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Abstract

A representation of strictly convergent power series as Newton interpolating series
is given. In the case of one indeterminate bounded Newton interpolating series are
studied as a generalization of strictly convergent power series. A method for analytic
p—adic continuation by means of bounded Newton interpolating series is presented.
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1 Introduction

Let R be a commutative ring with identity and S = {(ak,1, ..., 0x.n)},s, @ fixed se-
quence of elements of R™. In Section 2 we define the R-algebra of Newton interpolating
series in n variables denoted by Rg[[X]]. Algebraic properties of Kg[[X]], when K is a
local field are presented in [5].

If R is a commutative ring with identity and || || is a non-trivial non-archimedean norm
on R with [|1]] = 1, then (R, | ||) is called a normed ring. We consider the sets (see [1],

o Vv o
Chapter 1): R={z € R: ||z <1}, R= {x € R:|z|| < 1}. Then R is a commutative

ring with identity and ]\% is an ideal in _;2 . We denote the residue ring ;2 / }/2 by R.If
R is an integral domain with a non-trivial non-archimedean multiplicative norm, hence
an absolute value | |, then (R,||) is called a valued ring . If (K,||) is a valued field and
(R,||) is a valued ring which is a K-algebra we suppose that the absolute value of R
extends that of K.

Let R be a complete non-archimedean normed ring and R < X > the R-algebra of
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strictly convergent (restricted formal) power series (see [1], p.35, [4] or [8]). Useful gen-

eralizations are given in [6] (so-called separated power series) and [2] (strictly analytic

functions defined on a class of domains called analoid sets). If R = C, endowed with the

p-adic absolute value, it is known when a Mahler series may be represented as a strictly

convergent power series (see [8], p.354). In Section 3, by means of an arbitrary sequence
n

S of elements of R , in the case of n variables, we define HRg[[X]] an R-subalgebra of
Rs[[X]] which is a Banach algebra with respect to the Gauss norm. Theorem 2 from Sec-
tion 3 shows that the algebra of strictly convergent power series R < X > and HRg[[X]]
are isometrically isomorphic.

In Section 4, K is a complete valued field having its residue field at most countable
and T is a fixed set of representatives of the residue field in the valuation ring. By means
of T' we construct a sequence St such that every element of T' appears infinitely many
times in S7. In the case n = 1, we study the K-subalgebra BKg, [[X]] of Kg,[[X]] which
contains the series having bounded coefficients. By Theorem 2 these series are general-
ization of strictly convergent power series. With respect to Gauss norm BKg,[[X]] is a
Banach algebra such that BK[[X]], the K-algebra of formal power series with bounded
coefficients, is homeomorphic to a residue algebra of BKg, [[X]] by a closed ideal (see The-
orem 4). Moreover for every f € BK[[X]] there exists a series of g € BKg,[[X]] such that
the corresponding functions defined on the maximal ideal of the valuation ring are equal
(see Corollary 2). Theorem 5 with its corollary deal with properties of zeros of associated
functions to the elements of BKg,[[X]]. Theorem 6 is Identity Theorem for the elements
of BKg, [[X]].

It is well known that the analytic continuation in the p-adic analysis cannot be achieved
by means of Taylor expansions. By means of Krasner’s method it is possible to define ana-
lytic elements on the unit open ball for a set of functions defined by bounded power series
which satisfy Christol-Robba’s condition but there are simple examples of functions which
do not belong to this set. If K = C,, we define in Section 5 so-called Newton analytic
elements which extend on the unit ball the usual analytic elements (see [3] or [8]). In this
manner we define analytic continuation of bounded power series even in the case when the
conditions of Christol-Robba’s Theorem do not hold (see Remark 1).

2 Basic notations and definitions

Let n be a fixed positive integer. If v = (11, v, ...,v,) € N, we set N(v) = v; + 12 +
oo + v, for every i = 1,2,...,n, and 0 = (0,...,0) € N*. For v, 7 = (11,72, ...,Tn) € N,
j €N, wedefine v+7 = (v1+71,...,vp + ) and jv = (jun, jra, ..., jvy). We set v <; 7 if
v is less than 7 with respect to the following lexicographical order: v; < 74, where s is the
greatest positive integer less than n such that vy # 75. We order also N” in the following
way: v <, 7 if either N(v) < N(7) or N(v) = N(7) and v <; 7. We denote by oo™ a
symbol such that v <, oo™ for every v € N™. It is obvious that for a fixed 7 € N, the set
{v e N": v <, 7} is finite.

Let R be a commutative ring with identity and S = {(ax1,..., trn)},>; @ fixed se-
quence of elements of R™. In the polynomial ring R[X] =R [Xj, ..., X;,] we construct by
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recurrence, with respect to the defined order <, of N”, the polynomials
Uo =1, U(l,o,...,o) =X1—a11,- U(o,o,...,l) =Xy —ain

and generally for every 7 = (11,72, ...,7,) € N,

U-= J] Gi-epn) JI e—ay2). [ Xn—ajm), (1)

0<j<mi(r) 0<j<ma(T) 0<j<mn(T)

where 7;(7) = 7;. If, for each 7 € N™, we consider the principal ideal of R[X] Z, =< U; >,
then {Z;} .yn» is a system of neighborhoods of zero of the polynomial ring. Thus R[X]
becomes a topological Hausdorff space with respect to this topology denoted by 7g. We
consider Rg[[X]] the completion of R[X] with respect to 7s. It is easy to prove that we
can represent Rg[[X]] as the set of formal series

Rs[[X]] = {f => aU-|a- € R} : (2)

where in each series the order of terms are given by <,, two such expressions being regarded
as equal if and only if they have the same coefficients. We call an element f from Rg[[X]]
a (formal) Newton interpolating series with coefficients in R defined by the sequence S.
If n =1, R[X] = R[X] and S = {aj}x>1, then the polynomials u; defined by (1) can be

written in the form '
7

up=1, u;=[[ (X —ay), i >1. (3)
j=1

Since, for every nonnegative integer j,

J
X =i+ qig (0, e 0 -ig1) i, (4)
=1

where ¢; ; are homogeneous polynomials of degree i with integral coefficients (i.e. belonging
to the canonical homomorphic image of Z in R), it follows that every polynomial P =

b .
b; X" € R[X] can be written uniquely in the form
=0

(2

P
P = Z a;l;, (5)
=0

where »
ai=bi+ Y bjQijlan, ... cip1), (6)
j=it+1
and @; ; are homogeneous polynomials with integral coefficients. Hence if u;, u; are given
by (3), we obtain that for every k such that max{i,j} < k < i+ j, there exist in R the
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elements d (i, j) uniquely defined such that

i+j
wiwj =Y di(i, f)u. (7)

k=max {4,j}

Now we consider P = Y b,X" € R[X]. From (5) and (6), by induction on n, it follows
v<oT

that
P = Z a,U,, a, € R. (8)

v<oT

If f,g = > bU, € Rg[[X]], we define addition and multiplication of f and g as

v=0

follows: .
f"i'.g:Z(aV“‘bu)Um (9)

v=0
fg= ZPVUVu (10)

v=0
where

Pv = Z Du(lu'v g)a,ubea (11)

w,0el(v)

D,(u,0) = dy, (11,01)...dy, (ftn, 0r), di(s,t) are defined in (7) and I(v) = {(u,6) € N*xN" :
max {u, 0} <, v, p+ 60 >, v}. Thus with respect to these definitions of addition and
multiplication, Rg[[X]] becomes a complete Hausdorff topological commutative R-algebra
which contains R[X]. Moreover by (1), (9)-(11) it follows that as R-algebras

Rgn1[X" Vs, [X,] = Rs[[X]], (12)

where S"1 = {(o1, ...,ak’n_l)}@l , X (1) = (X1,...,Xp—1) and S,, = {akﬂn}kzl .

3 A representation of strictly convergent power series

Let (R, || ||) be a normed ring and S = {(ag,1, ..., @k n)},; -, a fixed sequence of elements

of fz . We consider

HRg[[X]] = {f => a,U, € Rs[[X]] : N(li)m ay| = 0} . (13)
VZO V)—0o0

If f=> a,U, € HRg[[X]], then we define
v=0

| fllrrsxy = sup llav |- (14)
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Theorem 1. If R is a normed (resp. valued) ring and S is a fized sequence of elements

of R , then HRg[[X]] is a R-subalgebra of Rg[[X]] and || || defined by (14) is a non-
archimedean norm (resp. absolute value) on HRg[[X]]. Moreover if R is a complete
normed (resp. wvalued) ring, then HRg[[X]] becomes a Banach R-algebra which is the
completion of R[X] with respect to the metric defined by the norm (resp. absolute value).

Proof. First suppose n = 1. Let f,g = >_ bju; be elements of HRg[[X]]. Then, by (9)
i=0
and (14), with n = 1, we obtain [|f & g|| = sup {[|a; & b;||} < max{||f|[lg[[}. Similarly,

by (7), (10) and (11), since w; €R [X], it follows that d(i, ) €R and [ f9ll = sup[|pi|| <

I fIlllgl]. If R is a valued ring we choose i(f) the greatest index i such that |a;| = |f|,

then by (7) and (11) |pi(p)1i(e)| = |aip)| |big)] = I /1l9] and | fg| = |f]lg|. Hence HRs[[X]]
is a R—subalgebra of Rg[[X]] and || || defined by (14) is a non-archimedean norm (resp.

absolute value) on HRg[[X]].

When R is complete it follows that HRg[[X]] is complete because it is isometrically iso-
morphic, as an R-module, to ¢(R), the space of zero sequences over R (see [1], Proposition
6, Sec. 2.1). Now the theorem follows by induction on n by using (12). O
Theorem 2. If R is a complete normed ring and S = {ox}r>1 is a fized sequence of

[e]
elements of R, then the Banach R—algebra HRg[[X]] is isometrically isomorphic to the
R-algebra R < X > of strictly convergent power series.

p .
Proof. If P = > b; X" € R[X], then it can be written also in the form (5), where q;
i=0
are given in (6). Similarly we obtain

p
bi=a; + Z ajTZ'J(Oq, ceey Oéj), (15)
j=it1

where T} ; are homogeneous polynomial with integral coefficients. Suppose || P||3rg(x) =
||la, ||, where i is the greatest index with this property. Since ||7T; (o1, ...,a541)|| < 1, it
follows that, |[bio| = [|aio[| and [|b;] < max{fla; [} Hence |[Pllr<x> = |[Pllsrs(x)-

Now, by means of (6) we define ¢ : R < X >— HRg|[[X]] such that

¢ (i bz‘Xi> = i%’uu (16)
i=0 i=0
where

a; = b; + Z ijm’(Oél, ey az’+1)- (17)
j=i+1

Similarly, by using (15), we can define ¢ : HRg[[X]] — R < X > such that

(0 (i ai“i) = i b X", (18)
i=0 i=0
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where
o0
bi =a; + Z ajTi,j(al,...,aj). (19)
j=i+1

Then the mappings ¢ and 1 are well defined and continuous with respect to the corre-
sponding norms. By (16)-(19) we obtain that the restricted mappings ¢ and 1 are inverse
to each other on R[X]. Since R[X] is dense in R < X > and HRg[[X]] it follows that ¢
and 1) are inverse to each other and hence we obtain that ¢ is bijective map. In fact ¢ is

the identity map on R[X] so ¢ is also a R—algebra morphism. So we obtain that R < X >
and HRg[[X]] are isomorphic R—algebras. O

Corollary 1. If K is a complete valued field and S = {(og1, .., Okn)}ysy 95 a fived

om
sequence of elements of K , then the algebra of strictly convergent power series K < X >
is isometrically isomorphic to HKg[[X]].

Proof. The corollary follows from (12) and Theorem 2. [J

4 Bounded Newton interpolating series

In this section K will denote a complete valued field having its residue field at most
countable. For a € K and r a positive real number, we put BT (a,7) = {r € K : |z —a| <
r} and B™ (a,7) = {z € K : |x —a|] < r}. We choose T' = {f;},>1 a fixed set, at most
countable, of elements in ]O( and we construct a sequence St = {a; }i>1 of elements of 7.

By using (3) we define the K-algebra Kg,[[X]] with

i m(i)

wi=[[ (X —ay) = [ x = 8)"", (20)

Jj=1 J=1

where m(i) is the number of distinct X — §; which divides u;(X). We consider

BKg, [[X]] = {f = i € Ksp [[X]]: 3M >0, |a;] < M,V 2} . (21)
1=0

We call an element f from BKg, [[X]] a bounded Newton interpolating series with coeffi-
o0

cients in K defined by the sequence St. If f = Y a;u; € BKg,[[X]], the real number
i=0

1l s, 11y = sup fail (22)

is well defined. As usual we call || || g, j1y)» given in (22), the Gauss norm on BKg, [[X]].
T
In the case when T' = {4}, BKg, [[X]] becomes

BK[[X — 61]]
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— {f: > ai(X —p) € K[[X - B1]): 3 M >0, ]ai] < M,Vi}. (23)

=0

Theorem 3. BKg,[[X]] is a subalgebra of the K-algebra Kg,[[X]] and the Gauss norm
is a K- algebra non-archimedean norm on BKg,[[X]] making it into a Banach K -algebra.

Proof. Let f,g = > bju; € BKg,[[X]]. By (9) and (22) we obtain || f ig”BKsT[[X}] =
i=0

sgp\ai +b < maX{HfHBKST[[X]} , HQHBKST[[XH}' Similarly, since u;(X) €K [X], by (6)

and (7) it follows that d;(s,t) €K and (10), (11), (22) imply

1f9ll s, (13 < sup {(].’lg;g(i) |ajbk:|} < lpxs, xy 19l Brs, (1) - (24)

Thus BKg,[[X]] is a subalgebra of Kg,[[X]] and the Gauss norm is a K-algebra norm
on BKg,[[X]]. BKg,[[X]] is complete because it is isometrically isomorphic as K-vector
space to b(K), the space of bounded sequences over K (see [1], Proposition 6, Sec. 2.1).
O

Now we choose T' = {;}>1 a fixed set of representatives of K in I% and St = {a;}i>1
a sequence of elements of T' such that every element of T appears infinitely many times
in Sp. Similarly with the case of Tate algebra (see [1], Sec. 5.1) we prove for BKg, [[X]]
two results, one on continuity and other on Identity Theorem. If D C K is the domain of
convergence of the series f € BKg, [[X]], then obviously T C D. We have the following

Lemma 1. If T = {f;};>1 is a fized set of representatives off( in IO(, St ={a;}i>1 is a
sequence of elements of T' such that every element of T appears infinitely many times in
o0

St and f =) aju; € BKg,[[X]], then
i=0

o]
a) KC D;
b) if f converges at T € K, then it converges for every x € K such that |x| < |Z[;

c) if v €K, then |f(z)| < || fllprg,.1x]-

Proof. a) If EIO{, then there is a 3; € T such that |z — ;| < 1 and for every i # j,
|z — B;] = 1. Since (3; appears infinitely many times in Sp, by (20), lim 6(i, j) = co which
71— 00
implies lim a;u;(z) =0 and f converges at z.
11— 00
b) It is enough to consider |Z| > 1. Then for every i, |z — 3| = |Z|, |asui(z)| <
la;|max{1,|z|}* < |aju;(Z)| and this implies b).
c) If z €K, then [f(x)] < supa;ui(x)| < sup|ail = [|fll B, 1x)- O
(2 1

Proposition 1. If T = {§;};>1 is a fized set of representatives of K in IO{ and St =
{ai}i>1 is a sequence of elements of T such that every element of T appears infinitely

o0
many times in St, then every f = Y au; € BKg,[[X]] defines a continuous function

1=0
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[o¢]
on D, denoted also by f, such that y — f(y) = > aui(y) € K. Moreover, if zg € D,

o

then there exists B; € T such that the series ) aju;(x) converges uniformly to f(z) on
=0

B*(B;, |lxo — Bi)-

o o0
Proof. We may suppose f # 0. If y €, then lim a;u;(y) = 0 and the series > a;u;(y)

i—00 i=0
converges to some element of K.
If yo € K we consider a real number £ > 0. By putting § = W we take y € K such that
|y — yo| < 0. Hence it follows that

|f(y) = f(wo)| < sup |ail |[wi(y) —ui (yo)| < || ]l sup [ui(y) — ui (yo)! .-

Since u;(y) —ui (yo) = (y — yo) wi(y, Yo), Where w; (y, yo) EK, we obtain that | f(y) — f(yo)]
< € and f gives rise to a continuous function on ]O( .

Now, we suppose yp € D, |yo| > 1 and we choose a real number £ > 0. We take y € D
such that |y — yo| < 1. Hence it follows that |a;u;(y)| = |a:iy| = |aivd| = |aiui(yo)|. Thus
we can choose ig such that for every y € B~ (yo, 1) |f(y) — Si,(y)| < &, where S; is the
partial sum of the series f. Since S;,(y) is a continuous function there is § < 1 such that
for every y € B (0,9, [Siy(y) — Sio(y0)| < & Then

£ (y) = F(yo)| < max{[f(y) = Sig ()], 5 (y) = Sis (w0)l, [Sie (o) — f(wo)|} <€

and f gives rise to a continuous function on D.

Suppose xzg € D. If xg EI%, we choose (3; € T such that |zg — 3;| < 1. Then for every
x € BY(Bj,|xo — B;]) and k # j, |x — Bx| = 1. Hence |aju;(z)] < |a;u;(zo)| and the series
converges uniformly on BY (3}, |zo — ;).

If |zo| > 1, then for every 8, € T, |xo—f;| = |zo|. Thus for every z € BT (8}, |zo—3;]) =
B1(0, |xol), |aiui(z)| < |a;ui(zo)|, which implies the proposition. [J

Theorem 4. Let T = {f;};>1 be a fized set of representatives of K in K and let
St = {ak}tr>1 be a sequence of elements of T. If there exists By, € T which appears in-
finitely many times in S, then there exists a K-algebra homomorphism ¢ : BK g, [[X]] —
BK|[[X — Bk]] such that:

a) ¢ is a continuous K -algebra homomorphism from BKg,[[X]] onto BK[[X — B]];

b) for every g € B, [[X]) and & € B~(fh, 1), 9(z) = o(g)(x);

¢) the induced isomorphism ¢ : BKg, [[X]|/Kery — BK|[[X]] is a homeomorphism,
where BK g, [[X]]/Kery is provided with the quotient topology.

Proof. a) Consider g = Z a;u; € BKg, [[X]], gn its nth partial sum and (i, k) =

=0
max{t : 6(¢t, k) < i}. Since, for every j #k, X — B; = X — B, + B — 5, by (20) it follows
that, for every n > u(i, k), the coefficient of (X — 34)" in the polynomial g,, written as an
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element from BK[[X — (]| has the form

n(i,k)
Cik = Z P; j 1a;, (25)
j=i
where P; ;; are polynomials with integral coefficients in 3;, and

Puamr= J[ (8—8)". (26)

=1, j#k

Then 3" ¢; (X — Br)’ € BK[[X — B]] and we define
i=0

p(9) =D cin(X = Br)" (27)
=0

Since K[X] is dense in BKg[[X]], for every S, (resp. BK|[[X — (%]]) with respect to the
topology 7g defined by the principal ideals < u; > (resp. the corresponding topology 7
defined by the powers of X — k), ¢ is continuous with respect to 7g, and 7 and its
restriction to K[X] is the identity map, it follows that it is a K-algebra homomorphism.
Moreover, because (25) implies that

I xBrx—sy = l9llBrsixn: (28)
it follows that ¢ is continuous.
If f= io: bi(X — )" € BK[[X — f34]], then choose g = i a;ju; € Kg, [[X]] such that
ag = by anzi:?;enerally by recurrence, for ¢ > 1, =
0, if ¢ # u(j, k) for every j
ai =19 5" b a ; (29)
J%ZJWM 18 = p(j,k)

where the polynomials P ;5 defined in (25) are independent of the coefficients a;. Since
|Bil <1, g € BKg,[[X]]. If, for every i > 1, a; is given in (29), by (25) we obtain ¢; ;, = b;
which implies p(g) = f.

b) Since we may choose g € BKg, [[X]] such that ¢(g) = f, by (28), we obtain, for
every x € B~ (g, 1),

1f (@) = gn(@)| < If — gnllBrix-p0 = 10(9 — )l Br(x-5) < 19 — 9nllBKs, (X))

Hence it follows b).

c¢) Since ¢ is continuous and by (29) for every f € BK[[X — k]| we may choose
g € BKg,[[X]] such that HQHBKST[[XH < IfllBrx—s,) by Lemma 2 from [1], p. 21 ¢ is
strict which implies the statement. [

By Theorem 4 we obtain easily the following result.
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Corollary 2. If f € BK[[X]], T = {Bj}j>1, 0 € T, is a set of representatives of K in

[O( and St = {ai}ti>1 a sequence of elements of T such that every element of T' appears
infinitely many times in St, then there exists g € BKg,[[X]] such that f(z) = g(x), for
every x € B7(0,1).

For f € BKg,[[X]] denote Z(f) = {a 6[%| f(a) = 0} the set of all zeros of f in K
without counting the multiplicities.

Theorem 5. If T = {f;};>1 is a fized set of representatives of K in [O(, St ={a;}i>1 is
a sequence of elements of T' such that every element of T appears infinitely many times in
St, f € BKg,[[X]] and for a fiz j, §; is an accumulation point of Z(f), then B~(8;,1) C
Z(f).

(o)
Proof. Suppose first f = > au; € BKg,[[X]] and §; = 0. Now by Theorem 4
i=0

we have a morphism ¢ : BKg,[[X]] — BK|[[X]] such that ¢(f) = ¢ € BK[[X]] and
f(z) = g(z), for every x € B~(0,1). We choose a sequence {~i}r>1 of distinct elements
of Z(f)NB~(0,1) such that klim Yk = 0. Then f(v;) = 0= g(vx), for all k. We show that

oS .
g =0in BK|[[X]]. If g # 0 and b; is the first nonzero coefficient of g then g = X* Y by1; X"
i=0

Now for k large enough ’Z birivi| = |be|. But g(vg) = 0 implies by = 0. Hence g = 0
=0

and f(y) = g(y) = 0 for all v € B7(0,1). The case 3; # 0 can be reduced easily to the
previous case by replacing X with X + g;. [

Corollary 3. If T = {f;};>1, is a fized set of representatives of.f( in IO{ and St = {ai}i>1
a sequence of elements of T such that every element of T appears infinitely many times
in St, f € BKg,[[X]] and for a fix j, there exists an element §; € B~ (8;,1), which is an
accumulation point Z(f), then B~(8;,1) C Z(f).

Proof. 1t is enough to replace X with X + 3; —§; and to use Corollary 2 and Theorem
50
Now we can prove Identity Theorem for elements of BKg,.[[X]].

Theorem 6. If T = {§;};>1, is a fized set of representatives of.f( in IO( and St = {ai}i>1
a sequence of elements of T such that every element of T appears infinitely many times in
St, f € BKg,[[X]] and for every j, there exists an element §; € B~ (B3;,1), which is an
accumulation point Z(f), then f = 0.

Proof. Because K= U B7(B;,1), by Corollary 3 it follows that f(z) = 0 for every
ﬁjGT
o oo
x €K. Suppose that f = > aju; # 0 and a¢ # 0. If w1 (X)/u(X) = X — B; we choose a
i=t
sequence {vx}r>1 of distinct elements of Z(f) which tends to ;. Since f(vx) = 0, for all
k it follows that a; =0 which implies that f = 0. O



Generalization of strictly convergent power series 165

Now we fixed T' = {f;};>1 a set of representatives of K in K and we construct a
particular sequence St = {«;}i>1 of elements of T', such that every element of 7" appears
infinitely many times in Sp. Thus for every positive integer ¢ there is a unique integer k(i)

such that ) . ) .
(+@) ~DEG) _; o MOED +1) (30)

and we put

(k(i) — V() a1

Then we take
B , if K has ¢ elements
Q; = { (= e (32)

By, if K is countable,

where (i) is the remainder obtained by dividing 7 into ¢. In this case we say that the pair
(T, St) has the standard form.

5 Newton analytic elements

Let D be a closed subset of C,,. The Runge theorem of complex analysis leaded Krasner
to call an analytic element a function f : D — C, which is a uniform limit of a sequence
of rational functions having no pole in D. By a result of Christol-Robba (see Theorem of
Sec. 4.6 of [8]) it is known which series of BC,[[X]] define analytic elements. There are
simple examples of series of BC,[[X]] which do not define analytic elements on B~ (0, 1)
(see [8], p- 353).

Now we built Newton analytic elements on B*(0,1) and B~(0,1). Consider K = C,,
a pair (T, Sr) having the standard form D = B*(0,1) and a function f : D — K. We
call f a Newton analytic element if it is the sum of a series of BCpg [[X]] on D. By
Corollary 1 and Theorem, Sec. 4.3, Ch. 6 of [8], it follows that the Banach algebra of
analytic elements on B (0,1) is isomorphic to a subalgebra of BC, s, [[X]]. In order to
define Newton analytic elements on B~(0,1) we suppose that the pair (7', S7) has the
standard form and 8 = 0. We take Ts C T, Ts # T, such that 0 € Ts and Stc the
sequence obtained from St by canceling all the terms equal to 8; € Ts. We denote by v;
the corresponding polynomials defined by (3) by means of Ste.

In BKg, [[X]] we denote by M the multiplicative system generated by the polynomials
X — B, Bi € T¢ and by M~!BKg,.[[X]] the ring of fractions of BKg, [[X]] with respect

to M. By using an idea for power series (see [7]), we define
—1
HNCpg, [[X] = {F = > an”} +f}, (33)

where a; € Cp, lim a; =0 and f € BCyq [[X]]. If F € HN(CPSTC[[X]] we put

HFHHNCPSTSC[[X}] = maX{_OOHg%_l{!ai!}, HfHBccpsT[[X]]}- (34)
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It can be proved that HNCpg [[X]] is the completion of the algebra M_IB(CPST [[X]]

with respect to the restriction of the norm given by (34).

Consider K = C,,, (T,S7) a pair having the standard form with 5 = 0, Ty = 0,
D = B7(0,1) and a function f : D — C,. We call f a Newton analytic element if it is the
sum of a series of HN(CPSTSC [[X]].

Remark 1. Let (T, St) be a pair having the standard form with 3; = 0. If we denote the
set of all Newton analytic elements on B*(0,1) as HN(B"(0,1)) = BC,g [[X]] and the
set of all Newton analytic elements on B~(0,1) as HN(B~(0,1)) = HNCpg_, [X]], with

Ts = {0}, then as in the classical case that Banach K-algebra HN (B~ (0, 1)) is isomorphic
to a completion of a ring of fractions of the algebra HN(B*(0,1)).

By Corollary 2 and Lemma 1 it follows that every g € BC,[[X]] defines a Newton
analytic element on B~(0,1) which can be extended to a Newton analytic element on
B1(0,1). Hence Theorem 6 implies that for a fixed family of sequences Z; = {yjn}n>1.
Jj > 2 such that v;, € B7(8;,1) and each Z; has an accumulation point, every g €
BC)g [[X]] can be extended to G € HN (B*(0,1)) uniquely defined by its values at ;.
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