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A NOTE ON THE SOLUTION SET OF A FRACTIONAL
DIFFERENTIAL INCLUSION

Aurelian CERNEA1

Abstract

We consider a Cauchy problem for a fractional differential inclusion of order α ∈
(1, 2] involving a nonconvex set-valued map and we prove that the set of selections
corresponding to the solutions of the problem considered is a retract of the space of
integrable functions on unbounded interval.

2000 Mathematics Subject Classification: 34A60, 26A33, 26A42, 34B15.
Key words: fractional derivative, differential inclusion, retract.

1 Introduction

Differential equations with fractional order have recently proved to be strong tools
in the modelling of many physical phenomena. As a consequence there was an intensive
development of the theory of differential equations of fractional order ([2, 16, 17, 19] etc.).
The study of fractional differential inclusions was initiated by El-Sayed and Ibrahim ([14]).
Recently several qualitative results for fractional differential inclusions were obtained in [1,
3, 7-11, 15, 18] etc.. Applied problems require definitions of fractional derivative allowing
the utilization of physically interpretable initial conditions. Caputo’s fractional derivative,
originally introduced in [6] and afterwards adopted in the theory of linear visco elasticity,
satisfies this demand. For a consistent bibliography on this topic, historical remarks and
examples we refer to [1,16,17,19].

In this paper we study fractional differential inclusions of the form

Dα
c x(t) ∈ F (t, x(t)) a.e. ([0,∞)), x(0) = x0, x′(0) = x1, (1.1)

where α ∈ (1, 2], Dα
c is the Caputo fractional derivative, F : [0,∞) × R → P(R) is a

set-valued map and x0, x1 ∈ R, x0, x1 6= 0.
The aim of this paper is to prove, when the set-valued map is Lipschitz in the sec-

ond variable, that the set of selections of the set-valued map F that correspond to the
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solutions of problem (1.1) is a retract of L1
loc([0,∞),R). The result is essentially based

on Bressan and Colombo results ([4]) concerning the existence of continuous selections of
lower semicontinuous multifunctions with decomposable values.

We note that in the classical case of differential inclusions topological properties of
solution set are obtained using various methods and tools ([5,13,20-22] etc.). On one
hand, our result is an extension of Theorem 3.4 in [12] obtained in the case when the
interval is bounded and on the other hand, the result in the present paper extends to
fractional differential inclusions the main result in [20] obtained in the case of classical
differential inclusions.

The paper is organized as follows: in Section 2 we present the notations, definitions
and the preliminary results to be used in the sequel and in Section 3 we prove our main
result.

2 Preliminaries

Let T > 0, I := [0, T ] and denote by L(I) the σ-algebra of all Lebesgue measurable
subsets of I. Let X be a real separable Banach space with the norm |.|. Denote by P(X)
the family of all nonempty subsets of X and by B(X) the family of all Borel subsets of X.
If A ⊂ I then χA(.) : I → {0, 1} denotes the characteristic function of A. For any subset
A ⊂ X we denote by cl(A) the closure of A.

The distance between a point x ∈ X and a subset A ⊂ X is defined as usual by
d(x,A) = inf{|x − a|; a ∈ A}. We recall that Pompeiu-Hausdorff distance between the
closed subsets A,B ⊂ X is defined by dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) =
sup{d(a,B); a ∈ A}.

As usual, we denote by C(I,X) the Banach space of all continuous functions x : I → X
endowed with the norm |x|C = supt∈I |x(t)| and by L1(I,X) the Banach space of all
(Bochner) integrable functions x : I → X endowed with the norm |x|1 =

∫ T
0 |x(t)|dt.

We recall first several preliminary results we shall use in the sequel.
A subset D ⊂ L1(I,X) is said to be decomposable if for any u, v ∈ D and any subset

A ∈ L(I) one has uχA + vχB ∈ D, where B = I\A.
We denote by D(I,X) the family of all decomposable closed subsets of L1(I,X).
Next (S,d) is a separable metric space; we recall that a multifunction G : S → P(X)

is said to be lower semicontinuous (l.s.c.) if for any closed subset C ⊂ X, the subset
{s ∈ S; G(s) ⊂ C} is closed.

Lemma 1. Let F ∗ : I×S → P(X) be a closed-valued L(I)⊗B(S)-measurable multifunction
such that F ∗(t, .) is l.s.c. for any t ∈ I.

Then the multifunction G : S → D(I,X) defined by

G(s) = {v ∈ L1(I,X); v(t) ∈ F ∗(t, s) a.e. (I)}

is l.s.c. with nonempty closed values if and only if there exists a continuous mapping
p : S → L1(I,X) such that

d(0, F ∗(t, s)) ≤ p(s)(t) a.e. (I), ∀s ∈ S.
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Lemma 2. Let G : S → D(I,X) be a l.s.c. multifunction with closed decomposable values
and let φ : S → L1(I,X), ψ : S → L1(I,R) be continuous such that the multifunction
H : S → D(I,X) defined by

H(s) = cl{v(.) ∈ G(s); |v(t)− φ(s)(t)| < ψ(s)(t) a.e. (I)}

has nonempty values.
Then H has a continuous selection, i.e. there exists a continuous mapping h : S →

L1(I,X) such that h(s) ∈ H(s) ∀s ∈ S.

The proofs of Lemmas 1 and 2 may be found in [4].

Definition 1. ([16]). a) The fractional integral of order α > 0 of a Lebesgue integrable
function f : (0,∞) → R is defined by

Iαf(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the (Euler’s) Gamma
function defined by Γ(α) =

∫∞
0 tα−1e−tdt.

b) The Caputo fractional derivative of order α > 0 of a function f : [0,∞) → R is
defined by

Dα
c f(t) =

1
Γ(n− α)

∫ t

0
(t− s)−α+n−1f (n)(s)ds,

where n = [α] + 1. It is assumed implicitly that f is n times differentiable whose n-th
derivative is absolutely continuous.

We recall (e.g., [16]) that if α > 0 and f ∈ C(I,R) or f ∈ L∞(I,R) then (Dα
c I

αf)(t) ≡
f(t).

Definition 2. A function x ∈ C([0,∞),R) is called a solution of problem (1.1) if there
exists a function f ∈ L1

loc([0,∞),R) with f(t) ∈ F (t, x(t)), a.e. [0,∞) such that Dα
c x(t) =

f(t) a.e. [0,∞) and x(0) = x0, x
′(0) = x1.

In this case (x(.), f(.)) is called a trajectory-selection pair of problem (1.1).
We shall use the following notations for the solution sets and for the selection sets of

problem (1.1).

S(x0, x1) = {x ∈ C([0,∞),R); x is a solution of (1.1)}, (2.1)

T (x0, x1) = {f ∈ L1
loc([0,∞),R);

f(t) ∈ F (t, x0 + tx1 +
∫ t
0

(t−s)α−1

Γ(α) f(s)ds) a.e. [0,∞)}. (2.2)

3 The main result

In order to prove our topological property of the solution set of problem (1.1) we need
the following hypotheses.
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Hypothesis 1. i) F (., .) : [0,∞) × R → P(R) has nonempty compact values and is
L([0,∞))⊗ B(R) measurable.

ii) There exists L ∈ L1
loc([0,∞),R) such that, for almost all t ∈ [0,∞),

F (t, .) is L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀x, y ∈ R.

iii) There exists p ∈ L1
loc([0,∞),R) such that

dH({0}, F (t, 0)) ≤ p(t) a.e. [0,∞).

In what follows I = [0, T ] and we use the notations

ũ(t) = x0 + tx1 +
∫ t

0

(t− s)α−1

Γ(α)
u(s)ds, u ∈ L1(I,R) (3.1)

and
p0(u)(t) = |u(t)|+ p(t) + L(t)|ũ(t)|, t ∈ I (3.2)

Let us note that
d(u(t), F (t, ũ(t)) ≤ p0(u)(t) a.e. (I) (3.3)

and, since for any u1, u2 ∈ L1(I,R)

|p0(u1)− p0(u2)|1 ≤ (1 + |IαL(T )|)|u1 − u2|1

the mapping p0 : L1(I,R) → L1(I,R) is continuous.
Also define

TI(x0, x1) = {f ∈ L1(I,R); f(t) ∈ F (t, x0 + tx1 +
∫ t
0

(t−s)α−1

Γ(α) f(s)ds)
a.e. (I)}.

The next result is proved in [12].

Lemma 3. Assume that Hypothesis 1 is satisfied and let φ : L1(I,R) → L1(I,R) be a
continuous map such that φ(u) = u for all u ∈ TI(x0, x1). For u ∈ L1(I,R), we define

Ψ(u) = {u ∈ L1(I,R); u(t) ∈ F (t, φ̃(u)(t)) a.e. (I)},

Φ(u) =
{
{u} if u ∈ TI(x0, x1),
Ψ(u) otherwise.

Then the multifunction Φ : L1(I,R) → P(L1(I,R)) is lower semicontinuous with
closed decomposable and nonempty values.

In what follows we shall use the following notations

Ik = [0, k], k ≥ 1, |u|1,k =
∫ k

0
|u(t)|dt, u ∈ L1(Ik,R).

We are able now to prove the main result of this paper.
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Theorem 1. Assume that Hypothesis 1 is satisfied, there exists |IαL| := sup
t∈[0,∞)

|IαL(t)|<

1 and x0, x1 ∈ R.
Then there exists a continuous mapping G : L1

loc([0,∞),R) →
L1

loc([0,∞),R) such that
(i) G(u) ∈ T (x0, x1), ∀u ∈ L1

loc([0,∞),R),
(ii) G(u) = u, ∀u ∈ T (x0, x1).

Proof. We shall prove that for every k ≥ 1 there exists a continuous mapping gk :
L1(Ik,R) → L1(Ik,R) with the following properties

(I) gk(u) = u, ∀u ∈ TIk
(x0, x1)

(II) gk(u) ∈ TIk
(x0, x1), ∀u ∈ L1(Ik,R)

(III) gk(u)(t) = gk−1(u|Ik−1
)(t), ∀t ∈ Ik−1

If the sequence {gk}k≥1 is constructed, we define G : L1
loc([0,∞),R) → L1

loc([0,∞),R)
by

G(u)(t) = gk(u|Ik
)(t), ∀k ≥ 1

From (III) and the continuity of each gk(.) it follows that G(.) is well defined and
continuous. Moreover, for each u ∈ L1

loc([0,∞),R), according to (II) we have

G(u)|Ik
(t) = gk(u|Ik

)(t) ∈ TIk
(x0, x1), ∀k ≥ 1

and thus G(u) ∈ T (x0, x1).
Fix ε > 0 and for m ≥ 0 set εm = m+1

m+2ε. For u ∈ L1(I1,R) and m ≥ 0 define

p1
0(u)(t) = |u(t)|+ p(t) + L(t)|ũ(t)|, t ∈ I1

and
p1

m+1(u) = |IαL|m(
1

Γ(α)
|p1

0(u)|1,1 + εm+1).

By the continuity of the map p1
0(.) = p0(.), already proved, we obtain that p1

m : L1(I1,R) →
L1(I1,R) is continuous.

We define g1
0(u) = u and we shall prove that for any m ≥ 1 there exists a continuous

map g1
m : L1(I1,R) → L1(I1,R) that satisfies

(a1) g1
m(u) = u, ∀u ∈ TI1(x0, x1),

(b1) g1
m(u)(t) ∈ F (t, ˜g1

m−1(u)(t)) a.e. (I1),

(c1) |g1
1(u)(t)− g1

0(u)(t)| ≤ p1
0(u)(t) + ε0 a.e. (I1),

(d1) |g1
m(u)(t)− g1

m−1(t)| ≤ L(t)p1
m−1(u) a.e. (I1), m ≥ 2.

For u ∈ L1(I1,R), we define

Ψ1
1(u) = {v ∈ L1(I1,R); v(t) ∈ F (t, ũ(t)) a.e.(I1)},
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Φ1
1(u) =

{
{u} if u ∈ TI1(x0, x1),
Ψ1

1(u) otherwise.

and by Lemma 3 (with φ(u) = u) we obtain that Φ1
1 : L1(I1,R) → D(I1,R) is lower

semicontinuous. Moreover, due to (3.3) the set

H1
1 (u) = cl{v ∈ Φ1

1(u); |v(t)− u(t)| < p1
0(u)(t) + ε0 a.e. (I1)}

is not empty for any u ∈ L1(I1,R). So applying Lemma 2, we find a continuous selection
g1
1 of H1

1 that satisfies (a1)-(c1).
Suppose we have already constructed g1

i (.), i = 1, . . .m satisfying (a1)-(d1). Then
from (b1), (d1) and Hypothesis 1 we get

d(g1
m(u)(t), F (t, g̃1

m(u)(t)) ≤ L(t)(| ˜g1
m−1(u)(t)− g̃1

m(u)(t)|
≤ |IαL|p1

m(u) = L(t)(p1
m+1(u)− rm) < L(t)p1

m+1(u),
(3.4)

where rm := |IαL|m(εm+1 − εm) > 0.
For u ∈ L1(I1,R), we define

Ψ1
m+1(u) = {v ∈ L1(I1,R); v(t) ∈ F (t, g̃1

m(u)(t)) a.e. (I1)},

Φ1
m+1(u) =

{
{u} if u ∈ TI1(x0, x1),
Ψ1

m+1(u) otherwise.

We apply Lemma 3 (with φ(u) = g1
m(u)) and obtain that Φ1

m+1(.) is a lower semicontinuous
multifunction with closed decomposable and nonempty values. Moreover, by (3.4), the set

H1
m+1(u) = cl{v ∈ Φ1

m+1(u); |v(t)− g1
m+1(u)(t)| < L(t)p1

m+1(u) a.e. (I1)}

is nonempty for any u ∈ L1(I1,R). With Lemma 2, we find a continuous selection g1
m+1

of H1
m+1, satisfying (a1)-(d1).

Therefore we obtain that

|g1
m+1(u)− g1

m(u)|1,1 ≤ |IαL|m(
1

Γ(α)
|p1

0(u)|1,1 + ε)

and this implies that the sequence {g1
m(u)}m∈N is a Cauchy sequence in the Banach space

L1(I1,R). Let g1(u) ∈ L1(I1,R) be its limit. The function s → |p1
0(u)|1,1 is continu-

ous, hence it is locally bounded and the Cauchy condition is satisfied by {g1
m(u)}m∈N

locally uniformly with respect to u. Hence the mapping g1(.) : L1(I1,R) → L1(I1,R) is
continuous.

From (a1) it follows that g1(u) = u, ∀u ∈ TI1(x0, x1) and from (b1) and the fact that
F has closed values we obtain that

g1(u)(t) ∈ F (t, g̃1(u)(t)), a.e. (I1) ∀u ∈ L1(I1,R).

In the next step of the proof we suppose that we have already constructed the mappings
gi(.) : L1(Ii,R) → L1(Ii,R), i = 2, ..., k − 1 with the properties (I)-(III) and we shall
construct a continuous map gk(.) : L1(Ik,R) → L1(Ik,R) satisfying (I)-(III).



A fractional differential inclusion 89

Let gk
0 : L1(Ik,R) → L1(Ik,R) be defined by

gk
0 (u)(t) = gk−1(u|Ik−1

)(t)χIk−1
+ u(t)χIk\Ik−1

(t) (3.5)

Let us note, first, that gk
0 (.) is continuous. Indeed, if u0, u ∈ L1(Ik,R) one has

|gk
0 (u)− gk

0 (u0)|1,k ≤ |gk−1(u|Ik−1
)− gk−1(u0|Ik−1

)|1,k−1 +
∫ k

k−1
|u(t)− u0(t)|dt

So, using the continuity of gk−1(.) we get the continuity of gk
0 (.).

On the other hand, since gk−1(u) = u, ∀u ∈ TIk−1
(x0, x1) from (3.5) it follows that

gk
0 (u) = u, ∀u ∈ TIk

(x0, x1).

For u ∈ L1(Ik,R), we define

Ψk
1(u) = {w ∈ L1(Ik,R); w(t) = gk−1(u|Ik−1

)(t)χIk−1
(t)+

v(t)χIk\Ik−1
(t), v(t) ∈ F (t, g̃k

0 (u)(t)) a.e. ([k − 1, k])},

Φk
1(u) =

{
{u} if u ∈ TIk

(x0, x1),
Ψk

1(u) otherwise.

We apply Lemma 3 (with φ(u) = gk
0 (u)) and we obtain that Φk

1(.) : L1(Ik,R)
→ D(Ik,R) is lower semicontinuous. Moreover, for any u ∈ L1(Ik,R) one has

d(gk
0 (t), F (t, g̃k

0 (u)(t)) = d(u(t), F (t, g̃k
0 (u)(t))χIk\Ik−1

≤ pk
0(u)(t) a.e.(Ik), (3.6)

where
pk
0(u)(t) = |u(t)|+ p(t) + L(t)|g̃k

0 (u)(t)|.

Obviously, pk
0 : L1(Ik,R) → L1(Ik,R) is continuous. For m ≥ 0 set

pk
m+1(u) = |IαL|m(

kα−1

Γ(α)
|pk

0(u)|1,k + εm+1).

and by the continuity of pk
0(.) we infer that pk

m : L1(Ik,R) → L1(Ik,R) is continuous.
We shall prove, next, that for anym ≥ 1 there exists a continuous map gk

m : L1(Ik,R) →
L1(Ik,R) such that

(ak) gk
m(u)(t) = gk−1(u|Ik−1

)(t) ∀t ∈ Ik−1,

(bk) gk
m(u) = u ∀u ∈ TIk

(x0, x1),

(ck) gk
m(u)(t) ∈ F (t, ˜gk

m−1(u)(t)) a.e. (Ik),

(dk) |gk
1 (u)(t)− gk

0 (u)(t)| ≤ pk
0(u)(t) + ε0 a.e. (Ik),
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(ek) |gk
m(u)(t)− gk

m−1(u)(t)| ≤ L(t)pk
m−1(u) a.e. (Ik), m ≥ 2.

Define

Hk
1 (u) = cl{v ∈ Φk

1(u); |v(t)− gk
0 (u)(t)| < pk

0(u)(t) + ε0 a.e. (Ik)}.

From (3.6), Hk
1 (u) 6= ∅ ∀u ∈ L1(I1,R). Using the continuity of gk

0 , p
k
0 and Lemma 2, we

obtain a continuous selection gk
1 of Hk

1 that satisfies (ak)-(dk).
Assume we have constructed gk

i (.), i = 1, . . .m satisfying (ak)-(ek). Then from (ek)
we have

d(gk
m(u)(t), F (t, g̃k

m(u)(t)) ≤ L(t)(| ˜gk
m−1(u)(t)− g̃k

m(u)(t)|
≤ |IαL|pk

m(u) = L(t)(pk
m+1(u)− rm) < L(t)pk

m+1(u),
(3.7)

where rm := |IαL|m(εm+1 − εm) > 0.
For u ∈ L1(Ik,R), we define

Ψk
m+1(u) = {w ∈ L1(Ik,R); w(t) = gk−1(u|Ik−1

)(t)χIk−1
(t)+

v(t)χIk\Ik−1
(t), v(t) ∈ F (t, g̃k

m(u)(t)) a.e. ([k − 1, k])},

Φk
m+1(u) =

{
{u} if u ∈ TIk

(x0, x1),
Ψk

m+1(u) otherwise.

With Lemma 3 we infer that Φk
m+1(.) : L1(Ik,R) → P(L1(Ik,R)) is lower semicontinuous

with closed decomposable and nonempty values. By (3.7) the set

Hk
m+1(u) = cl{v ∈ Φk

m+1(u); |v(t)− gk
m+1(u)(t)| < L(t)pk

m+1(u) a.e. (Ik)}

is nonempty for any u ∈ L1(Ik,R). So, applying Lemma 2, we deduce a continuous
selection gk

m+1 of Hk
m+1, satisfying (ak)-(ek).

By (ek) one has

|gk
m+1(u)− gk

m(u)|1,k ≤ |IαL|m[
kα−1

Γ(α)
|pk

0(u)|1,1 + ε].

Therefore, with a similar proof as in the case k = 1, we find that the sequence {gk
m(u)}m∈N

converges to some gk(u) ∈ L1(Ik,R) and the mapping gk(.) : L1(Ik,R) → L1(Ik,R) is
continuous.

By (ak) we have that

gk(u)(t) = gk−1(u|Ik−1
)(t) ∀t ∈ Ik−1,

by (bk) gk(u) = u, ∀u ∈ TIk
(x0, x1) and from (ck) and the fact that F has closed values

we obtain that

gk(u)(t) ∈ F (t, g̃k(u)(t)), a.e. (Ik) ∀u ∈ L1(Ik,R).

Therefore gk(.) satisfies the properties (I), (II) and (III).

Remark 1. We recall that if Y is a Hausdorff topological space, a subspace X of Y is
called retract of Y if there is a continuous map h : Y → X such that h(x) = x, ∀x ∈ X.

Therefore, by Theorem 1, for any x0, x1 ∈ R, the set T (x0, x1) of selections that
correspond to solutions of (1.1) is a retract of the Banach space L1

loc([0,∞),R).
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