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A GENERALIZATION OF THE UNIVALENCE CRITERION
OF OZAKI AND NUNOKAWA

Horiana TUDOR/!

Abstract

In this paper we obtain, by the method of subordination chains, a sufficient
condition for the analyticity and the univalence of the functions defined by
an integral operator. In a particular case we find the condition for univalence
established by S. Ozaki and M. Nunokawa.

2000 Mathematics Subject Classification: 30C45 .
Key words: Univalent functions, Univalence criteria.

1 Introduction

We denote by U, = { z € C: |z|] < r} the disk of z-plane, where r € (0,1], U; =
U and I = [0,00). Let A be the class of functions f analytic in U such that

f(0) =0, f/(0) =1.

Theorem 1. ([1]). Let f € A. If for all z € U

2f'(z)
70 1‘<1, (1)

then the function f is univalent in U.

2 Preliminaries

In order to prove our main result we need the theory of Loewner chains. A
function L : U x I — C is called a Léewner chain if it is analytic and univalent
in U and L(z,s) is subordinate to L(z,t), for all 0 < s < t < oo. Recall that
a function f : U — C is said to be subordinate to a function g : U — C ( in
symbols f < ¢ ) if there exists a function w : U — U such that f(z) = g(w(z))
for all z € U. We recall the basic result of this theory, from Pommerenke.
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Theorem 2. ([2]). Let L(z,t) = a1(t)z + ax(t)22 + ..., a1(t) # 0 be analytic
i Uy, for allt € I, locally absolutely continuous in I and locally uniformly with
respect to U,.For almost all t € I, suppose that

OL(z,t)
0z

OL(z,t)
at

= p(z,t) Vz € U,

z
where p(z,t) is analytic in U and satisfies condition Re p(z,t) > 0, for all z € U,
tel. If lai(t)] = oo fort — oo and {L(z,t)/a1(t)} forms a normal family in U,
then for each t € I, function L(z,t) has an analytic and univalent extension to the
whole disk U.

3 Main results

Theorem 3. Let f € A, a and 8 be complex numbers, fa > 0, R(a + ) > 0,
?REB > b2 < la+ B]. If the following inequalities

;{(()) B 1‘ <! (2)
and
(55 pens EEB(200) ] w
(S; ﬁ|§|22|:2+<i)+)2> K Z;‘zfég) - 1) +(1-a) (f (Zz) - 1)} <1
are true for all z € U\ {0}, then function Fy,
Fo(z) = <a /0 Ty f’(u)du)l/a (4)

1s analytic and univalent in U, where the principal branch is intended.

Proof. Let us prove that there exists a real number r € (0,1] such that function
L(z,t) : U, x I — C, defined formally by

1/a
etz 2(a+B)t _ 1e(2-a)t a—2f2 —t
a e e z e 'z
L(zt) = (O‘Jrﬂ)/ w L )+ 62<a+ﬁ]>t71 e 2) =
0 1- -1
a+f etz
(5)

is analytic in U, for all t € I. Because f € A, it is easy to see that the function

—t

g1(z,t) = (a+B) /0'3 zua_lf'(u)du ,



Ozaki and Nunokawa’s univalence criterion 79

can be written as g1(z,t) = 2% - ga(2,t), where go(z,t) is analytic in U, for all t € T
and ¢2(0,t) = O‘Z—ﬁe_at. Let us consider function g3(z,t) given by

e2a+B)t _ | f(e_tz)
(a+5) < etz 1)

For all t € I and z € U we have e 'z € U and because f € A, function g3(z,t)
is analytic in U and g¢3(0,¢) = 1. Then there is a disk U,,, 0 < r; < 1 in which
g3(z,t) # 0, for all t € I. It follows that the function

g3(z,t) =1—

(62(a+,8)t _ 1) Lot (M)Q

etz

g4(2,t) = 92(z¢t) + gg(z,t)

is also analytic in U,, and

94(0,1) = elat2p)t [ 1+ £6—2(a+ﬁ)t ] )
(6%

Let us prove that ¢4(0,¢) # 0, V¢ € I. We have ¢4(0,0) = 1 + g and since
§RE’8 > =L it follows that g4(0,0) # 0. Assume now that there exists ¢y > 0 such
that g4(0,0) = 0. Then e2(@+8)to = —g and since 2|5| < |a + ] implies |B] < |af,
it follows that 2@+t < 1. In view of R(a 4+ ) > 0, to > 0, this inequality is
imposible. Therefore, there is a disk U,, 0 < r < ry in which g4(z,t) # 0, for all
t € I and we can choose an analytic branch of [g4(z,t)]"/®, denoted by g(z,t). We

(at26) 1o
choose the uniform branch which is equal to a;(t) = e 1+ %6*2(0‘*5)’5 }

at the origin, and for aq(t) we fix a determination.
From these considerations it follows that relation (5) may be written as
L(z,t) = z-g(z,t) = a1(t)z + ag(t)2* + . ..

and then function L(z,t) is analytic in U,. From R(a + 3) > 0, %E’B > _71 we get
lim¢ o0 |a1(t)| = co. We saw also that aq(t) # 0 for all ¢ € I.

From the analyticity of L(z,t) in U,, it follows that there is a number ry, 0 <
ro < r, and a constant K = K (rz) such that

| L(z,t)/a1(t) | < K, VzeU,, tel,

and then {L(z,t)/a1(t)} is a normal family in U,,. From the analyticity of 0L(z,t)/0t,
for all fixed numbers 7" > 0 and 73, 0 < r3 < ro, there exists a constant K; > 0
(that depends on T and r3 ) such that

‘ AL(z,1)

5 ‘<K1, Vz €Uy, te][0,T].

It follows that the function L(z,t) is locally absolutely continuous in I, locally
uniform with respect to U,,. We also have that the function

Z@L(z, t) OL(z,t)
0z ot

p(z,t) =
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is analytic in U,,, 0 <14 <73, for all t € I.
To prove that function p(z,t) has an analytic extension with positive real part
in U, for all t € I, it is sufficient to show that function w(z,t) defined in U,, by

p(z,t) —1

w(zt) = p(z,t) +1

can be continued analytically in U and that |w(z,t)| < 1 for all z € U and t € I.
After calculations, we obtain

- e*2tz2f'(e*tz) k) 1 _672(a+,3)t e*2tz2f’(e*tz)
w(z,t) = (f2<e—tz)_1> e a+f3 [2< f2etz) > _ﬁ] '

e ﬁ;(?+)52> (FL ) ra-a(M52-0)] @

From (2) and (3) we deduce that f(z) # 0 for all z € U and then function w(z,t)
is analytic in the unit disk. We have

2f'(2) ‘
w(z,0) | = -1 <1. 7
00 = |55 )
For z =0, t > 0, from the hypothesis ®(«a + ) > 0 and 2|8| < |a + 3], we get
‘B‘ —2(a+p)t 2‘5‘
0,8) | = —2_|1_ P el ) 8
(w0 =175 ‘ ‘ ) o+ ] (®)

Let now t be a fixed number, t > 0, z € U, z # 0. In this case function w(z,t) is
analytic in U because |[e7'z| <e ! < 1forall 2 € U= {z€ C:|z| <1} . Using the
maximum modulus principle it follows that for each ¢ > 0, arbitrary fixed, there
exists @ = 0(t) € R such that

— (e
[z, D)l < maxfw(&, )] = |w(e®, 1), (9)

We denote u = et - ¢ . Then |u| = e~ < 1 and from (6) we get

< () 1B [ (570

+ (Sj: 5@7;7:(2; [(“;Qf('fj;) - 1) T (1-a) (ffuu) - 1)] _

Since u € U, the inequality (3) implies |w(e®,¢)| < 1 and from (7), (8) and (9) we
conclude that |w(z,t)| < 1 for all z € U and t > 0.
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From Theorem 2 it results that function L(z,¢) has an analytic and univalent
extension to the whole disk U, for each ¢t € I. In particular, for t = 0, we conclude
that function

e ( @) [ u“‘lf’<u>du) "

is analytic and univalent in U and also function F,(z) defined by (4) is analytic and
univalent in U. O

Remark 1. Condition (2) of Theorem 3, which is just Ozaki-Nunokawa’s univa-
lence criterion, assures the univalence of function f, so Theorem 3 represents a
generalization of this univalence criterion. For 5 = 0 we get a result from [3].

If in Theorem 3 we take o + 8 = 1 we obtain the following

Corollary 1. Let fe A, a € C , |a—1| < % If the following inequalities

2
e < 1o

and

(1) +@-vu =t [l - - (L2 1) ] < e an

are true for all z € U \ {0}, then the function F,(z) defined by (4) is analytic and
univalent in U.

Proof. In view of assumption 2|3| < |a + (| and since %g > =L is equivalent
with |8] < |a+ ], it follows || < S|a+ 8| = 3 and then |a — 1| < 5. From (3) we
get immediately (11).

For a =1 and 8 = 0, the above Corollary reduces to the univalence criterion of
Ozaki and Nunokawa [1].

Corollary 2. Let f € A. If for all z € U, inequality (1) is true, then function f is
univalent in U.

Proof. For e = 1 we have Fi(z) = f(z) and inequality (11) becomes
2f(2)
f*(z)

It is easy to check that if inequality (1) is true, then inequality (12) is also true.
Indeed, function g,

—1 ‘ <|z|*. (12)

22 (2)

g(Z) = fZ(Z) -1

is analytic in U, g(2) = bgz? + b32® + ..., which shows that g(0) = ¢/(0) = 0. In
view of (1) we have |g(z)| < 1 and using Schwarz’s lemma we get |g(z)| < |z|*.
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Example 1. Let a € C, |[a — 1| < % We consider the function

fo) = ——  witha> — (13)

-z Va1

Then f is univalent in U and F}, defined by (4) is analytic and univalent in U.

We have - ) )

S ) R A O N S (14)
12(2) a z a— 22

Since a > 1, it is clear that condition (10) of Corollary 1 is verified, and then f is

univalent in U. Taking into account (14), from (11) we have that

22 1 (1—|z[*)? 2
el B Y T ¥ 17 T Sl o BV
g @Dl

(- 12

1
- —1|(1— |22 —1
a+la (L= [=%) + o = 1[F——

Because the greatest value of the function

a—1 a+1 1 a
o) =221 a8 b (L e 1)

a—1 -1 a—1
for x € [0,1] is taken for x = 0 and is

1 a
9(0) = —+ la— 1],

a a—1

1
1—/]a—1]
satisfied. Therefore function F, defined by (4) is analytic and univalent in U.

for a > we get ¢g(0) < 1 and then all the conditions of Corollary 1 are
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