Bulletin of the Transilvania University of Bragov e Vol 6(55), No. 2 - 2013
Series I1I: Mathematics, Informatics, Physics, 23-26

ON A GENERALIZED CASCADING FAILURE MODEL

Eugen PALTANEA!

Abstract

In this paper we present a new approach of the generalized cascading failure
model due to Lefevre (2006). We derive some corresponding lower bounds.
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1 Introduction

Cascading failure models are intensely studied in literature, especially due to
their multiple applications in electrical engineering. Dobson et al. (2005) have
proposed a basic model which describes the occurrence of cascading failures for a
system of n components which is subject to a disturbance.

In this model, each component ¢ has an initial load LEO). Assume that the
loads Lgo), e ’L7(10) are independent uniform on (0, 1) random variables. After the
disturbance, the new load of each i is LEI) = LEO) + d, where d € (0,1).

If, for j € {1,--- ,n}, L;l) > 1, then:

- the component j fails;

- the failure of j increases with p the load Lgl) of each i # j.

Denote J; = {j : Lg-l) > 1} and let n; = |J1| be the number of (first) failures. If,
for j ¢ Jy, L§.2) = Lg-l) + nip > 1, then:

- the component j fails;

- the failure of j increases with p the load LZ(Q) of each i ¢ J; U{j}.

Now, for Jo = {j € {1,--- ,n}\ J1 : L§.2) > 1}, let ng = |J2| be the number of
”second” failures, and so on. Then N = ny+ns+--- is the total number of failures.
Assume that d+np < 1 (the non-saturation condition). Dobson et al. (2005) proved
that the distribution of N is quasi-binomial (in the sense of Consul (1974))

P{N =k} = <Z> d(d + kp)*t(1 —d — kp)"7F, (1)
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for k=0,1,--- ,n.

Mention that, some asymptotic results, in terms of the generalized Poisson dis-
tribution, are also given in Dobson et al. (2005). The branching model for cascading
failure and the approximation of a loading-dependent cascading failure model with
a branching process are discussed, for example, in Dobson et al. (2010) and Kim
and Dobson (2010).

Inspired by an epidemic model - SIR schema (see, e.g., Ball and O’Neill (1999)),
Lefevre (2006) defines the following generalized model. Since P(L; = L;) = 0 for
1 # j, we may consider the sequence ji, jo,--- of successive failed components,
such that the failure of j increases with pyi1 € (0,1) the load of all functioning
components ¢,

ief{l, - I\ {1, ek

Denote: sy =p; =d and s = p1 + -+ + pg, for 1 < k < n (assuming that s, < 1),
andU; =1-L;, i=1,---,n. Let Uy, < Us., < --+ < Up.,, be the order statistics
from the sample (Uy,---,Uy). Then, for k=1,--- ,n—1,

P{N =k} =P (Uin < s1, - s Ukin < Sk, Upgin > Sky1) - (2)

Lefevre (2006) proves that the probabilities of the events {N = j} are the solutions
of the linear system

k

n—j . 1 n
) P{N=j}———F— = , 3
jz_:o (k - J> =3 (1= s145)" % (’f) ®)
for k=0,1,--- ,n. The same author gives some bounds for the distribution of N.

In this paper we propose an alternative method to obtain these probabilities.

2 An appropriate method for the Lefevre’s model

The distribution of the random variable N can be obtained by solving the tri-
angular system (3). More precisely, P{N = k} depends on P{N = i}, i < k. We
propose an alternative method to compute P{N = k}. Our method is based on the
recurring construction of an appropriate sequence of polynomials.

Let us consider the sequence of polynomials

go(x0)791<$0,$1), e 7gk(x07 T, ,.%'k), e
defined by go(xg) =1, ¢g1(xo, 1) = 1 — xg, and the recurrence relation

1
gk—i—l(x()al'l’ T amk’-i-l) :/ gk(tvaa to >$k+1)dt7 for k = 172a .

o

Theorem 1. Assume 0 < s; < --- < s, < 1. Then, fork=1,--- ,n— 1, we have

n! _
P{N:k}: )'gk(07517"' 73k)(1_3k+1)n b

(n —.k:
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Proof. As above, let Uy, Us, -+ , U, be a sequence of independent uniform on (0, 1)
random variables. Suppose 0 < sg < s;. We will proceed by induction to prove that
the polynomials g; have the following meaning

gk(so,sl,- .. ,Sk) = P{So <Up<s; U1 <U; <55, 2<i < k‘}, (4)

for k = 1,2,--- ,n. Clearly, for k = 1, P{sp < U1 < s1} = s1 — so = g1(S0, 51)-
Assume that (4) holds for k € {1,--- ,n — 1}. Then

P{80<U1<81; Ui_1 < U; < s, 2§i§k‘—|—1}

S1
= / P{t <Uy<sg U1 <U; <s;, 3<i<k+ 1}d(]P{U1 < t})

s0
S1

—/ gr(t,s2, -+, Spy1)dt = grg1(s0, 51, Sky1)-
50

From (4) we obtain
gk(so,sl,‘ .. ,Sk) = IP{S() < Ujl < S81; Uji—l < Uji < S, 2<:< k’},
for any ordered sequence (j1,--- ,jx) of the set {1,---,n}. Therefore, using (2),

P{N = k}

= > P{U, <si; Uy, <Uj <si, 2< 0 <SEYP{U; > s, 5 & {G1,- 2k}

(1K)

n!

- mgk(o’ sty s (1= sp1)" ",

for1<k<n-1. O
We easily verify

d— d—+ kp— x)k1
gk(x,d,d+p7...,d_i_(k_l)p):( $)( ‘;‘p x) 7

and we check the well-known result (1).
Finally, we will prove two immediate consequences of the above theorem.

Corollary 1. If 0 <zg <z < - <axp <1 (k>1) then
gk‘(x()axla"' 73316) > gj(x07 7$])gk—](x]7 axk)v je {0317 7k}’ (5)

and

k
g(wo, 1, ax) = [ [ (i —wicn) . (6)
i=1
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Proof. For j € {0,k}, we have equality in (5). Suppose 0 < j < k (with £ > 1). Let
(Uy,- -+ ,Uk) be asample of size k of independent uniform on (0, 1) random variables.
Let us consider the events A = {xg < Uy < x1; Ui < U; < x4, 2<i < j},B =
{CC]‘ < Uj+1 < ZTj41; U1 < U<z, j42<i < k’} and C = {:IZO <Ui<z1; U1 <
Ui <z, 2<1 < k‘} Obviously, {Uj < l‘j} N {Uj+1 > l’j} C {Uj < Uj+1; Uj < l’j}.
Hence AN B C C. In addition, A and B are independent events. The inequality
(5) is then a consequence of the probabilistic meaning of the polynomials g;. By

induction, we get gx(xo, z1, -+ ,xK) > Hle g1 (i1, 2;) = Hle (x; — 1) d

Corollary 2. If 0 <zg<x1 < ---<axp <1 (k>1) then

j k
1 J
e > - o R
gk(x07 Ty, 7:6]4?) - 15}?]?—1 j'(k — ])' E(x’l IL’()) 7l_l_[ (‘TZ x])
= =j+1
Proof. For 0 <p<k—1,1<1i<k—pand asample (Uy,---,U;) of independent
uniform on (0, 1) random variables, we easily observe that ilg;(zp, Tpy1,- -, Tpii) =
]P){U]’L S ($pa Ip-I—j) ) 1 S ] S Z} 2 ]P){U] S (xp)xp-i-j) y 1 S .] S Z} = H;’:l (‘Tp'f‘j - ‘Tp) .
Then we apply the inequality (5). O
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