
Bulletin of the Transilvania University of Braşov • Vol 6(55), No. 2 - 2013

Series III: Mathematics, Informatics, Physics, 61-72

UPON THE PERFORMANCE OF A HASKELL PARALLEL
IMPLEMENTATION

Alexandra BĂICOIANU1, Raluca PÂNDARU2

and Anca VASILESCU 3

Abstract

The Haskell developers focus on providing an open range of packages and
libraries in various research areas. Particularly, image processing is naturally
expressed in terms of parallel array operations and we use here Repa as a great
tool for coding image manipulation algorithms.

Our target is to analyze the execution time of a Haskell parallel implemen-
tation and also to compare the results to the appropriate C++ implementation.
A certain example from the image processing area of interests is selected. The
conclusion is that the compared execution time values depend both on the
physic and the logic parameters of the applied solutions.

2000 Mathematics Subject Classification: 68N18, 68U10, 68U99, 65Y05.
Key words: parallel programming, Haskell, Repa, C++, image processing,

edge detection.

1 Introduction

Nowadays, Haskell is accepted to be an advanced purely-functional program-
ming language. As an open-source product of more than twenty years of cutting-
edge research, it allows rapid development of robust, concise, correct software. With
strong support for integration with other languages, built-in concurrency and paral-
lelism, debuggers, profilers, rich libraries and an active community, Haskell makes
it easier to produce flexible, maintainable, high-quality software. [1]

Our results are based on analyzing the execution time of a Haskell parallel
implementation and also on comparing the results to the appropriate C++ imple-
mentation. The example has been chosen from image processing area of interests

1Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Romania,
e-mail: a.baicoianu@unitbv.ro

2Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Romania,
e-mail: raluca pandaru@yahoo.com

3Corresponding author - Faculty of Mathematics and Computer Science, Transilvania University
of Braşov, Romania, e-mail: vasilex@unitbv.ro

62 Alexandra Băicoianu, Raluca Pândaru and Anca Vasilescu

and the purpose is to detect the edges on a given image. The basic scenario is
following the next steps: the first step transforms the color image into a gray-scale
one, the second step applies a Gaussian filter on the image and after that, the final
step uses the Sobel operator for the edge detection. This solution is appropriate for
analyzing how Haskell language works in this context. The comparison to the C++
similar results is useful, taking into consideration that C++ is considered as being
one of the best languages for image processing.

Following the Haskell support, Repa is a great tool for coding image manipu-
lation algorithms, which tend to be naturally parallel and to allow a big amount of
data. In [1] one may find as example a program for rotating an image around its
center by a specified number of degrees. In this paper, we use the Repa library for
developing a program for edge detection using the Sobel operator. The [4] refers the
authors’ contributions to the Repa extensions for achieving the performance com-
parable to the standard OpenCV library, providing modern parallel implementations
for a set of image processing algorithms.

In our work, it is an advantage to adopt one of the Haskell valuable conventions,
namely working with curried functions, the function type is assumed to associate
to the right. On the other hand, we note that in the current step of an expres-
sion evaluation, the reductions may be performed simultaneously on many parts of
that expression. It yields that a function evaluation might be done using many col-
laborative processes, by involving parallel and concurrent processes. This solution
leads to consider the functional programming languages, in general, and particularly
the Haskell language as a pure functional programming language appropriate for
dual-core or even quad-core processing models and architectures.

An important contribution of the authors in this paper consists in obtaining
a parallel Haskell implementation of an edge detection algorithm based on the
Sobel operator, beyond the existing Repa examples. The original part comes from
the solution proposed for measuring the running time performances on the specified
Haskell codes. As an overall conclusion, we may say that Haskell is an appropriate
alternative for developing the image processing algorithms, especially if we could
have support for applying a 7x7 or even bigger masks for corresponding Gaussian
filters.

2 Theoretical aspects

This section provides an overview of some aspects which are relevant for under-
standing the main issues of the paper: the edge detection algorithm and the parallel
approach for software development.

2.1 Edge detection

In this section, the main ideas that underlie the specific image transformations
are presented, following the three steps: (1) image transformation from a color image
into a grayscale one, (2) applying a Gaussian filter and finally (3) applying the Sobel
operator for completing the edge detection solution.

Upon the performance of a Haskell parallel implementation 63

A picture is represented like a 2D quadratic matrix of pixels. For a color image
coding, every pixel has a color. Computers use 3 different colors, namely red, green
and blue and each pixel color means a specific combination of these three basic
colors. An integer value between 0 and 255 is used for representing how strong
the corresponding color is in the composition. Usually, in image processing the
gray-scale representation is used. So, those 3 color-values associated for a pixel are
replaced with a gray tone. To calculate this gray tone, a specific average is used,
following the formula (1).

pixel(R,G,B) ∈ color image
pixel(V) ∈ grayscale image

∣∣∣∣⇒
 V = R+G+B

3
or
V = 0.3R + 0.59G + 0.11B

(1)

After we have applied this transformation to all of the involved pixels, we have the
picture represented as a surface with many landforms (e.g. plans, hills, mountains),
where a landform height is depending on the pixel’s values considered in the area of
that form.

For the second step, we mention that in the image processing context, filters are
mainly used to suppress either the high frequencies in the image, i.e. smoothing the
image, or the low frequencies, i.e. enhancing or detecting edges in the image. The
filter is described by an n × m discrete convolution mask - an array or a matrix
with constant values. In particular, the Gaussian filter is a widely-used effect in
image processing, typically to reduce image noise or unwanted details. The visual
effect of this blurring technique is a smooth blur, resembling it by viewing the image
through a translucent screen or producing it by the shadow of an object under less
illumination. The Gaussian filter is a low-pass filter, attenuating high frequency
signals.

In order to detect the image edges in step 3, we also have to set exactly what
an edge is, in terms of image processing. Intuitively, we can make a distinction
between an object and another because there is a big enough contrast, meaning a
color/tone difference, between them. As the contrast is lower, it is more difficult to
distinguish objects from each other. In a specific context, an edge can be seen as a
sufficiently large difference between two specific values of neighboring pixels. From
the mathematical point of view, these differences can be evaluated using the partial
derivative (note that the function has two variables). Geometrically speaking, this
partial derivative defines the slope of the tangent to the graphic in that point. The
bigger the difference, the larger the slope of the tangent is.

Following the ideas from [9], ”A number of edge detectors based on a single
derivative have been developed by various researchers. Amongst them, the most im-
portant operators are the Robert operator, Sobel operator, Prewitt operator, Canny
operator, Krisch operator, etc. In each of these operator-based edge detection strate-
gies, we compute the gradient magnitude in accordance with a specific formula. If
the magnitude of the gradient is higher than a threshold, then we detect the presence
of an edge.”

64 Alexandra Băicoianu, Raluca Pândaru and Anca Vasilescu

2.2 Parallel programming

Parallel programming refers the technique which allows software applications to
use the hardware resources to the fullest. We mean that if a PC has two cores, then
certain code fragments will be executed by one of the cores and others by the other
core, thus they are being executed at the same time. This way, the execution time
is reduced, ideally to half, comparing to the situation of the whole code executed
on one core. As it can be inferred, unexpected results may occur if the code is not
written properly. This is, in fact, the challenge which faces the compilers and the
libraries which support parallel programming.

A parallel program is one that uses a multiplicity of computational hardware
(e.g., several processor cores) to perform a computation more quickly. The aim is
to arrive at the answer earlier, by delegating different parts of the computation to
different processors that execute at the same time. For parallel programming, we
would like to use deterministic programming models if at all possible. Since the
goal is just to arrive at the answer more quickly, we may count on the modern
processors architecture based on implementing the deterministic parallelism in the
form of pipelining and multiple execution units. [1]

2.2.1 Haskell support

An important support for Haskell developers is provided by the GHC (Glasgow

Haskell Compiler) which implements the major Haskell extensions in order to facil-
itate concurrent and parallel programming. Parallelism means running a Haskell

program on multiple processors, with the goal of improving performance. Ideally,
this should be done invisibly, and with no semantic changes. Concurrency means
implementing a program by using multiple I/O-performing threads. While a con-
current Haskell program can run on a parallel machine, the primary goal of using
concurrency is not to gain performance, but that is the simplest and most direct way
to write the program. Since the threads perform I/O, the semantics of the program
is necessarily non-deterministic. GHC supports both concurrency and parallelism.
[13]

In [1] at least two methods for parallel programming in Haskell there are spec-
ified:

• The Eval Monad, for basic operations;
• The Par Monad, to ensure the parallelism of the data flow.

Besides these methods, we can also use the Repa library and a set of specific
packages with prefix-name Repa (REgular PArallel arrays), for example [14]:

• Repa for working with multidimensional vectors that supports parallel execu-
tion
• Repa-io for reading and writing vectors in different formats, including BMP

• Repa-algorithms proposing several algorithms for the Repa package, which
can be reused also in other contexts

Following the [1], Repa library provides a rich set of combinators for building
parallel array computations. You can express a complex array algorithm as the

Upon the performance of a Haskell parallel implementation 65

composition of several simpler operations, and the library automatically optimizes
the composition into a single-pass algorithm using a technique called fusion. Fur-
thermore, the implementation of the library automatically parallelizes the operation
using the available processors.

Repa is also used to implement the DPH (Data Parallel Haskell) [12] library, another
option for parallel programming, which was added in GHC 7.4. Both libraries, Repa
and DPH can be used for parallel execution, but only on multiple cores architectures,
since distributed and parallel executions are not yet supported by the compiler. The
difference between the previous libraries is that Repa is used for working with regular
data structures, while DPH works with irregular data structures.

Just because Repa allows to write and read data in BMP format using the Repa-io
package, this library represents an appropriate choice for solving the parallel pro-
posed issues. The library also provides another package called Repa-devil for
reading and writing the images in different formats. In order to use this package,
the DevIL library is required to be installed. This is a library written in C++, suitable
for reading and writing files. The package Repa-devil is just a wrapper over it,
allowing the GHC compiler to communicate with the code written in C++. Hence, we
can work without this last package, because Repa can read and write images in BMP

format, avoiding the link with another external library. It is true that this decision
limits the work with images, but even in the case of those images in BMP format, it
is required that these should be the 24-bits Bitmap images. This shortcoming can
be easily overcome, because image-tools allow the conversion to BMP format.

In order to run in parallel a program which is developed with Repa, it is necessary
to specify the following arguments: +RTS -N<nr_core-uri> or +RTS -N. In the
second case, the GHC compiler has to determine by itself how many cores exist on
the local machine. If you specify more or fewer cores, you may notice a significant
increase in execution time.

For obtaining a good performance, it is not enough to indicate just that the
execution is done on many cores. It is also necessary to make some optimizations.
For example, when you compile the code to a standalone executable, you must
add a parameter that will indicate what level of optimization the compiler will
apply. Such a command would be: ghc -O2 <fisier.hs> -threaded. Leaving
the parameter -O2 out will greatly reduce compilation time because the compiler
will not do any optimization. In addition to this, regarding the code, functions that
work with vector types from the Repa library, have to be marked as inline, using
{-# INLINE <nume_functie> -#}.

3 Developed applications

In this section we present the Haskell application previously described and we
explain how we have applied the previous three steps from section 2.1 for developing
this implementation.

In order to use the Repa library, the packages introduced in section 2.2.1 must be
installed. For Haskell 2012.4.0.0 platform which uses GHC 7.4, this installation

66 Alexandra Băicoianu, Raluca Pândaru and Anca Vasilescu

is done using the generic command cabal install, like that:

cabal install repa-3.2.1.1
cabal install bmp-1.2.1.1
cabal install repa-io-3.2.1.1
cabal install repa-algorithms-3.2.1.1

As you may see, the version of each package installed has to be explicitly specified.
This is important because the cabal command always installs the newest version,
if none is specified. The actual version of the compiler is GHC 7.6, while the last
Haskell platform uses GHC 7.4 and the newest versions of the Repa packages are
using GHC 7.6. So, by installing the last versions, conflicts may appear between
platform packages and the ones that Repa library needs.

The second command from the ones above, installs the bmp package to avoid
the use of another version chosen by cabal. For selecting a compatible version
with the Haskell platform, one may follow the specifications from [14] for the given
packages Repa, Repa-io and Repa-algorithms. For running the compiled version
of the program the Repa library is not needed.

Next we will present some bits of code used to implement the steps from section
2.1.

3.1 Step 1. Image Transformation: color to grayscale

For converting a 24-bits Bitmap image into a single channel image, the following
operations have to be done:

• adding references:

import Data.Array.Repa.IO.BMP
import Data.Array.Repa as R
import GHC.Word as W

• defining two types of synonym data:

type ImageC3 = Array U DIM2 (W.Word8, W.Word8, W.Word8)
type ImageC1 = Array U DIM2 Float

The first synonym type ImageC3 is defined for an RGB image with 3 channels
and the second one, ImageC1, is for a single-channel image. Following the Repa
content, an array definition has the syntax: Array r DIM<dimension_nr>,
where r represents the vector type and a specifies the element type. In this
paper only the vector types U - unboxed and D - delay are used, but these are
not the only two available types in Haskell [1]. In the previous definitions U
comes from an unboxed array. The Haskell unboxed arrays are very similar
with the ones from C++, because their indexing is done very fast, without using
multiple redirects. Besides, they are parsed at declaration stage, so that they
do not benefit from the lazy evaluation advantages from Haskell [12]. The
parameter DIM2 specifies that the vector will have two dimensions, so that the
image can be seen in 2D.

Upon the performance of a Haskell parallel implementation 67

• reading the image in the main method, using readImageFromBMP; depending
on the returned result, the program will continue or not. In order to get the
image path, the function readImagePath is used.

main :: IO
main = do

inImagePath <- readImagePath "Path of inImage: "
result <- readImageFromBMP inImagePath
case result of

Left bmpError -> putStrLn (show bmpError)
Right inImage -> run inImage

• If the image has successfully read, then the function run is called with an
image-type ImageC3 as parameter. Its role is to collect all the needed param-
eters: final image path, Gaussian filter size and the parameter for the Sobel
operator. After that, the conversion from ImageC3 to ImageC1 will be done by
applying the function toImageC3 and the edge detection algorithm is called.

run :: ImageC3 -> IO ()
run inImage = do

outPath <- readImagePath "Path of outImage: "
sobelThreshold <- readFloatValue "Sobel threshold([0, 1)):"
gaussianKernelSize <- readGaussianKernelSize
putStrLn "Converting image to gray scale..."
imageC1 <- toImageC1 inImage
putStrLn "Performing edge detection algorithm..."
(resultImageC1, elapedTime) <-

time (applyEdgeDetection imageC1
gaussianKernelSize sobelThreshold)

...

Note that we are starting now the execution-time evaluation using the function
time. For this, a new reference is needed, as follows:

import Data.Array.Repa.IO.Timing

Function toImageC1 is described below. It is an inline function and it uses
computeP and R.map for working in parallel. Function floatLuminanceOfRGB8
is defined in the Data.Array.Repa.IO.BMP and it has to convert the elements
from the tuple-type (W.Word8 W.Word8 W.Word8) into Float, corresponding
to the transformation of the color image into a gray scale image.

toImageC1 :: ImageC3 -> IO ImageC1
{-# INLINE toImageC1 #-}
toImageC1 imageC3=computeP (R.map floatLuminanceOfRGB8 imageC3)

3.2 Step 2. Applying a Gaussian filter

Next step consists in applying the Gaussian filter. This is done in the function
named applyEdgeDetection and listed below.

As you may see, the function applyEdgeDetection receives the image and the
size of the Gaussian filter as parameters. Its role is to assure that the mask with the
indicated size is going to be applied. Note that only 3 dimensions can be specified
for the gaussianKernelSize following the definitions established by the module

68 Alexandra Băicoianu, Raluca Pândaru and Anca Vasilescu

Data.Array.Repa.Stencil.Dim2. Important and useful details about the Haskell
implementations of specific image processing concepts are presented in [4], [7].

applyEdgeDetection :: ImageC1 -> Int -> Float -> IO DelayedImageC1
applyEdgeDetection imageC1 gaussianKernelSize sobelThreshold = do

applyGaussianFilter imageC1 gaussianKernelSize
>>= applySobel sobelThreshold
>>= return

applyGaussianFilter :: ImageC1 -> Int -> IO ImageC1
applyGaussianFilter imageC1 gaussianKernelSize =

case gaussianKernelSize of
3 -> applyGaussianFilter3 imageC1
5 -> applyGaussianFilter5 imageC1
7 -> applyGaussianFilter7 imageC1

The algorithm for apllying a mask on an image is implemented as above and this
requires new references, such as:

import Data.Array.Repa.Stencil as A
import Data.Array.Repa.Stencil.Dim2 as A

All of the three functions called by applyGaussianFilter are almost the same,
the only difference being given by the form of the mask. So, we present here only
one of them:

applyGaussianFilter3 :: ImageC1 -> IO ImageC1
{-# INLINE applyGaussianFilter3 #-}
applyGaussianFilter3 image = computeP (

R.map (/ 15) (forStencil2 BoundClamp image
[stencil2| 1 2 1

2 3 2
1 2 1 |]))

Function forStencil2 applies the mask on the image received as the second
parameter. The first parameter specifies the strategy used for those pixels the mask
cannot be applied on (the pixels from the image edge). In this case, the BoundClamp
value specifies that the edge pixels will be replaced by the specific value calculated
using the existing pixels’ neighbors. Then, the last parameter specifies in a list the
form and the coefficients of the mask. These coefficients are not normalized, so it
follows that the function R.smap will divide each pixel value by 15.

In order to have an appropriate mask definition two arguments have to be speci-
fied to the compiler. These might be included into the top of the source code, or they
might be sent through a command line. We chose the first solution by introducing
the next line into the Haskell code:

{-# LANGUAGE TemplateHaskell, QuasiQuotes #-}

Upon the performance of a Haskell parallel implementation 69

3.3 Step 3. Applying the Sobel Operator

Following the function applyEdgeDetection definition, the Gaussian filter image-
result is passed as parameter to the function applySobel. This is responsible for
the application of the Sobel operator. The code is listed below.

type DelayedImageC1 = Array D DIM2 Float

computeMagnitude :: Float -> Float -> Float
{-# INLINE computeMagnitude #-}
computeMagnitude dx dy = sqrt(dx * dx + dy * dy)

computeDyImage :: ImageC1 -> IO ImageC1
{-# INLINE computeDyImage #-}
computeDyImage image = computeP (

forStencil2 (BoundConst 0) image
[stencil2| -1 0 1

-2 0 2
-1 0 1 |])

computeDxImage :: ImageC1 -> IO ImageC1
{-# INLINE computeDxImage #-}
computeDxImage image = computeP (

forStencil2 (BoundConst 0) image
[stencil2| -1 -2 -1

0 0 0
1 2 1 |])

computeMagnitudeImage :: ImageC1->ImageC1->Float->DelayedImageC1
{-# INLINE computeMagnitudeImage #-}
computeMagnitudeImage dxImage dyImage threshold =

R.map (\ magnitude -> if magnitude < threshold then 0 :: Float
else if magnitude > 1 :: Float then 1 :: Float

else magnitude)
(R.zipWith computeMagnitude dxImage dyImage)

applySobel :: Float -> ImageC1 -> IO DelayedImageC1
applySobel threshold image = do

dxImage <- computeDxImage image
dyImage <- computeDyImage image
return (computeMagnitudeImage dxImage dyImage threshold)

In this code we note that the function applySobel returned type is
IODelayedImageC1 because the functions R.map and R.ziptWith return type D

vectors as Delay arrays. These arrays are considered similar with functions because
they determine the value of the elements only by request.

In the previous examples, each time the function R.map is applied, the function
computeP is called, too. Now, it is not necessary to do the same because the function
converting the image from DelayedImageC1 in ImageC3 will be called instead. For
this, it needs just the value of a single element at a certain moment, contrasting
with the previous situations.

70 Alexandra Băicoianu, Raluca Pândaru and Anca Vasilescu

Finally, the resulting image will be saved on the disk following the path specified
by user. Running the compiled program is done using the command:

EdgeDetector +RTS -N (-s)

4 Final results. Comparative aspects

With respect to this paper target, namely the evaluation of the performance of
a Haskell parallel implementation, we have tested our developed application on a
3008× 2000 image using a computer with two cores. Technical specifications for the
computer system used for tests are: Pentium R© Dual-Core CPU T4300 @ 2.10 GHz
2.10 GHz. The corresponding execution times are shown in Table 1.

In order to have reliable conclusions, we decided to develop the same applica-
tions making use of one of the most popular programming languages, namely C++.
The C++ project is developed in VS2012, MFC and OpenCV 2.4 for reading and
printing the images. Beyond the serial implementation, for consistent results, we
have also implemented a C++ solution based on the parallel programming support
of this language. Particularly, we used two different options for parallel excution,
namely: PPL (Parallel Patterns Library) and OpenMP (Open MultiProcessing) [11]. It is
our aim to publish this C++ project details and its related results in [10]. The final
results are also presented here in Table 1 in order to compare them to the Haskell

implementation execution times.
Totally, a number of 11 tests were made for each presented case and the arith-

metic average of the returned values has been set in the table. The following masks
have been applied: G3×3 - for Gaussian filter dimensions 3× 3, G5×5 - for Gaussian
filter dimensions 5 × 5 and G7×7 - for Gaussian filter dimensions 7 × 7. The Repa

library has these mask sizes as default dimensions, that is why only the sizes shown
in Table 1 are supported for the moment. In the table, the best time is marked with
bold and the worst value is marked with both italic and underline.

Table 1: Execution time

Algorithm G3×3 G5×5 G7×7

Haskell 226 ms 457 ms 4999 ms

C++ Serial 555 ms 732 ms 995 ms

C++ PPL 438 ms 513 ms 626 ms
C++ OpenMP 295 ms 385 ms 533 ms

An important conclusion from this table is that the algorithm written in Haskell

is the fastest for G3×3, followed closely by the OpenMP solution. In this case, the
PPL implementation is quite slow.

For G5×5 the hierarchy changes. This time, OpenMP is the fastest. This is followed
by the code written in Haskell. Here, as well, PPL is much slower. The delay is
probably given by the time necessary to manage the threads execution because the

Upon the performance of a Haskell parallel implementation 71

results of an execution time profile show that a function in the PPL library is slower.
In practice, this dimension of the Gaussian filter is most often used, as it is also
specified in the documentation associated to the Repa library. Consequently, this
could be the most significant result.

In the latter case, the fastest is still OpenMP followed by PPL and then by the serial
algorithm. Surprisingly, the code written in Haskell is too slow for this dimension.
It is true that applying the G5×5 twice yields the same result as applying the G7×7

once. Nonetheless, the difference is too big.

5 Conclusions

In this paper, the specific case of a Haskell parallel implementation for an image
processing context is considered. This implementation is supported by the Repa

library through its free set of combinators for building parallel array computations.
From the practical point of view, the edge detection problem has been chosen. Our
targets were both to discuss the parallel implementation in Haskell for this problem
solution and to compare the execution time values for this solution to the results
returned by the similar implementations in C++.

Here, it yields that we have not an all-purpose answer. The compared execution
time values depend both on the physic and the logic parameters of the applied solu-
tions, such as: the processor architecture, the default constraints established by the
software libraries and the specific package which is effectively used for implementa-
tions.

The comparison of Haskell and C++ support for different computing fields is a
subject of interest for modern research areas, both theoretical and practical. For
example, in [8], [3] many relevant aspects are revealed by comparing the facilities
offered by many programming languages, including Haskell and C++, for generic
programming. By implementing a substantial example in each of these languages,
the authors illustrate in [8] how the basic roles of generic programming can be repre-
sented in each language. Besides, for assessing how well a language supports generic
programming, in [5] the authors propose a taxonomy that captures commonalities
and differences between specific programming issues in Haskell and C++.

As a perspective, we would like to extend our work on Haskell to some pattern
mining algorithms. We intend to use specific libraries, like HLearn [2], [14], the
recently published Haskell library for machine learning. The HLearn distinguishing
feature is that it exploits the algebraic properties of learning models and its goal is
to make machine learning techniques easily usable for non specialists. Continuting
our research results from [6], an interesting perspecive could be to find a Haskell

alternative solution for practical problems basically solved with LAD (Logical Analysis
of Data) using HLearn.

72 Alexandra Băicoianu, Raluca Pândaru and Anca Vasilescu

References

[1] Marlow, S., Parallel and Concurrent Programming in Haskell, O’Reilly Media,
Inc, 2013.

[2] Izbicki, M., HLearn: A Machine Learning Library for Haskell, Proceedings of
The Fourteenth Symposium on Trends in Functional Programming, Brigham
Young University, Utah, May 14-16, 2013.

[3] Oliveira B.C.D.S., Schrijvers, T., Choi W., Lee, W., Yi, K., (2012), The implicit
calculus: a new foundation for generic programming, Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’12, SESSION: Foundations, Volume 47 Issue 6, June 2012, 35-44,
2012.

[4] Lippmeier, B., and Keller, G., Efficient Parallel Stencil Convolution in Haskell,
Haskell ’11, ICFP 2011, Proc. of the 4th ACM symposium on Haskell, SES-
SION: Parallelism, Tokyo, Japan, 22nd September, 2011, 59-70, 2011.

[5] Bernardy, J.-P., Jansson, P., Zalewski, M., and Schupp, S., Generic program-
ming with C++ concepts and Haskell type classes-a comparison, Journal of
Functional Programming, 20, (2010), 271-302.

[6] Băicoianu, A., Dumitrescu, S., Data mining meets economic Analysis: Opportu-
nities and Challenges, Bulletin of the Transilvania University of Braşov, Series
V: Economic Sciences, Vol. 3, 52, (2010), 185-192.

[7] Keller, G., Chakravarty, M. M., Leshchinskiy, R., Peyton Jones S., and Lipp-
meier, B., Regular, Shape-polymorphic, Parallel Arrays in Haskell, Proc. of the
15th ACM SIGPLAN International Conference on Functional Programming,
Baltimore, MD, USA, September 27 - 29, 2010, 261272, 2010.

[8] Garcia, R., Jarvi, J., Lumsdaine, A., Siek J., and Willcock J., An extended com-
parative study of language support for generic programming, Journal of Func-
tional Programming, 17, (2007), Issue 02, 145-205.

[9] Acharya, T., Ray, A.K., Image Processing. Principles and Applications, Wiley
Interscience, New Jersey, August 2005.

[10] Băicoianu, A., Pândaru, R., Vasilescu, A., Upon the performance of a C++
parallel implementation, preprint.

[11] ***, MSDN Library, on-line http://msdn.microsoft.com/en-us/library

[12] ***, Haskell 98 Language and Libraries, The Revised Report, December 2002,
also on-line at http://www.haskell.org/onlinereport

[13] ***, The Glorious Glasgow Haskell Compilation System, User’s Guide, Version
7.6.3, also on-line at http://www.haskell.org/ghc/docs/7.6.3/html/users guide

[14] ***, The Haskell available packages, on-line http://hackage.haskell.org

