
Bulletin of the Transilvania University of Braşov • Vol 6(55), No. 1 - 2013

Series III: Mathematics, Informatics, Physics, 83-88

WAVE ALGORITHM FOR MAXIMUM FLOW IN BIPARTITE
NETWORKS

Laura CIUPALĂ1

Abstract

In this paper, we develop a wave algorithm for determining a maximum flow
in a bipartite network. This algorithm is a special implementation of the generic
preflow algorithm for bipartite networks ([1]). It performs passes over active
nodes. In each pass, it examines all the active nodes in nondecreasing order of
their distance labels. The algorithm ends when there are no more active nodes,
which means that a maximum flow was established.

2000 Mathematics Subject Classification: 90B10, 90C90.
Key words: network flow, bipartite network, maximum flow.

1 Introduction

Network flow problems are a group of network optimization problems with widespread
and diverse applications. The literature on network flow problems is extensive. Over
the past 60 years researchers have made continuous improvements to algorithms for
solving several classes of problems. From the late 1940s through the 1950s, re-
searchers designed many of the fundamental algorithms for network flow, including
methods for maximum flow and minimum cost flow problems. In the next decades,
there are many research contributions concerning improving the computational com-
plexity of network flow algorithms by using enhanced data structures, techniques of
scaling the problem data etc.

One of the reasons for which the maximum flow problem and that minimum cost
flow problem were studied so intensively is the fact that they arise in a wide variety
of situations and in several forms.

For solving a maximum flow problem there are two approaches:
1. using augmenting path algorithms
2. using preflow algorithms
All these algorithms can be modified in order to become more efficient when

applied on bipartite networks.
In this paper, we develop a wave algorithm for determining a maximum flow

in a bipartite network. This algorithm is a special implementation of the generic

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
laura ciupala@yahoo.com

84 Laura Ciupală

preflow algorithm for bipartite networks ([1]). The wave preflow algorithm is a
hybrid between the FIFO preflow algorithm and the highest-label preflow algorithm.
It examines the active nodes in nonincreasing order of their distance labels and the
node examination terminates when either the node excess becomes zero or the node
is relabeled. The wave preflow algorithm for minimum flow runs in O(n2

1n2) time.

2 Notation and definition

Let G = (N,A) be a directed graph, defined by a set N of n nodes and a set A
of m arcs. Each arc (x, y) ∈ A has a nonnegative capacity c(x, y). In the directed
network G = (N,A, c, s, t), two special nodes are specified: s is the source node and
t is the sink node.

Let X and Y be two subsets of the node set N . We define the set of arcs
(X,Y) = {(x, y)|(x, y) ∈ A, x ∈ X, y ∈ Y }.

For any function g : N ×N → R+ and for any function h : N → R+ we define

g(X,Y) =
∑
(X,Y)

g(x, y) and h(X) =
∑
X

h(x).

If X = {x} or Y = {y} then we will use g(x, Y) or g(X, y) instead of g(X,Y).

A flow from the source node s to the sink node t in the directed network G =
(N,A, c, s, t) is a function f : A→ R+ which meets the follwing conditions:

f(x,N)− f(N, x) =


v, x = s

0, x 6= s, t
−v, x = t

(1)

0 ≤ f(x, y) ≤ c(x, y), ∀(x, y) ∈ A. (2)

We refer to v as the value of flow f . A flow whose value is maximum is called a
maximum flow. A preflow is a function f : A→ R+ satisfying relations (2) and the
next conditions:

f(x,N)− f(N, x) ≥ 0, ∀x ∈ N\{s, t}. (3)

Let f be a preflow. We define the excess of a node x ∈ N in the following
manner:

e(x) = f(x,N)− f(N, x)

Thus, for any preflow f , we have e(x) ≥ 0, ∀x ∈ N\{s, t}. We say that a node
x ∈ N\{s, t} is active if e(x) > 0 and balanced if e(x) = 0. A preflow f for which
e(x) = 0,∀x ∈ N\{s, t} is a flow. Consequently, a flow is a particular case of preflow.

Let f be a flow from the source node s to the sink node t in the directed network
G = (N,A, c, s, t). The residual capacity of arc (x, y) corresponding to flow f is
defined as r(x, y) = c(x, y) − f(x, y) + f(y, x) and it is the maximum amount of
additional flow that can be sent from x to y using both arcs (x, y) and (y, x). By

Wave algorithm for maximum flow in bipartite networks 85

convention, if an arbitrary arc (x, y) /∈ A, then we can add (x, y) to A and we will
consider that c(x, y) = 0.

The residual network G(f) = (N,A(f)) corresponding to flow f contains all
those arcs with strictly positive residual capacity.

A network G = (N,A) is called bipartite if its node set N can be partitioned into
two subsets N1 and N2 , such that all arcs have one endpoint in N1 and the other
in N2.

We consider a bipartite capacitated network G = (N,A, c, s, t). We distinguish
two special nodes in network G: a source node s and a sink node t. We assume
without loss of generality that s ∈ N2 and t ∈ N1. If s ∈ N1, then we could create
a new source node s′ ∈ N2 and add a new arc (s′, s) with sufficiently large capacity.
If t ∈ N2, then we could create a new sink node t′ ∈ N1 and add a new arc (t, t′)
with sufficiently large capacity.

Let n = |N |, n1 = |N1|, n2 = |N2|, m = |A| and C = max{c(i, j)|(i, j) ∈ A}.
We can assume without loss of generality that n1 � n2.

In the residual network Gf , the distance function d : N → N with respect to a
given preflow f is a function from the set of nodes to the nonnegative integers. We
say that a distance function is valid if it satisfies the following conditions:

d(t) = 0

d(i) ≤ d(j) + 1, for every arc(i, j) ∈ A(f).

We refer to d(i) as the distance label of node i.
We say that the distance labels are exact if, for each node i, d(i) equals the length

of the shortest path from node s to node i in the residual network.
We refer to an arc (i, j) from the residual network as an admissible arc if d(j) =

d(i) + 1; otherwise it is inadmissible.
Let G = (N,A, c, s, t) be a bipartite directed network, N = N1 ∪N2. Any path

in network G and also in the residual network G(f), that is a bipartite network also,
can have at most 2n1 arcs. Consequently, if we set d(s) = 2n1 + 1 then the residual
network will never contain a directed path from the source node s to the sink node
t.

Lemma 1. [1] In the bipartite directed network G = (N,A, c, s, t), for any node
i ∈ N , d(i) < 4n1 + 1.

For determining a maximum flow in regular networks, several algorithms were
developed in the last decades. These algorithms can be divided into two classes:

1. augmenting path algorithms

2. preflow algorithms.

The augmenting path algorithms maintain during their executions the mass bal-
ances constraints (1) at every node of the network other than the source or the
sink node. These algorithms identify augmenting paths and augment the flow along

86 Laura Ciupală

these paths until the network contains no such path, which means that the flow is
a maximum flow. By establishing different rules for determining the augmenting
paths, one obtains different augmenting path algorithms for maximum flow (see[1]).

The preflow algorithms push flow along individual arcs. These algorithms do
not satisfy the mass balances constraints (1) at intermediate stages. In fact, these
algorithms permit the flow leaving a node to exceed the flow entering the node. Any
preflow algorithm for the maximum flow problem proceeds by pushing flow from the
source node s to its neighbor nodes, creating excesses in these nodes. The basic
step in any preflow algorithm is to select a node with excess and to try to eliminate
its excess by pushing flow to its neighbors which are closer to the sink node. Any
preflow algorithm ends when all the intermediate nodes have no excess, which means
that a maximum flow was obtained. By establishing different rules for selecting the
nodes with excess, one obtains different preflow algorithms for maximum flow (see
[1]).

Algorithms from both classes can be modified in order to determine a maximum
flow in a bipartite network. In the next section we will develop a wave algorithm
for determining a maximum flow in a bipartite network. This algorithm is a special
implementation of the generic preflow algorithm for bipartite networks ([1]). The
wave preflow algorithm is a hybrid between the FIFO preflow algorithm and the
highest-label preflow algorithm. It permits only node in N1 to become active and
it examines the active nodes in nonincreasing order of their distance labels and the
node examination terminates when either the node excess becomes zero or the node
is relabeled. The wave preflow algorithm for maximum flow runs in O(n2

1n2) time.

3 Wave algorithm for maximum flow in bipartite net-
works

The wave algorithm for maximum flow in bipartite networks is a special implemen-
tation of the generic preflow algorithm.

The highest-label preflow algorithm (described in [1]) always examines an active
node with the highest distance label. The FIFO preflow algorithm (described in
[1]) examines active nodes in FIFO order. The wave algorithm, described in this
paragraph, is a hybrid between these two previous preflow algorithms adapted for
bipartite networks. It performs passes over active nodes. In each pass, it examines
all the active nodes in nonincreasing order of their distance labels (like the highest-
label preflow algorithm) and the node examination terminates when either the node
excess becomes zero or the node is relabeled (like in the FIFO preflow algorithm).
In order to do this, it maintains two priority queues L and L1, both with priority d.
The nodes that become active during the initialization (which are all contained in
N1) are added to L. The algorithm always selects the active node with the highest
priority from L and pushes flow from it toward the sink node along a path of length
2, adding the newly active nodes in L1. Consequently, all these nodes are from N1.
When queue L becomes empty, all active nodes from queue L1 are moved in L. The

Wave algorithm for maximum flow in bipartite networks 87

algorithm repeats the same process until both L and L1 become empty (i.e., until
during a pass it relabels no node). Consequently, there are no active nodes and the
preflow is a flow. Moreover, it is a maximum flow.

The wave preflow algorithm for the maximum flow problem is the following:

Wave Preflow Algorithm;

Begin

let f = 0;

determine the residual network G(f);

compute the exact distance labels d in the residual network G(f);

L = ∅;

for each arc (s, i) ∈ A do

begin

f(i, t) = c(i, t);

if (e(i) > 0) and (i 6= t) then

add i to the rear of L;

end;

d(s) = 2n1 + 1;

L1 = ∅ ;

while (L 6= ∅) and (L1 6= ∅) do

begin

if L = ∅ then

begin

L = L1;

L1 = ∅;

end;

remove node i from the front of queue L;

push/relabel(i);

end

end

end.

procedure push/relabel(i);

begin

B = false;

repeat

if there is an admissible arc (i, j) in the residual network then

if there is an admissible arc (j, k) in the residual network then

begin

push g =min{e(i), r(i, j), r(k, j)} units of flow along the path i−j−k;

update the excess of nodes i and k;

if (k /∈ L1) and (k 6= s) and (k 6= t) then

add k to the rear of L1;

end;

else d(j) =min{d(k)|(j, k) ∈ A(f)}+ 1;

88 Laura Ciupală

else begin
d(i) =min{d(j)|(i, j) ∈ A(f)}+ 1;
B = true;

end;
until e(i) = 0 or B;
if e(i) > 0 then

add i to the rear of L1;
end;

Theorem 1. (
¯

Correctness theorem) The wave preflow algorithm computes correctly
a maximum flow in the bipartite network G = (N, A, c, s, t).

Proof. The correctness of the wave preflow algorithm follows from the correctness
of the generic preflow algorithm, whose specific implementation it is.

Theorem 2. The wave preflow algorithm for bipartite networks performs O(n2
1)

passes over active nodes.

Proof. To determine an upper bound of the number of passes performed by the
algorithm we will use the potential function Φ = max{d(i)|i is an active node}. The
initial value of Φ is at most 4n1. During an arbitrary pass over the active node, one
of the following 3 cases might appear:

1. The algorithm performs at least one relabel of an active node. In this case
Φ increases. The total increase in Φ caused by relabeling active nodes is,
considering Lemma 1, at most 4n2

1.

2. The algorithm doesn’t relabel any active node, but performs at least one relabel
of an inactive node. In this case the value of Φ doesn’t change.

3. The algorithm doesn’t relabel any (active or inactive) node. In this case the
value of Φ decreases by at least 2 because the excess of every active node is
moved closer to the sink along paths of length 2.

Combining these 3 cases, it follows that the algorithm performs O(n2
1) passes

over active nodes.

An important consequence of this theorem is the follwing:

Theorem 3. (
¯

Complexity theorem) The wave preflow algorithm runs in O(n2
1n2)

time.

References

[1] Ahuja, R., Magnanti, T., Orlin, J., Network flow. Theory, algorithms and appli-
cations, Prentice Hall, New Jersey, 1993.

[2] Bang-Jensen, J., Gutin, G., Digraphs, theory, algorithms and applications,
Springer-Verlag, London, 2001.

