v)’
(upw)—(0+,0+) U+ v (u0)—(0+,0+) U+

fé= liminf f(u,v)’ gé = liminf g(u,v)’
(uw)—(0+,0%) U+ v (uw)—(0+,01) U+ v

5 = limsup 7‘78(“ v) , g5, = limsup 4g(u v) ’
(u0)—(c0,00) UV (u,w)—(c0,00) W TV

fio = liminf M, gio = liminf M

(u,w)—(00,00) U+ V (u,w)—(00,00) U+ V ’

We consider the Banach space X = C([0,7]) with supremum norm || - ||, and the
Banach space Y = X x X with the norm ||(u,v)|y = ||u]| + [|v]].
We define the cone C' C Y by

C={(u,v) €Y; u(t) >0, v(t) >0, Vt € [0,7] and tei[gtfﬂ(u(t) +o(t) > v|(u,v)|v},

where v = min{vy;, 2} and 71, 72 are defined in Section 2.
First, for £, g5, fi, 9% € (0,00) and positive numbers a1, ag > 0 such that a; +ag =
1, we define the positive numbers L1, Lo, L3 and L4 by

n—1 T -1
Li=m <d(rynp_21), /00 (T — )" "e(s) fi d8> ;

-1

Ly = (d(z;n—_ll)' /OT(T —8)"e(s)fs ds) ,

Vg [T o
L3 = — = T —s)"d(s)g. d
3= a <e(m_1)! IR EOr ) ,

Ly = as <ﬂ_11)| /OT(T ™ Ld(s)g8 ds)

Theorem 2. Assume that (H1), (H2) and (H3) hold and a1, aa > 0 are positive numbers
such that a1 + ag = 1.

a) If £5, 95, i, g € (0,00), L1 < Ly and L3 < Ly, then for each X € (L1, L2) and
w € (Ls, Ly) there exists a positive solution (u(t),v(t)), t € [0,T] for (S) — (BC).

b) If f§ = g5 =0, fi, g’ € (0,00), then for each X € (Ly,00) and p € (L3, o0) there
exists a positive solution (u(t),v(t)), t € [0,T] for (S)— (BC).

c) If f5, g5 € (0,00), fi = gy = oo, then for each A € (0,L2) and p € (0, Ly) there
exists a positive solution (u(t),v(t)), t € [0,T] for (S) — (BC).

d) If f§ = g5 =0, fi = g, = oo, then for each A € (0,00) and u € (0,00) there exists
a positive solution (u(t),v(t)), t € [0,T] for (S)— (BC).

Sketch of proof. a) We suppose f§, g5, fi, g5 € (0,00), L1 < Ly and L3 < Ly. Let
P,P:Y — X and Q:Y — Y be the operators defined by

T
Py (u,0)(t) = / G1(t,3)e(s) f (u(s), () ds, t € [0,T),
/ Gl 5)d(s)g(u(s), v(s)) ds, ¢ € [0,T],

-1
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and Q(u,v) = (P1(u,v), Pa(u,v)), (u,v) € Y, where Gi, G2 are the Green’s functions
defined in Section 2.

The solutions of problem (S) — (BC) are the fixed points of the operator Q.

We consider an arbitrary element (u,v) € C. Because Pj(u,v) and Ps(u,v) satisfy
the problem (1)-(2) for y(t) = Ac(t) f(u(t),v(t)), t € [0,T], and the problem (3)-(4) for
h(t) = pd(t)g(u(t),v(t)), t € [0,T], respectively, then by Lemma 5, we obtain

inf_ Py(u,0)(t) 2 nl|Pr(u,0)l, inf P(u,v)(t) = 2| Palu, ).
te(60,T) te(6o0,T)

Therefore we deduce

tei[gOfT][Pl(u,v)(t) + Po(u, 0) ()] = il Pr(u, 0) || + 2l P2(w, v)[| = 7] Q(u, v)|y-

By using Lemma 3, (H2) and (H3), we obtain that P;(u,v)(t) > 0, Py(u,v)(t) > 0,
for all ¢t € [0, 7], and so we deduce that Q(u,v) € C. Hence we get Q(C) C C.

By using standard arguments, we can easily show that P, and P, are completely
continuous, and then Q is a completely continuous operator.

Now let A € (L1,L2), p € (L3, L4), and let € > 0 be a positive number such that
e< fi,e<g and

n—1 T 1
(051 (dgfp—i)'/g (T — 5)”—10(5’)(ng —e€) d3> <,

-1

aq <d(T"_1)' /OT(T —8)"Le(s)(f5 +€) ds> >\,

n—1
m—1 T 1
e(m—1)! - - <

-1

o <6(Tml)' /OT(T—s)m_ld(s)(g‘g—l—s) ds> > 4

m—1

By (H3), we deduce that there exists K; > 0 such that for all u, v € Ry, with
0 <u+wv< Kyq, we have f(u,v) < (fg +¢)(u+wv) and g(u,v) < (g5 + €)(u +v).

We define the ball Q1 = {(u,v) €Y, |[(u,v)|ly < K1}. Now let (u,v) € C' NIy, that
is (u,v) € C with ||(u,v)|ly = K; or, equivalently, ||u||+||v|| = K1. Then u(t)+v(t) < K
for all ¢t € [0,7]. By Lemma 4, after some computations, we deduce that P;(u,v)(t) <
al|(u,v)|ly for all ¢t € [0, T]. Therefore || Py (u,v)|| < ai]/(u,v)|y. In a similar manner, we
obtain ||Pa(u,v)|| < ag||/(u,v)||y.

Then for (u,v) € C'N O we deduce

1Q(u, v)lly = [[(Pr(u, v), Po(u, 0))|ly < aal[(u, v)[ly + 2| (u, v)lly = [[(u, v)[ly-

By the definitions of fi  and g’_, there exists Ko > 0 such that f(u,v) > (fi —¢)(u+v)
and g(u,v) > (g°, — €)(u +v) for all u, v > 0, with u + v > K,. We consider Ky =
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max{2K1, K3/r}, and we define Qs = {(u,v) € Y, ||(u,v)||y < Kz2}. Then for (u,v) € C
with ||(u,v)|y = K2, we obtain

u(t) + v(t) = allull +2llvl = v(ull + [lol) = yll(u, v)ly = 7Kz = Ks, Vi € [6o, T).

Then by Lemma 4, after some computations, we deduce that P (u,v)(&p—2) > a1|(u, v)||y-
So || Pi(u,v)|| > Pi(u,v)(§p—2) > ai||(u,v)|ly. In asimilar manner, we obtain || Py(u,v)|| >
Pa(u,v)(ng—2) > azl|(u,v)|ly-

Hence for (u,v) € C'N 0 we obtain

1Q(w, v)lly = [[Pr(w, v)|| + [[P2(w, 0) || = (1 + a2)|[(w, v)lly = [[(w, v) |y

By using Theorem 11) with 7= Q, K =C, a = K1, b = Ko, K(a,b) = CnN(Q2\ 1),
K, =CnoY, Ky=CnNoNy, we deduce that Q has a fixed point (u,v) € C'N (N \ )
such that Ky < |[(u,v)|y < Kz or Kj < |lu|| + ||v]| < Ka.

The proofs of cases b)-d) are similar to that of case a) and we shall omit them (see

also the paper [1]). O

Remark 1. The condition L1 < Lo from Theorem 2 is equivalent to

T

ngnfl /OT(T B S)nilc(S) ds < féo’y g__gl/e (T — S)nflc(s) ds

0
and Ly < Ly is equivalent to

T T
g /0 (T — s)™\d(s) ds < gl /9 (T — s)™d(s) ds.

0

In what follows, for fé, g(i], 15, g5 € (0,00) and positive numbers aq, ag > 0 such
that a1 + as = 1, we define the positive numbers Lq, Lo, L3 and Ly by

~ n—1 T . -
L= (d(’ynp—Ql)' /£p2 (T — )" e(s) f§ ds) )

-1

. n—1 T
Ly =04 (d(z;—ll)'/o (T — s)"_lc(s)fgO ds) 71,
m— T
Ls = az (””, / (T — 5)™1d(s)g; ds> ,

e(m—1) -

Bim o (oo [ - tatsigs )

m—1

-1

Theorem 3. Assume that (H1), (H2’) and (H3) hold and a1, aa > 0 are positive numbers
such that a1 + ag = 1.

a) If i, gb, 13, 95 € (0,00), Ly < Ly and L3 < E4, then for each \ € (Zl,EQ) and
€ (L3, Ly) there exists a positive solution (u(t),v(t)), t € [0,T] for (S) — (BC).

b) If f3 = g5, =0, f&, g € (0,00), then for each \ € (L1,00) and p € (Ls,00) there
exists a positive solution (u(t),v(t)), t € [0,T)] for (S) — (BC).
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¢) If 5, g5 € (0,00), fi = g = oo, then for each A € (0, L Ly) and p € (0,Ly) there
exists a positive solution (u(t),v(t)), t € [0,T] for (S) — (BC).

d) If 3. = g5, =0, f& = g = oo, then for each A € (0,00) and p € (0,00) there eists
a positive solution (u(t),v(t)), t € [0,T] for (S) — (BC).

)
)
0

Sketch of proof. a) Let A € (L, Ly) and p € (Ls, Ly). We select a positive number &
such that ¢ < f¢, e < g§ and

vy [T : o
a1 (d(np—l)‘ /‘5 . (T — s)"_lc(s)(fé —e€) ds) <A,

ag (d(Tn_l) /OT(T — )" Le(s)(f3, +¢€) ds> B > A,

n—1)!
m—1 T 1
VMg—2 . .
Qg (qu_w/ (T — s)™Ld(s) (g} — €) ds) < u,
MNg—2

Tm_l g m—1 s B
a2 <€(m_1)!/0 (T — )™ "d(s)(g5 +¢) ds) = M-

We also consider the operators defined in the proof of Theorem 2. By the definitions
of f¢, g € (0,00), we deduce that there exists K3 > 0 such that f(u,v) > (f§ —e)(u +
v), g(u,v) > (g5 —¢e)(u+v) for all u, v > 0, with 0 < u +v < K.

We denote by Q3 = {(u,v) € Y; |[(u,v)|ly < K3}. Let (u,v) € C with ||(u,v)|ly = K3,
that is [Jul| + ||v| = K3. Because u(t) 4+ v(t) < ||u|| + ||v|]| = K3 for all ¢ € [0,7T], then
by using Lemma 4, we obtain after some computations Pi(u,v)({p—2) > ail/(u,v)|y.
Therefore, ||Pi(u,v)| > (Pi(u,v))(€p—2) > a1]/(u,v)]y. In a similar manner, we obtain
[P (u, v)| = (Pa(u, v))(1g-2) = azl|(u, v)]ly.

Thus for an arbitrary element (u,v) € C N 93 we obtain

1Q(u, v)[ly = (a1 + ag)|[(u, v) [y = [[(u, v)]ly-

Now we define the functions f*, ¢* : Ry — Ry, f*(z) = max f(u,v), ¢*(x) =
0<u+4v<z

o max. g(u,v), x € Ry. Then f(u,v) < f*(x), g(u,v) < g*(x) for all (u,v), u>0, v>

0 and 0 < u+v < z. The functions f*, g* are nondecreasing and they satisfy the conditions

lim sup M < f5,, limsup M
T

T—00 X T—00

< 9%

Therefore, for € > 0 there exists K4 > 0, such that for all z > K, we have

M < limsupM+£ < [+, M < limsupw +e< g5 te,
X T—00 i T T—00 xr
and so f*(z) < (f% +¢€)z and g*(x) < (g5, + €)z.
We now consider Ky = max{2K3, K4}, and we denote by Q4 = {(u,v) €Y, |[(u,v)|y <
K,}. Let (u,v) € C N0Qy. By definitions of f* and g* we have

fu(®), () < f(I(uw,0)lly), g(u(t),v(t)) < g"([[(w, 0)lly), Vit € [0,T].
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Then for all ¢ € [0, 7], after some computations, we obtain P;(u,v)(t) < a1||(u,v)|ly, and
o [ P1(u,v)| < ai|[(u,v)|y. In a similar manner, we obtain || Pa(u,v)| < azl|(u,v)]|y.
Therefore for (u,v) € C'N 0Qy it follows that

1Q(u, v)lly < (a1 + az)||(u, v)lly = [[(u, v)ly-

By using Theorem 1 ii) with T = Q, K = C, a = K3, b = Ky, K(a,b) = CN(Q4\ Q3),
K, =CnNoNs, Ky =CnNoQy, we deduce that Q has a fixed point (u,v) € C'N (4 \ Q3)
such that K3 < H(u,v)Hy < Ky.

The proofs of cases b)-d) are similar to that of case a) and we shall omit them (see
also the paper [1]. O

Remark 2. The condition El < Eg is equivalent to

T

T
J‘lfoT"l/0 (T = 5)""e(s)ds < fiy 2_21/ (T = 5)"""e(s) ds

Ep—2
and the condition Zg < E4 s equivalent to

T T
gt [ s ds < gt [ (= s ) ds

Ng—2

4 Examples

Let T=1,n=3 m=4,p =5, q=4, c(t) = cot, d(t) = dpt, for t € [0, 1], with
CO,d0>0,§1:%,§2:%;§3:%a771:%7772:%701:1762:%7%:%751:17b2:2-
Wehaved:%,62%700:%771:%772:%77:%'

We consider the higher-order differential system

g u® (t) + Aeot f (u(t),v(t)) =0, t € (0,1),
(51) Lo £ oty =0, 1< (01

with the boundary conditions

(BCY) { u(0) = u'(0) =0, wu(l)

1. First we consider the functions

_ (u+tv)(pru+1)(q1 +sinv)
flu,v) = —

(u~+v)(p2v + 1)(g2 + cosu)

- gluw) = S

i

with p1, p2 >0, g1, g2 > 1.
It follows that f§ = f§ = qi, 9§ = 96 = @2 + 1, [% = pi(q + 1), fi = pr(q — 1),
95 = p2(@2 + 1), g, = p2(q2 — 1).
The constants L;, ¢ = 1,4 from Section 3 are of the form
1843200y 15a; o 259200a; 4000z
YT Bapi@ -1 P wq P dopa(ee — 1) T 9do(ga + 1)

L
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and the conditions L < Lg and Lg < L, are equivalent to

q1 13 g+ 1 1
< ) < .
pi(gn —1) = 122887 po(qe — 1) ~ 5832

We apply Theorem 2 a) for oy, ag > 0 with a; + g = 1. If the above conditions
are satisfied, then for each A\ € (L1, La) and p € (L3, L4), there exists a positive solution
(u(t),v(t)), t €[0,T] for problem (S;) — (BCh).

2. We consider the functions

fu,v) = (u+0)", glu,v) = (u+0)%2, u,vel0 o),

with B1, Bo > 1. Then f§ = f§ = g5 = g5 = 0 and f5, = fi = g5 = g4 = oco. By
Theorem 2 d) we deduce that for each A\ € (0,00) and p € (0,00) there exists a positive
solution (u(t),v(t)), t € [0,T] for problem (S;) — (BCh).

3. We consider the functions

fu,v) = (u+v)", g(u,v) = (u+v)"2, u,vell o),

with 71, 72 € (0,1). Then f§ = f¢ = g5 = gi = o0 and f5 = fi, = g5 = g, = 0. By
Theorem 3 d) we deduce that for each A € (0,00) and p € (0,00) there exists a positive
solution (u(t),v(t)), t € [0,T] for problem (S1) — (BCh).
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