
Bulletin of the Transilvania University of Braşov • Vol 6(55), No. 2 - 2013

Series III: Mathematics, Informatics, Physics, 95-106

AN ALGORITHMIC APPROACH OF RETRIAL QUEUING
SYSTEM WITH ONE SERVING STATION

PART I: THE DESCRIPTION OF THE SIMULATION
ALGORITHM

Ion FLOREA1 and Corina-Ştefania NĂNĂU2

Abstract

Many systems of real word are modeled by retrial queuing system. Analyti-
cal formulas for this class of systems are complicated and address only particular
cases.By algorithmic approach one studies through simulation the cases that are
not studied analytically. It is shown that the given algorithm has a polynomial
complexity.

2000 Mathematics Subject Classification: 60K25, 65C20, 68U20
Key words: retrial queuing system, simulation algorithm, polynomial com-

plexity.

1 Introduction

In this paper, we consider a retrial queuing system having only a server. Such a
system consists of a source of customers, a serving space and an orbit. The serving
space contains a server and a queue, with a limited number of places. Arriving
customers in the system require server service. If an arriving client finds the server
come free, he is served immediately. If the server is busy and there are more free
places in the queue, the client is placed in the queue. Otherwise, with a certain
probability the customer leaves the system permanently (without being served) or
he is transferred on the orbit with a complementary probability. Customers that
will return for service, from time to time, are placed in the orbit that is randomly
generated. Such a client can’t see the server state. If the server is free, he will
receive the service. Otherwise it will be reintroduced in the orbit or it will leave the
system. Such an event is called a retrial.

We can also assume that the number of attempts by a client to obtain the server
service can not exceed a maximum value. In some regards, the orbit is like a queue,

1Corresponding author - Transilvania University of Braşov, Romania, Faculty of Mathematics
and Informatics, Department of Computer science, e-mail: ilflorea@gmail.com

2Transilvania University of Braşov, Romania, Department of Computer science, e-mail:
cory2512@yahoo.com



96 Ion Florea and Corina-Ştefania Nănău

in that customer spends time waiting to be served. At the finish of service the client
exits the system (Figure 1).

Figure 1: Retrial queuing system structure

Remarks 1.

i) A customer can’t monitor server orbit; the server may be free and, at the same
time, customers may be in the orbit and they may not require to be served.

ii) There is a delay in time until a customer in orbit realizes that the server is free
and begins the service.

iii) The order serving customers in orbit is random, it depends on the random order
of returning the customers for being served.

iv) It is considered that the orbit is similar to a queue. When times spent in orbit
by customers are null, it means they will return instantly to check server status
and eventually be served. In this case, we say that the orbit behaves like a
queue with random service discipline, each client having the same probability
of being served.

The characteristics of this system which will we be interested to calculate are
values like the mean number of customers in the system, the fraction of the time
that the system’s server is idle, the mean length of time a customer can expect to
spend in the system to receive service, and so on (efficiency factors of the system).

Motivation: In real world there are plenty of systems that can be abstracted
as described above:



An algorithmic approach of retrial queuing system with one serving station 97

i) Telephone systems - a caller to a busy phone will repeat the call with a certain
probability or will give up with a complementary probability. More callers of
the same telephone can find it busy and they can be placed in orbit, planning
to return with a new attempt.

ii) A store with one cash register - a customer who finds the queue at the cash
register is large enough will choose between returning after a random time
(placed in orbit) with a certain probability or will give up shopping and will
leave the store.

iii) An Ethernet network - in the context of the method CSMA/CD, each host on
the network can be considered as a client and the server is the communication
medium. When a host wants to send a message on the communication medium
it can do it only if it is free, otherwise it will return after a random time. More
hosts may be in this situation, all of them being placed in orbit. Thus, we can
say that all hosts (clients) who find communication environment (server) being
busy will be placed in orbit with probability 1, and the probability of leaving
the system is 1 too.

In classical queuing theory, when a client arrives in the system, if the server is idle
it is immediately served or it is queued. When the server becomes free, if the queue
is non-empty, a customer is selected from the queue for being served. Otherwise, the
system become lazy. Otherwise, the server becomes lazy. In these systems, does not
occur customer return. In [5] we show a simulation algorithm for a waiting system
without customer return. Also, a return system extends a classical one, which will
be explained later in this article.

Except for a few simple models (see [1], [2], [6], [7]), retrial queues are generally
difficult to analyze analytically. In this paper we will present a simulation algorithm
for the waiting system with client return described before. Simulation study has the
advantage that does not impose restrictions on some random descriptive variables
of the system; so we can study for those systems without analytical formulas for
efficiency factors.

2 The model entities and the simulation mechanism

Simulation of the arrivals means that customers who arrive in the system are
divided into three categories:

i) customers arriving when the server is free or busy, but there is a vacancy in the
queue;

ii) customers arriving when the server is busy, the queue is full and they want to
come back for being served (they are placed in orbit);

iii) customers arriving when the server is busy, the queue is full and they will not
return to be served (they leave the system).



98 Ion Florea and Corina-Ştefania Nănău

For all customers, it generates time value between two consecutive arrivals, de-
noted by IntArriv. It also generates service time denoted by Stime for the clients in
categories i) and ii).

The global variable contains the event time of the next arrival. Initially, is set
to 0 and after any generation the value is added to it.

Customers who arrive in the system and find the server busy and full queue can
be divided into two categories. We note with 1the event of remaining in the system
of the client and his placement on the orbit (with probability p) and with 2, the
outputs of the system event(with probability 1-p).

The category corresponding to a newly arrived client of this type is thus a random
Bernoulli variable:

B:

(
1 2
p 1− p

)
For customers who remain in the system and are placed in the orbit, the time

after which they return to be served, denoted by IntRet and the maximum return,
denoted by NoRet, are generated too.

IntArriv, Stime and IntRet are selection values of given random variables that
could be generated using the computer and NoRet is a random number less than or
equal to a given number, NoMaxRet .

Ctime represents the event time for ending a client service, that means server
clock. If the server is free and there are no clients to be served, then Ctime = ∞.

Tsc variable contains the serving time for the current client.
Queue entity is characterized by:

• nc variable indicating the number of customers queued at any given time; it
can not exceed a given maximum value.

• Ts vector containing serving times values for customers in the queue.

The queue is organized on the FIFO principle, that means TS(1) coresponds to
the first element, and so on, Ts(nc) coresponds to the last element.

Orbit entity is characterized by:

• no variable indicating number of customers in the orbit at any given time;

• To vector; one element To(i) (i=1,..,no) coresponds to the i client in the orbit
and it is composed by three fields: number of remaining returns, time value
for the next return and the client service time.

If we denote To(i) = (To(i).Rev Ram, To(i).T ime Rev, To(i).T ime Serv), then
To(i).T ime Rev < To(i+ 1).T ime Rev, (i = 1, .., no− 1), that means the clients in
the orbit are sorted by the time value for the next return.

The algorithm which we present is based on the ’next event’ rule or ’minimum
time’ rule. There are three possible types of events:

• a system arrival, if min{Atime,Ctime, To(1).T ime Rev} = Atime;



An algorithmic approach of retrial queuing system with one serving station 99

• a service finishing, if min{Atime,Ctime, To(1).T ime Rev} = Ctime

• a return of the first client in the orbit, if min{Atime,Ctime, To(1).T ime Rev}
= To(1).T ime Rev

If at some point one of the three variables will contain the time value for the
next event in the system, the Ltime variable will contain the time value for the last
event in the system. Processing of an arrival consists of:

• if the station is lazy, then the client is served immediately and the total laziness
time, denoted by Tlen is updated;

• if the station is busy when the client arrives and the queue is not full, then the
client is added to the queue and the total waiting time in the queue (denoted
by Twq) is updated. The nc variable is incremented and Ts(nc) will receive
the Stime value (generated service time);

• if the station is busy when the client arrives and the queue is full, then the
client is placed in the orbit (a new node will be inserted in the list); total
waiting time in the queue is updated;

• for remaining customers that are placed in orbit, besides serving time (Stime),
two other variables are generated: the time after which they return to be
served, denoted by IntRet and maximum number of returns, denoted by NoRet.

Finishing a client service consists of:

• total waiting time in the queue, total working time (Tserv) and number of
served clients (Tnrserv) are updated;

• if the queue is not empty, then a new client is served and the queue length is
decremented. Otherwise, the station becomes lazy, that Ctime = ∞;

Returning of the first client in the orbit consists of:

• if the station is lazy (Ctime = ∞), he will be served. The number of the
clients in the orbit (Tnrorb), the total time spent in the orbit by the clients
(Torb), the station laziness time will be updated and the current client will be
removed from the orbit;

• if the station is busy and the queue is not full, then the client is inserted in the
waiting queue (nc will be incremented and Ts(nc) will get To(1).T ime Serv
value); The number of the clients in the orbit, the total time spent in the orbit
by the clients, the total waiting time in the queue is updated and the current
client will be removed from the orbit.

• if the station is busy and the queue is full, then To(1).Rev Ram value is
decremented; if this value becomes 0, the client is removed from the system
and the total waiting time in the orbit and the number of clients in the orbit
are updated; otherwise another return time will be generated and the client
will be put again in the orbit.



100 Ion Florea and Corina-Ştefania Nănău

Remarks 2.

i) The simulation runs until the number of arrivals generated reaches a given value,
denoted by Tnra.

ii) If we define processes like arrivals, services or returns of the clients like cycle,
all the simulation consists of repeating these cycles.

iii) If we assume that the inflow is less than the serving flow, the serving number
will not exceed the value of Tnra. Also, if the number of simulated arrivals
has a large enough value, then almost all customers will be served. In this
way, the customers that are served immediately upon arrival are also taken into
consideration. So we can say that the number of cycles of simulation does not
exceed 3*Tnra.

At the end of the simulation we determine the effective factors of the system:

• MTwq represents the average waiting time in the queue of customers: MTwq
=Twq/Tnrserv (Remarks 2);

• MTOrb represents the average waiting time in the orbit of customers: MTOrb
=Torb/Tnrorb (Remarks 2);

• Mts represents the average serving time of a customer - Mts=Tserv/Tnrserv ;

• Clen represents the workstation laziness factor: Clen=Tlen/Ltime;

• Mqueue is the average length of the queue: Mqueue=Twq/Ltime.

3 The algorithm’s description

The following procedure describes in pseudo-code the main part of the simulation
algorithm. The fine-grain actions are grouped as procedures called from the main
procedure.

1: procedure RetrQueuingSiytOneStat(Tnra)
2: Read(); //generated parameters for the interval between two consecutive

arrivals, for service time, for time to spend in the orbit and the probability to
enter in the orbit

3: //Initial state
4: nc← 0; //there is no client in the queue
5: Ltime← 0; //time value for the last event is 0
6: Ctime←∞; //the server is free
7: Tnrserv ← 0; //total number of services is 0
8: Tnrorb← 0; //number of clients in the orbit is 0
9: Torb← 0; //total time spent in orbit by clients is 0

10: Tserv ← 0; //total service time for the clients is 0
11: T len← 0; //total server laziness time is 0



An algorithmic approach of retrial queuing system with one serving station 101

12: Twq ← 0; //total waiting time in the queue for the clients is 0
13: no← 0; //number of clients in the orbit is 0
14: To(1).T ime Rev ←∞; //time for the first client return is ∞
15: //first arrival is generated
16: Gen(IntArriv, Stime); Atime:=IntArriv; Nra:=1;
17: //simulation lasts while number of arrivals not exceed a given value
18: while Nra <=Tnra do (1)
19: if min{Atime,Ctime, To(1).T ime Rev} = Atime then (2)
20: Update Arriv();
21: //next event is an arrival
22: else(2)
23: if min{Atime,Ctime, To(1).T ime Rev} = Ctime then (3)
24: //next event represents the end of a service
25: Update F in Serv();
26: //next event is a return
27: else(3)
28: Update Retrial();
29: end if ; (3)
30: end if ; (2)
31: end while(1)
32: //Calculation of efficiency
33: MTwq ← Twq/Tnrserv; //average waiting time in the queue
34: MTOrb← Torb/Tnrorb; //average waiting time in the orbit
35: Mts← Tserv/Tnrserv; //average serving time
36: Clen← T len/Ltime; //workstation laziness factor
37: Mqueue← Twq/Ltime; //the average length of the queue
38: Write(MTwq,MTOrb,Mts, Clen,Mqueue);
39: end procedure

The Update Arriv procedure below simulates new arrival in the system. Three
possible cases are dealt with:

• the server is free (Ctime = ∞) and the client is served immediately;

• the server is busy and the queue isn’t full and the client is inserted in the
queue;

• the server is busy and the queue is full; if the generated value of B variable is
1, then the client is inserted into the orbit, otherwise he leaves the system.

1: procedure Update Arriv
2: if Ctime =∞ then (1)
3: //total workstation laziness time is updated
4: T len← T len+Atime− Ltime;
5: Tsc← Stime; //the client is served immediately
6: Ctime← Atime+ Stime; //finishing service time is updated
7: //the server is serving a client



102 Ion Florea and Corina-Ştefania Nănău

8: else (1)
9: Tw ← Tw + nc ∗ (Atime− Ltime); //update waiting time in the queue

10: if nc <d then (2)
11: //there are free places in the queue
12: nc++; Ts(nc)← Stime;
13: //the client is introduced in the queue
14: else (2)
15: //overall resting time in orbit is update
16: if no > 0 then (3)
17: Torb← Torb+ nc ∗ (Atime− Ltime); (3)
18: end if ; (3)
19: //it generates a selection value of variable B
20: if Gen(B) = 1 then (4)
21: //the client is inserted into the orbit
22: Gen(IntRet); Gen(NoRet); i← 1;
23: while IntRet >To(i).Time Rev do (5)
24: i++;
25: end while; (5)
26: no++;
27: //insertion into the orbit
28: for k=no,i downto do (6)
29: To(k + 1).T ime Rev ← To(k).T ime Rev;
30: To(k + 1).T ime Serv ← To(k + 1).T ime Serv;
31: To(k + 1).Rev Ram← To(k).Rev Ram;
32: end for; (6)
33: To(i).Rev Ram← NoRet;
34: To(i).T ime Rev ← IntRet;
35: To(i).T ime Serv ← Stime;
36: end if ; (4)
37: end if ; (2)
38: end if ; (1)
39: Ltime← Atime; //the time for the last event is updating
40: Gen(IntArriv, Stime); //a new arrival is generating
41: Atime← IntArriv; Nra← Nra+ 1;
42: end procedure

The following procedure may serve the finishing of a service; there are two pos-
sible situations: when the queue is non-empty and the first customer in the queue
will be served or the queue is empty and the server enters laziness.

1: procedure Update Fin Serv
2: Tserv ← Tserv + Tsc; //update total working time
3: Tnrserv++; //update total number of services
4: Torb← Torb+no ∗ (Ctime−Ltime); //update overall resting time in orbit
5: Tw ← Tw + nc ∗ (Ctime− Ltime); //update overall waiting time in queue
6: Ltime← Ctime; //update time for the last event



An algorithmic approach of retrial queuing system with one serving station 103

7: if nc > 1 then (1)
8: //there are clients in the queue
9: Tsc←Ts(1); //first client in the queue will be served

10: Ctime← Ctime+Ts(1); //update the time for finishing the service
11: for i=1,nc-1 do (2)
12: //the client is removed from the queue
13: Ts(i)←Ts(i+1);
14: end for; (2)
15: nc- -;
16: else(1)
17: Ctime←∞;
18: end if ; (1)
19: end procedure

The following procedure processes the return of the first customer in the orbit to
be served. If he finds the server free, then he will be served. In other situations, if the
initial return number is not exceeded, then another return time will be generated.
Otherwise, the client leaves the system without being served.

1: procedure Update Retrial
2: //update overall resting time in orbit for the clients
3: Torb← Torb+ no ∗ (To(1).Time Rev-Ltime);
4: if Ctime =∞ then (1)
5: //update total laziness time for the station
6: T len← T len+To(1).Time Rev-Ltime; //update time for the last event
7: Ltime←To(1).Time Rev; //first client in orbit will be served
8: Ctime← To(1).T ime Rev + To(1).T ime Serv;
9: Tsc← To(1).T ime Serv;

10: //the client is removed from the orbit
11: for k=1,no do (2)
12: To(k).T ime Rev ← To(k + 1).T ime Rev;
13: To(k).T ime Serv ← To(k + 1).T ime Serv;
14: To(k).Rev Ram← To(k + 1).Rev Ram;
15: end for(2)
16: no–; Tnrorb++;
17: else(1)
18: //update overall resting time in queue for the clients
19: Tw ← Tw + nc ∗ (To(1).Time Rev−Ltime);
20: To(1).Rev Ram−−; //decrement of returns number
21: if To(1).Rev Ram > 0 then (3)
22: //it generates a new time for return
23: To(1).T ime Rev ← Gen(IntRet);
24: //orbit reordering
25: i← 2;
26: while To(1).T ime Rev > To(i).T ime Rev do (4)
27: i++;



104 Ion Florea and Corina-Ştefania Nănău

28: end while; (4)
29: x← To(1).T ime Rev;
30: y ← To(1).T ime Serv;
31: z ← To(1).Rev Ram;
32: To(1).T ime Rev ← To(i).T ime Rev;
33: To(1).T ime Serv ← To(i).T ime Serv;
34: To(1).Rev Ram← To(i).Rev Ram;
35: To(i).T ime Rev ← x;
36: To(i).T ime Serv ← y;
37: To(i).Rev Ram← z;
38: else(3)
39: //the client quits the service and it is removed from the orbit
40: for k=1,no do (5)
41: To(k).T ime Rev ← To(k + 1).T ime Rev;
42: To(k).T ime Serv ← To(k + 1).T ime Serv;
43: To(k).Rev Ram← To(k + 1).Rev Ram;
44: end for; (5)
45: no–;
46: end if ; (3)
47: end if ; (1)
48: end procedure

4 The study of the complexity of the algorithm

The complexity of this simulation algorithm is calculated for each procedure
separately. The procedure RetrQueuingSiytOneStat(Tnra) calls the following other
procedures:

• Read is the procedure that treats the reading of the values for the interval
between two consecutive arrivals, the serving time, the time to spend in the
orbit for the clients, with their probability of being introduced in the orbit.

• The procedure generically named Gen handles the generation of random val-
ues that has been presented; they are generated like selection values for any
random variables. Regardless of the random variable chosen, the generation
algorithm has a polynomial complexity, that does not depend on Tnra (the
total number of clients arrival in the system). In this case we assume that the
complexity is O(1) [4].

• Update Arriv is the procedure that simulates a new arrival in the system,
treating the three possible cases.

• Update F in Serv is the procedure that simulates the finish of a service.

• Update F in Serv is the procedure that processes the return from orbit of the
first customer to be served.



An algorithmic approach of retrial queuing system with one serving station 105

• Write is the procedure that displays the efficiency of the system.

Read and Write procedures are executed only once and we can assume that they
have the complexity O(1) [3].

Update Arriv procedure contains four calls for Gen procedure that has com-
plexity O(1). It also contains a while loop with which the first client in the system
that must return to be served is selected; for this client IntRet ≤ To(i).T ime Rev.
This while will not cycle more times than the number of the clients in the orbit at
that time. The procedure also contains a for cycle dealing with clients insertion in
the orbit. We can conclude that Update Arriv procedure has complexity O(no) [3].
How the maximum number of returns of a client is NoRet (the given constant) and
the maximum number of clients in the orbit can’t exceed Tnra, it results that the
complexity is O(NoRet*Tnra).

Update F in Serv procedure updates the values at the end of serving a client.
With a for instruction it removes the served client from the waiting queue by shifting
to the left the other clients in the queue. This operation will not run more times
than the number nc (the given constant). In this way we deduce the value O(nc) for
Update F in Serv procedure complexity [3]. How the maximum number of returns
of a client is NoRet (the given constant) and the maximum number of clients in the
orbit can’t exceed Tnra, it results that the complexity is O(NoRet*Tnra).

Update Retrial procedure brings out the client from the orbit by moving to the
left the other clients. After this operation a new return time is generated and the
orbit is reordered. The operation requires a maximum number of repetitions equal
with the size of the orbit. The case when the client quits the service, leaving the
orbit is also treated. Thus, the complexity in this case is O(no).

Complexity of the procedure RetrQueuingSiytOneStat(Tnra) is determined by
the complexity of procedures called inside it that will run as long as it does not
exceed the number of arrivals denoted by Tnra. Thus, we have the complexity of
O(Tnra)+O(max(nc,NoRet) *Tnra).

5 Algorithm’s implementation

The algorithm presented has been implemented using the Java object-oriented
language facilities. In a future article we will present details of the implementation,
case studies and validate the simulator. We consider that:

• system’s input stream is 1 and the output stream is 2;

• distribution of time between two consecutive arrivals respectively serving time
is an exponential variable with parameter λ=1 respectively µ=2;

• the queue length is large enough (any arrived client enters the queue if the
server is busy)

• random variable B described above is B:

(
1 2
0 1

)
, which means that the prob-

ability that a customer entering the system for being placed in the orbit when



106 Ion Florea and Corina-Ştefania Nănău

the server is busy is 0.

This model is equivalent to a model without calling customer return exp(λ)/exp(µ)/
1:(∞,FIFO). This model is studied by simulation in [5]. The results obtained by

the simulator execution model presented in the article are: Average waiting time in
the queue = 0.99388, Average length of the queue = 0.49857, Average serving time
= 0.99103 and Traffic intensity = 0.49778. They are approximately equal to those
obtained for the simulated system in [5].

6 Conclusions

In this article we present a simulation algorithm for queuing systems with a
single service station and returning customer service. This class of waiting systems
models many real-world systems, presented in the introduction.

Also, these systems are analytically studied only for some distributions of the
time between two consecutive arrivals of the service time and the return time to get
service for service station. In many analytical studies, mathematical formulas are
complicated and difficult to use in practice. For these reasons, such a simulation al-
gorithm is booth needed and useful. Also, the system studied by simulation extends
the analytic system by introducing a queue at the service station and considering
that each client placed in orbit can have a number of randomly generated returns.

References

[1] Artalejo, J.R. a.o., Retrial queuing systems: A computational approach,
Springer, 2008.

[2] Artalejo, J.R. a.o., Standard and retrial queuing systems: A comparative anal-
ysis, Matematica Complutense 15 (2002), no. 1, 101-129.

[3] Cormen, T. H. a.o., Introduction to algorithms, MIT Press, Cambridge, 1992.

[4] Devroye, L., Non-uniforme random variate generation, Springer Verlag, New
York, 1986.

[5] Florea, I., One algorithmic approach of first-come-first-served queuing systems,
Bucharest University Annals, Informatics, 49 (2000), 41-58, .

[6] Gross, D. a.o., Fundamentals of queuing theory, fourth edition, John Wiley &
Sons, 2008.

[7] Krishna, K. B. a.o., The M/G/1 retrial queue with Bernoulli schedules and
general retrial times, Computers and Mathematics with Applications 43 (2002),
15-30.


