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Abstract

We are interested in elliptic problems with Neumann boundary conditions that are
studied in the framework of isotropic and anisotropic spaces with variable exponents.
We establish an existence and a uniqueness result concerning a problem with a gen-
eral p(·) - Laplace type operator. In addition, we present connections to other results,
some of them involving the same operator, some of them involving a general

→
p (·) -

Laplace type operator.
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1 Indroduction

We are working on Lebesgue and Sobolev spaces with variable exponent and we are
concerned with the following class of elliptic problems: −div(a(x,∇u)) + b(x)|u|p(x)−2u = f(x, u) for x ∈ Ω,

a(x,∇u) · ν(x) = g(x, u) for x ∈ ∂Ω,
(1.1)

where Ω ⊂ RN , N ≥ 2 is a bounded domain with smooth boundary. We assume that
a : Ω× RN → RN , a = a(x, η), is a Carathéodory function such that it is the continuous
derivative with respect to η of a function A : Ω × RN → R, A = A(x, η). More exactly,
a(x, η) = ∇ηA(x, η). The mappings a and A verify the assumptions:
(A1) The equality

A(x, 0) = 0

holds for all x ∈ Ω;
(A2) There exists a constant c0 > 0 such that

|a(x, η)| ≤ c0(1 + |η|p(x)−1),
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for all x ∈ Ω and all η ∈ RN ;
(A3) The inequality

0 ≤ [a(x, η1)− a(x, η2)] · (η1 − η2)

holds for all x ∈ Ω and all η1, η2 ∈ RN , with equality if and only if η1 = η2;
(A4) The inequalities

|η|p(x) ≤ a(x, η) · η ≤ p(x) A(x, η)

hold for all x ∈ Ω and all η ∈ RN ;
The above set of hypotheses allows us to obtain well known operators by making some

suitable choices. Indeed, for A(x, η) = 1
p(x) |η|

p(x) we deduce that a(x, η) = |η|p(x)−2η and
for η = ∇u we find the p(·)-Laplace operator

div(a(x,∇u)) = div
(
|∇u|p(x)−2∇u

)
. (1.2)

We get a second example of operator when we choose A(x, η) = 1
p(x) [(1 + |η|2)p(x)/2 − 1],

thus a(x, η) = (1+ |η|2)(p(x)−2)/2η and for η = ∇u we find the generalized mean curvature
operator

div(a(x,∇u)) = div
(
(1 + |∇u|2)(p(x)−2)/2∇u

)
.

Therefore it is no surprise that general operators described by conditions (A1) - (A4)
are considered in other papers too, see for example [2, 12, 13]. In addition, nonstandard
operators closely related to these appear in various situations, such is the case of classical
Lebesgue-Sobolev spaces (see [11]), or the case of anisotropic Lebesgue-Sobolev spaces
with variable exponent (see [1, 3]).

Our goal here is to establish an existence and a uniqueness result for problem (1.1)
under some appropriate assumptions on the functions b, f and g. Since our study will be
conducted in the framework of variable exponent spaces, in the next section we introduce
some preliminaries.

2 Abstract framework

In the present paper, Ω ⊂ RN (N ≥ 2) represents a bounded domain with smooth
boundary ∂Ω. We set

C+(Ω) = {h ∈ C(Ω) : 1 < min
x∈Ω

h(x) < max
x∈Ω

h(x) < ∞}

and for all h ∈ C+(Ω) we denote

h+ = sup
x∈Ω

h(x), h− = inf
x∈Ω

h(x).

Also, we denote

h?(x) =

 Nh(x)/[N − h(x)] if h(x) < N,

∞ if h(x) ≥ N,
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and

h∂(x) =

 (N − 1)h(x)/[N − h(x)] if h(x) < N,

∞ if h(x) ≥ N.

Everywhere below we consider p ∈ C+(Ω). The isotropic Lebesgue space with variable
exponent is defined by

Lp(·)(Ω) = {u : u is a measurable real–valued function such that
∫

Ω
|u(x)|p(x) dx < ∞}

endowed with the Luxemburg norm

‖u‖Lp(·)(Ω) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣p(x)

dx ≤ 1

}
.

This space is a separable and reflexive Banach space (see [10, Theorem 2.5, Corollary 2.7])
and we recall a significant embedding theorem.

Theorem 2.1. ([10, Theorem 2.8]) If p1, p2 ∈ C+(Ω) are such that p1 ≤ p2 in Ω, then
the embedding Lp2(·)(Ω) ↪→ Lp1(·)(Ω) is continuous.

Moreover, the following Hölder-type inequality∣∣∣∣∫
Ω

u(x)v(x) dx

∣∣∣∣ ≤ 2 ‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω)

holds for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) (see [10, Theorem 2.1]), where we denoted by
Lp′(·)(Ω) the conjugate space of Lp(·)(Ω), obtained by conjugating the exponent pointwise,
that is, 1/p(x) + 1/p′(x) = 1 (see [10, Corollary 2.7]).

To ease our work, we also introduce the map ρp(·) : Lp(·)(Ω) → R,

ρp(·)(u) =
∫

Ω
|u(x)|p(x) dx,

called the p(·)-modular of the Lp(·)(Ω) space. We recall next its most important properties
(see for example [9, Theorem 1.3, Theorem 1.4]). If u ∈ Lp(·)(Ω), then:

‖u‖Lp(·)(Ω) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1) (2.3)

‖u‖Lp(·)(Ω) > 1 ⇒ ‖u‖p−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ‖u‖p+

Lp(·)(Ω)
(2.4)

‖u‖Lp(·)(Ω) < 1 ⇒ ‖u‖p+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ‖u‖p−

Lp(·)(Ω)
. (2.5)

Remark 2.1. If we consider the application ρ̃p(·) : Lp(·)(∂Ω) → R, ρ̃p(·)(u) =
∫
∂Ω |u(x)|p(x)dS,

the corresponding properties (2.3) - (2.5) remain valid.
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Let us introduce now the definition of the isotropic Sobolev space with variable expo-
nent, W 1,p(·)(Ω). We set

W 1,p(·)(Ω) =
{

u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)
}

endowed with the norm
‖u‖ = ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω), (2.6)

where by ‖∇u‖Lp(·)(Ω) we understand ‖ |∇u| ‖Lp(·)(Ω). The space
(
W 1,p(·)(Ω), ‖ · ‖

)
is a

separable and reflexive Banach space (see [10, Theorem 1.3]) and the next proposition is
very helpful in handling its norm.

Proposition 2.1. ([8, Proposition 2.3]) If u ∈ W 1,p(·)(Ω) then

‖u‖ > 1 ⇒ ‖u‖p− ≤
∫

Ω

[
|∇u|p(x) + |u|p(x)

]
dx ≤ ‖u‖p+

;

‖u‖ < 1 ⇒ ‖u‖p+ ≤
∫

Ω

[
|∇u|p(x) + |u|p(x)

]
dx ≤ ‖u‖p− .

We also have two embedding results.

Theorem 2.2. ([7, Proposition 2.4]) Let Ω ⊂ RN , N ≥ 2 be a bounded domain with
smooth boundary. If p, q ∈ C(Ω) satisfy the condition

1 ≤ q(x) < p?(x), ∀x ∈ Ω,

then there is a compact embedding W 1,p(·)(Ω) ↪→ Lq(·)(Ω).

Theorem 2.3. ([6, Corollary 2.4]) Let Ω ⊂ RN , N ≥ 2, be a bounded open set with
smooth boundary. Suppose that p ∈ C+(Ω) and r ∈ C(Ω) satisfy the condition

1 ≤ r(x) < p∂(x), ∀x ∈ ∂Ω.

Then there is a compact boundary trace embedding W 1,p(·)(Ω) ↪→ Lr(·)(∂Ω).

We refer to [6] for more details regarding the extension of the classical trace to
Lebesgue-Sobolev spaces with variable exponent. Everywhere below, when we refer to
the trace of u we will write u instead of u|∂Ω or γu.

3 Main Results

In what follows, in addition to hypotheses (A1) - (A4) we assume that function b :
Ω → R satisfies:
(B) b ∈ L∞(Ω) and there exists b0 > 0 such that b(x) ≥ b0 for all x ∈ Ω.

Also, we suppose that f , g are Carathéodory functions verifying the conditions:



Neumann boundary value problems with variable exponents 59

(F) For q ∈ C+(Ω) with q+ < p−, there exist c1, c2 > 0 such that

|f(x, t)| ≤ c1 + c2|t|q(x)−1

for all x ∈ Ω and all t ∈ R;

(G) For r ∈ C+(Ω) with r+ < p−, there exist c3, c4 > 0 such that

|g(x, t)| ≤ c3 + c4|t|r(x)−1

for all x ∈ ∂Ω and all t ∈ R.

Since we deal with the existence and uniqueness of weak solutions for our problem, we
introduce the following definition.

Definition 3.1. A function u ∈ W 1,p(·)(Ω) which verifies∫
Ω

a(x,∇u) · ∇v dx +
∫

Ω
b(x)|u|p(x)−2uv dx−

∫
Ω

f(x, u)v dx−
∫

∂Ω
g(x, u)v dS = 0

for all v ∈ W 1,p(·)(Ω) is called a weak solution of (1.1).

We associate to problem (1.1) the energetic functional I : W 1,p(·)(Ω) → R defined by

I(u) =
∫

Ω
A(x,∇u) dx +

∫
Ω

b(x)
p(x)

|u|p(x) dx−
∫

Ω
F (x, u) dx−

∫
∂Ω

G(x, u) dS,

where F : Ω× R → R, G : ∂Ω× R → R are given by

F (x, s) =
∫ s

0
f(x, t)dt, G(x, s) =

∫ s

0
g(x, t)dt.

We also define the functional Λ : W 1,p(·)(Ω) → R introduced by

Λ(u) =
∫

Ω
A(x,∇u) dx.

Proposition 3.1. ([13, Lemma 1]) (i) The functional Λ is well-defined on W 1,p(·)(Ω).
(ii) The functional Λ is of class C1(W 1,p(·)(Ω), R) and

〈Λ′
(u), v〉 =

∫
Ω

a(x,∇u) · ∇v dx,

for all u, v ∈ W 1,p(·)(Ω).

We must mention that the study from [13] is conducted for a Λ0 : W
1,p(·)
0 (Ω) → R,

where W
1,p(·)
0 (Ω) represents the Sobolev space with zero boundary values defined as the

closure of C∞
0 (Ω) with respect to the norm ‖ · ‖

W
1,p(·)
0 (Ω)

= ‖∇u‖Lp(·)(Ω). However, since
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the calculus is almost identical, we omit it for brevity. Using Proposition 3.1, a standard
calculus shows that I is well defined and I ∈ C1(W 1,p(·)(Ω); R) with

〈I ′(u), v〉 =
∫

Ω
a(x,∇u) · ∇v dx +

∫
Ω

b(x)|u|p(x)−2uv dx−
∫

Ω
f(x, u)v dx−

∫
∂Ω

g(x, u)v dS

for all u, v ∈ W 1,p(·)(Ω). Thus any critical point u ∈ W 1,p(·)(Ω) of I is a weak solution to
problem (1.1) and we rely our argumentation on the critical point theory. The main tool
to establish our existence result is the following theorem.

Theorem 3.1. ([14, 1.2 Theorem]) Suppose X is a reflexive Banach space of norm ‖ · ‖X

and let I : X → R ∪ {∞} be a function such that:

(i) I is coercive on X, i.e., I(u) →∞ as ‖u‖X →∞.

(ii) I is (sequentially) weakly lower semicontinuous on X, i.e., for any u ∈ X and any
subsequence (un)n ⊂ X such that un ⇀ u weakly in X there holds

I(u) ≤ lim inf
n→∞

I(un).

Then I is bounded from below on X and attains its infimum in X.

Using the above theorem, we can prove our first main result.

Theorem 3.2. Let Ω ⊂ RN , N ≥ 2, be a bounded domain with smooth boundary. Assume
that f : Ω×R → R, g : ∂Ω×R → R and a : Ω×RN → RN are Carathéodory functions and
that a = a(x, η) is the continuous derivative with respect to η of a function A : Ω×RN → R,
A = A(x, η). If conditions (A1) - (A4), (B), (F) and (G) are fulfilled, then there exists a
weak solution to problem (1.1).

Proof.
We start by showing that I is coercive. By integrating in the relations provided by (F)

and (G), we arrive at

|F (x, t)| ≤ c1|t|+ c2
|t|q(x)

q(x)
for all x ∈ Ω and t ∈ R,

|G(x, t)| ≤ c3|t|+ c4
|t|r(x)

r(x)
for all x ∈ ∂Ω and t ∈ R.

Then, due to relations (2.3) – (2.5) and Remark 2.1,∫
Ω

F (x, u) dx ≤ c1‖u‖L1(Ω) +
c2

q+

(
‖u‖q+

Lq(·)(Ω)
+ ‖u‖q−

Lq(·)(Ω)

)
,

∫
∂Ω

G(x, u) dS ≤ c3‖u‖L1(∂Ω) +
c4

r+

(
‖u‖r+

Lr(·)(∂Ω)
+ ‖u‖r−

Lr(·)(∂Ω)

)
.
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Taking into account Theorems 2.2 and 2.3, we obtain that, for u ∈ W 1,p(·)(Ω) with ‖u‖ ≥ 1,
there exist k1, k2, k3, k4 > 0 such that∫

Ω
F (x, u) dx ≤ k1‖u‖+ k2‖u‖q+

, (3.7)

∫
∂Ω

G(x, u) dS ≤ k3‖u‖+ k4‖u‖r+
. (3.8)

On the other hand, by (A4) and (B),∫
Ω

A(x,∇u) dx +
∫

Ω

b(x)
p(x)

|u|p(x) dx ≥ min{1, b0}
p+

∫
Ω

[
|∇u|p(x) + |u|p(x)

]
dx.

Using Proposition 2.1 in the above inequality, we infer that, for ‖u‖ ≥ 1,∫
Ω

A(x,∇u) dx +
∫

Ω

b(x)
p(x)

|u|p(x) dx ≥ min{1, b0}
p+

‖u‖p− . (3.9)

Putting together (3.7), (3.8) and (3.9), we find out that, for ‖u‖ ≥ 1,

I(u) ≥ min{1, b0}
p+

‖u‖p− − k2‖u‖q+ − k4‖u‖r+ − (k1 + k3)‖u‖.

By considering the hypotheses on p, q and r, we get that I(u) →∞ when ‖u‖ → ∞, hence
I is coercive.

Next, we make the notations

F(u) =
∫

Ω
F (x, u) dx, G(u) =

∫
∂Ω

G(x, u) dS,

and we notice that F ′ and G′ are completely continuous, therefore F and G are weakly
continuous. Following the ideas from [4] and [13] we deduce that I is weakly lower semi-
continuous. We are now in position to apply Theorem 3.1. Thus we conclude that problem
(1.1) admits at least one weak solution.

�

In order to get the uniqueness of the solution, we introduce new assumptions on f and
g:
(F0) f is fulfilling the monotonicity condition

(f(x, s)− f(x, t))(s− t) < 0,

for all x ∈ Ω and s, t ∈ R with s 6= t;
(G0) g is fulfilling the monotonicity condition

(g(x, s)− g(x, t))(s− t) < 0,

for all x ∈ ∂Ω and s, t ∈ R with s 6= t.
Now we can formulate our second result.
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Theorem 3.3. Let Ω ⊂ RN , N ≥ 2, be a bounded domain with smooth boundary. Assume
that f : Ω×R → R, g : ∂Ω×R → R and a : Ω×RN → RN are Carathéodory functions and
that a = a(x, η) is the continuous derivative with respect to η of a function A : Ω×RN → R,
A = A(x, η). If conditions (A1) - (A4), (B), (F), (F0), (G) and (G0) are fulfilled, then
problem (1.1) admits a unique weak solution.

Proof.
The existence of solutions is guaranteed by Theorem 3.2. Hence we can assume that

there exist two weak solutions to problem (1.1), that is, u1 and u2. First, we replace the
solution u by u1 in Definition 3.1 and we take v = u1 − u2. We obtain∫

Ω
a (x,∇u1) · ∇(u1 − u2) dx +

∫
Ω

b(x)|u1|p(x)−2u1(u1 − u2) dx

−
∫

Ω
f(x, u1)(u1 − u2) dx−

∫
∂Ω

g(x, u1)(u1 − u2) dS = 0.

Then, we replace the solution u by u2 in Definition 3.1 and we take v = u2 − u1. We get∫
Ω

a (x,∇u2) · ∇(u2 − u1) dx +
∫

Ω
b(x)|u2|p(x)−2u2(u2 − u1) dx

−
∫

Ω
f(x, u2)(u2 − u1) dx−

∫
∂Ω

g(x, u2)(u2 − u1) dS = 0.

By the two previous relations we deduce that∫
Ω

[a (x,∇u1)− a (x,∇u2)] · (∇u1 −∇u2) dx +
∫

Ω
b(x)

[
|u1|p(x)−2u1 − |u2|p(x)−2u2

]
(u1 − u2) dx

−
∫

Ω
[f(x, u1)− f(x, u2)] (u1 − u2) dx−

∫
∂Ω

[g(x, u1)− g(x, u2)] (u1 − u2) dS = 0.

Using (A3), (F0) and (G0), all the terms in the above equality are positive unless
u1 = u2, therefore we have obtained the uniqueness of the weak solution to problem (1.1).
�

4 Comments and connections

A first remark is that, by adding new assumptions to (A1) - (A4), (B), (F) and (G),
we can establish a multiplicity result. Moreover, this multiplicity result can be achieved
by relaxing the initial conditions (F) and (G) by not imposing a particular order between
p and q, respectively between p and r. To be more precise, we refer to the following set of
hypotheses:
(A5) The mapping A is even with respect to its second variable, that is,

A(x,−η) = A(x, η)

for all x ∈ Ω and all η ∈ RN ;
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(F1) For q ∈ C+(Ω) with q(x) < p?(x) for all x ∈ Ω, there exists c̃1 > 0 such that

|f(x, t)| ≤ c̃1|t|q(x)−1

for all x ∈ Ω and all t ∈ R;
(F2) There exists α1 > p+ such that

0 < α1F (x, t) ≤ tf(x, t)

for all x ∈ Ω and all t ∈ R;
(F3) The function f is odd with respect to its second variable, that is,

f(x,−t) = −f(x, t)

for all x ∈ Ω and all t ∈ R;
(G1) For r ∈ C+(Ω) with r(x) < p∂(x) for all x ∈ ∂Ω, there exists c̃2 > 0 such that

|g(x, t)| ≤ c̃2|t|r(x)−1

for all x ∈ ∂Ω and all t ∈ R;
(G2) There exists α2 > p+ such that

0 < α2G(x, t) ≤ tg(x, t)

for all x ∈ ∂Ω and all t ∈ R;
(G3) The function g is odd with respect to its second variable, that is,

g(x,−t) = −g(x, t)

for all x ∈ ∂Ω and all t ∈ R.
By working under conditions (A1) - (A5), (B), (F1) - (F3) and (G1) - (G3), the

existence of a sequence of weak solutions to problem (1.1) is obtained in [2] with the aid
of the fountain theorem.

Next, to make some other useful connections, we introduce the vectorial function

→
p : Ω → RN ,

→
p (·) = (p1(·), ..., pN (·)) ,

where pi ∈ C+(Ω) for all i ∈ {1, . . . , N}. Also, we denote

pM (x) = max{p1(x), . . . , pN (x)}

and we recall the definition of the anisotropic variable exponent Sobolev space,

W 1,
→
p (·)(Ω) =

{
u ∈ LpM (·)(Ω) : ∂xiu ∈ Lpi(·)(Ω) for all i ∈ {1, . . . , N}

}
=

{
u ∈ L1

loc(Ω) : u ∈ Lpi(·)(Ω), ∂xiu ∈ Lpi(·)(Ω) for all i ∈ {1, . . . , N}
}

.
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The space W 1,
→
p (·)(Ω) endowed with the norm

‖u‖
W 1,

→
p (·)(Ω)

= ‖u‖LpM (·)(Ω) +
N∑

i=1

‖∂xiu‖Lpi(·)(Ω)

is a reflexive Banach space (see [5, Theorem 2.1, Theorem 2.2]). Notice that for p1 = p2 =
· · · = pN = p, we arrive at the isotropic Sobolev space with variable exponent W 1,p(·)(Ω).
Moreover, the norm becomes

‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) +
N∑

i=1

‖∂xiu‖Lp(·)(Ω) ,

which is a norm equivalent to ‖ · ‖ given by (2.6). Thus, the space W 1,p(·)(Ω) can be
viewed as a particular case of W 1,

→
p (·)(Ω). However, this is not quite the case for the p(·)

- Laplace operator (1.2) and the
→
p (·) - Laplace operator defined as

∆→
p (x)

(u) =
N∑

i=1

∂xi

(
|∂xiu|

pi(x)−2 ∂xiu
)

. (4.10)

Indeed, when we take p1 = p2 = · · · = pN = p in (4.10), we do not get exactly the
operator introduced by (1.2). For similar reasons, we can not consider problem (1.1) to
be a particular case of the problem studied in [3] in the framework of anisotropic variable
exponent spaces,

−
N∑

i=1

∂xiai (x, ∂xiu) + b(x)|u|pM (x)−2u = f(x, u) in Ω,

u ≥ 0 in Ω,
N∑

i=1

ai (x, ∂xiu) νi = g(x, u) on ∂Ω,

(4.11)

where Ω ⊂ RN is a bounded open set with smooth boundary, νi, i ∈ {1, . . . , N}, are the
components of the outer normal unit vector, b satisfies (B) and the applications ai : Ω ×
R → R are Carathéodory functions fulfilling the following hypotheses for all i ∈ {1, . . . , N}:

(Ã1) There exists a positive constant c̄i such that ai satisfies the growth condition

|ai(x, s)| ≤ c̄i(di(x) + |s|pi(x)−1),

for all x ∈ Ω and s ∈ R, where di ∈ Lp′i(·)(Ω) (with 1/pi(x) + 1/p′i(x) = 1), is a
nonnegative function;

(Ã2) If we denote by Ai : Ω× R → R,

Ai(x, s) =
∫ s

0
ai(x, t)dt,
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then the following inequalities hold:

|s|pi(x) ≤ ai(x, s)s ≤ pi(x) Ai(x, s),

for all x ∈ Ω and s ∈ R;

(Ã3) ai is fulfilling
(ai(x, s)− ai(x, t))(s− t) > 0,

for all x ∈ Ω and s, t ∈ R with s 6= t.

Also, in addition to (F0) and (G0), the Carathéodory functions f : Ω × R → R and
g : ∂Ω× R → R are fulfilling conditions very much alike to conditions (F) and (G):

(F̃) There exist a positive constant k1 and q ∈ L∞+ (Ω) with q+ < p−m, such that

|f(x, s)| ≤ k1

(
1 + |s|q(x)−1

)
,

for all x ∈ Ω and s ∈ R, where

pm(x) = min{p1(x), . . . , pN (x)};

(G̃) There exist a positive constant k2 and r ∈ C(Ω) with r+ < p−m such that

|g(x, s)| ≤ k2

(
1 + |s|r(x)−1

)
,

for all x ∈ ∂Ω and s ∈ R.

Although problem (1.1) is not a particular case of (4.11), it is clear that the two problems
are closely related and in many aspects (4.11) is a generalization of (1.1). Furthermore,
as showed in [3], under the previous conditions, an existence and uniqueness result can
be provided using the same main argument, that is, Theorem 3.1. Therefore a natural
question arises: could we obtain a sequence of weak solutions to (4.11) by applying the
same strategy as in [2]? At least for the time being, we can not give a positive answer to this
question. A major impediment is that we do not know if the functional J : W 1,

→
p (·)(Ω) →

R, J(u) =
∫
Ω

∑N
i=1 Ai (x, ∂xiu) dx is of type (S+). We remind that J is said to be of type

(S+) if any sequence (un)n ⊂ W 1,
→
p (·)(Ω) that is weakly convergent to u ∈ W 1,

→
p (·)(Ω) such

that
lim sup

n→∞
〈J ′

(un), un − u〉 ≤ 0

converges strongly to u in W 1,
→
p (·)(Ω). The arguments used to show that J is of type (S+)

when is defined on W
1,
→
p (·)

0 (Ω) (see [1, Lemma 2]) fail when we replace this space with
W 1,

→
p (·)(Ω). For more details we send the reader to [3, Section 4], where is also debated

the applicability of the mountain pass theorem and of the Ekeland principle to problem
(4.11).
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