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THE EQUATIONS OF THE INDICATRIX OF A COMPLEX
FINSLER SPACE

Elena POPOVICI1

Abstract

In this paper we extend the study of the indicatrix of a complex Finsler
space initiated in [10, 11]. The equations that can be introduced on the in-
dicatrix, which is studied as a hypersurface of a complex Finsler space, are
investigated. In this manner, using the equations of Gauss-Weingarten, the
link between the intrinsic and induced connection is deduced. The equations
of Gauss, H -and A-Codazzi, and Ricci equations of the indicatrix are consid-
ered. Also, conditions for totally umbilical indicatrix are obtained.
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1 Introduction

The study of the indicatrix of a real Finsler space is one of interest, mainly because it
is a compact and strictly convex set surrounding the origin. The geometry of (real)
indicatrix as a hypersurface of a total space has been studied by Akbar-Zadeh in [2],
where it is proved that it plays a special role in obtaining necessary and sufficient
conditions for an isotropic Finsler manifold to be of constant sectional curvature.
A comprehensive study of the indicatrix hypersurface could be found in [7]. In [5],
a smooth compact and connected manifold with the properties of a indicatrix was
called by Bryant with generalized Finsler structure.

The study of the indicatrix of a complex Finsler space was discussed in [10, 11],
in which the general framework of the indicatrix bundle is established.

In the present paper, in Section 2, some preliminary properties of the n- di-
mensional complex Finsler space are recalled. The main relations of the intrinsic
geometry of its indicatrix bundle are considered in Section 3. Since the approach of
the indicatrix is as a complex hypersurface of T ′M , it is natural to consider in Sec-
tion 4 the equations of a subspace in this case and to analyse the link between the
main induced and intrinsic connections considered. Some conditions for the indica-
trix to be a totally umbilical submanifold of a complex Finsler space are obtained
in Section 4.
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2 Complex Finsler spaces: settings

Firstly, we will make a short overview of the concepts and terminology used in
complex Finsler geometry, for more see [1, 8]. Let M be a complex manifold and
(zk) the complex coordinates on a local chart.

The complexified of the real tangent bundle TCM splits into the sum of holo-
morphic tangent bundle T ′M and its conjugate T ′′M , i.e. TCM = T ′M ⊕ T ′′M .
The bundle T ′M is in its turn a complex manifold and the local coordinates in a
local chart are (zk, ηk).

Definition 1. A complex Finsler space is a pair (M,F), where F : T ′M → R+ is
a continuous function that satisfies the following conditions:

i. L := F2 is a smooth function on T ′M := T ′M \ {0};

ii. F(z, η) ≥ 0, , the equality holds iff η = 0;

iii. F(z, λη) = |λ|F(z, η), ∀λ ∈ C, is the homogeneity condition of the Finsler func-
tion F ;

iv. the Hermitian matrix
(
gij̄(z, η)

)
, with gij̄ = ∂2L

∂ηi∂η̄j
the fundamental metric ten-

sor is positive definite. This means that the indicatrix Iz = {η | gij̄(z, η)ηiη̄j =
1} is strongly pseudoconvex, for any z ∈M .

By applying Euler’s formula for homogeneous functions, from iii. we get that:

∂L

∂ηk
ηk =

∂L

∂η̄k
η̄k = L;

∂gij̄
∂ηk

ηk =
∂gij̄
∂η̄k

η̄k = 0 and L = gij̄η
iη̄j . (1)

Thus, the aim of the geometry of a complex Finsler space is to study the ge-
ometric objects of the complex manifold T ′M endowed with a Hermitian metric
structure defined by gij̄ . Regarding this, the first step is the study of the sec-
tions of the complexified tangent bundle of T ′M which splits into the direct sum
TC(T ′M) = T ′(T ′M)⊕ T ′′(T ′M). Let V (T ′M) ⊂ T ′(T ′M) be the vertical bundle,

locally spanned by
{

∂
∂ηk

}
and let V (T ′′M) be its conjugate.

The idea of complex nonlinear connection, briefly (c.n.c.), is fundamental in
”linearization” of this geometry. A (c.n.c.) is a supplementary complex subbun-
dle to V (T ′M) in T ′(T ′M), i.e. T ′(T ′M) = H(T ′M) ⊕ V (T ′M). The horizontal

distribution Hu(T ′M) is locally spanned by
{

δ
δzk

= ∂
∂zk
−N j

k
∂
∂ηj

}
, where N j

k(z, η)

are the coefficients of the (c.n.c.), which follow the local maps rule change, so that
δ
δzk

= ∂z′j

∂zk
δ
δz′j

is fulfilled. Obviously, we also have ∂
∂ηk

= ∂z′j

∂zk
∂
∂η′j

.

The pair
{
δk := δ

δzk
, ∂̇k := ∂

∂ηk

}
will be called the adapted frame of the (c.n.c.).

By conjugation everywhere we get an adapted frame {δk̄, ∂̇k̄} on T ′′u (T ′M). The

dual adapted bases are
{

dzk, δηk := dηk +Nk
j dzj

}
, respectively {dz̄k, δη̄k}, where

δη̄k = dη̄k +N k̄
j̄

dz̄j .
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Let us consider the Sasaki type lift of the metric tensor gij̄ , as

G = gij̄dz
i ⊗ dz̄k + gij̄δη

i ⊗ δη̄j . (2)

One main problem of this geometry is to determine a (c.n.c) related only by the
fundamental function of a complex Finsler space (M,L); one almost classical now
is the Chern-Finsler (c.n.c) ([1],[8]):

CF

Nk
j = gm̄k

∂glm̄
∂zj

ηl. (3)

The next step is to specify the derivation law D on sections of TC(T ′M). A
Hermitian connection D, of (1, 0)-type, which satisfies DJXY = JDXY , for all
horizontal vectors X and the natural complex structure J on the manifold, will be
the Chern-Finsler linear connection, in brief C-F, locally given by the next set of
coefficients (notations from [8]):

Lijk = g l̄iδk(gjl̄), Cijk = g l̄i∂̇k(gjl̄), Lı̄j̄k = 0, C ı̄j̄k = 0, (4)

where Dδkδj = Lijkδi, Dδk ∂̇j = Lijk∂̇i, D∂̇k
∂̇j = Cijk∂̇i, D∂̇k

δj = Cijkδi. Of

course, there is also DXY = DX̄ Ȳ . From the homogeneity conditions (1) it takes:
Cijkη

j = Cijkη
k = 0. On the other hand, from gm̄igkm̄ = δik it follows that

∂gm̄i

∂ηj
= −gm̄pgq̄i∂gpq̄

∂ηj
and it is obtained that

CF

Lijk is of Berwald type, i.e.

CF

Lijk =
∂
CF

N i
k

∂ηj
. (5)

Another (c.n.c.) with a special importance in the study of geodesics on a com-
plex Finsler space, is the canonic (c.n.c.), given by:

c

N i
j =

1

2
∂̇j

(
CF

N i
kη
k

)
=

1

2

[
∂̇j(

CF

N i
k)η

k +
CF

N i
kδ
k
j

]
=

1

2

(
CF

Lijkη
k +

CF

N i
j

)
(6)

It comes from a spray and using it the Berwald (c.l.c) can be introduced:

B
DΓ =

 c

N i
k,

B

Lijk =
∂

c

N i
j

∂ηk
,

B

Lı̄j̄k =
∂

c

N ī
j̄

∂ηk
,

B

Cijk = 0,
B

C ı̄j̄k = 0


The Berwald (c.l.c) is defined on the vertical bundle V (T ′M) and it is easy to

check that:

c

N i
k =

1

2

(
CF

Lik0 +
CF

N i
k

)
,

B

Lijk =
1

2

(
CF

Lijk +
CF

Likj

)
+

1

2
∂̇j(

CF

Likm)ηm, and
B

Lijk =
B

Likj (7)

where
CF

Lik0 :=
CF

Likjη
j .
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On TC(T ′M) the following 1-form: ω = ω′+ω” := ηkdz
k+ η̄kdz̄

k is well-defined,
where ηk := gkj̄ η̄

j = ∂L
∂ηk

.

Further we will use the following notation η̄j =: ηj̄ to denote a conjugate object.

3 The intrinsic geometry of complex indicatrix

Let M be a complex manifold, dimCM = n+ 1, π : T ′M → M be its holomorphic
bundle and consider (zk, ηk)k=1,n+1 the complex coordinates on the manifold T ′M ,
dimCT

′M = 2n+ 2.

Consider Iz =
{
η | gij̄(z, η)ηiηj = 1

}
the indicatrix at z of a complex Finsler

space (M,L) and πI : I → M the indicatrix bundle, where I =
⋃
z∈M

Iz. I ⊂ T ′M

is a holomorphic subbundle and a complex and strictly connected in the 0 origin
hypersurface of T ′M , dimCI = 2n + 1. Let i : I → T ′M be the inclusion map
and i∗ : TCI → TC(T ′M) be the extension of the tangent inclusion map to the
complexified bundles.

Further on, we will study the geometry of the complex hypersurface I of the com-
plex manifold T ′M . If we consider (z̃, θα)α=1,n; k=1,n+1 a parametric representation
of the indicatrix hypersurface then we have the following local representation:

z̃k = zk and ηk = Bk
α(z)θα, where rang(Bk

α) = n, Bk
α(z) =

∂ηk

∂θα
. (8)

The involved immersion and holomorphy implies that Bk
ᾱ(z) = ∂ηk

∂θ̄α
= 0 and

Bk̄
α(z) = ∂η̄k

∂θα . Computing the Jacobi matrix in a point of the complexified tangent
space TCI, tangent vectors are obtained:

∂

∂z̃k
=

∂

∂zk
+Bj

αkθ
α ∂

∂ηj
,

∂

∂θα
= Bk

α

∂

∂ηk
, where Bj

αk =
∂Bj

α

∂zk
. (9)

The vertical distribution V I, spanned by
{
∂̇α = ∂

∂θα

}
, is a subdistribution of

V (T ′M). We will note the tangent vectors ∂
∂z̃k̄

, ∂
∂θᾱ obtained by conjugation every-

where in the above relations. The dual bases are (by differentiation in (8)):

dz̃k = dzk and dηk = Bk
αjθ

αdz̃j +Bk
αdθα. (10)

The abbreviated formula Bj
0k = Bj

αkθ
α can be used above.

On the indicatrix I we have L(zk, ηk(θ)) = gij̄(z, η(θ))ηi(θ)η̄j(θ̄) = 1 and by

differentiation with respect to ∂̇α we obtain
∂gij̄
∂ηk

Bk
αη

iη̄j + gij̄B
i
αη̄

j = 0. In terms

of homogeneity conditions (1), it follows gij̄B
i
αη̄

j = 0, i.e. the Liouville vector

N := ηk ∂
∂ηk

is normal to the vertical distribution V I spanned by the tangent vectors
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∂̇α to the hypersurface I. Moreover, N is a unit vector, because ηkη
k = 1, where

ηk = gkj̄ η̄
j .

Along V T ′M the frame R =
{
∂̇α = Bk

α
∂
∂ηk

,N = ηk ∂
∂ηk

}
can be considered and

be R−1 = {Bα
k ηk}t the inverse matrices of this base, i.e.:

Bα
kB

k
β = δαβ , Bα

k η
k = 0, Bk

αηk = 0, Bk
αB

α
j + ηkηj = δkj , ηkη

k = 1. (11)

The fundamental function L̃(z̃, θ) = L(z, η(θ)) of the complex Finsler space

defines a metric tensor gαβ̄ on the indicatrix I, gαβ̄ = Bj
αBk̄

β̄
gij̄ , where Bk̄

β̄
= Bk

β . It

is easy to verify that gβ̄α = gj̄iBα
i B

β̄
j̄

is the inverse of gαβ̄ and gj̄i = Bi
αB

j̄

β̄
gβ̄α+ηiηj̄ .

Moreover, along (I,L̃) subspace gkh̄ = g̃kh̄+ηkηh̄ takes place, where g̃kh̄ = Bα
kB

β̄

h̄
gαβ̄.

Also on the indicatrix Iz from ηkηk = 1 it follows that θαθ
α = 1, where θα = gαβ̄θ

β̄.

On T ′I the local frame
{
δ̃k = ∂

∂z̃k
− Ñα

k
∂
∂θα , ∂̇α = ∂

∂θα

}
can be considered and

its dual base is given by {dz̃k, δθα = dθα + Ñα
j dz̃j}, where Ñα

k will be called the

coefficients of the induced (c.n.c) iff δθα = Bα
k δη

k, i.e. dθα + Ñα
j dz̃j = Bα

k (dηk +

Nk
j dzj), and using (10), we have ([10])

Ñα
k = Bα

k

(
Bk
βjθ

β +Nk
j

)
. (12)

Let
CF

Nk
j = gmk̄ ∂glm̄

∂zj
ηl be the Chern-Finsler (c.n.c) from (3), and

CF

Nα
j = gβ̄α

∂gγβ̄
∂z̃j

θγ = gβ̄α
∂2L̃

∂z̃j∂θ̄β
θγ ,

the intrinsic (c.n.c.) coefficients. Then it takes place (with complete demonstration
in [11]):

Proposition 1. The induced (c.n.c.)
CF

Ñα
k by the Chern-Finsler (c.n.c)

CF

Nk
j coincides

with the intrinsic (c.n.c.)
CF
Nα
j .

Further on, the problem of the induced canonical (c.n.c.) is being studied and

using (12), from which Bα
k

CF

Nk
j =

CF

Ñα
j −Bα

kB
k
βjθ

β, and (6) the link between this and
the induced Chern-Finsler (c.n.c.) is obtained:

c

Ñα
j = 1

2B
α
k

(
Bk
βj +Bi

β

CF

Lkji

)
θβ + 1

2

CF

Ñα
j (13)

We note that in general

{
δ̃k :=

δ

δz̃k
=

∂

∂z̃k
− Ñα

k

∂

∂θα

}
are not d-tensor fields

on T ′M , i.e. they cannot change as vectors on the manifold. Also, by the inclusion
tangent map, i∗(δ̃k), which for convenience will be often identified with δ̃k on T ′M ,
using (9), (11) and (12), we have:
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δ̃k = δk +H0
kN and ∂̇k = Bα

k ∂̇α + ηkN; where H0
k = (Bj

αkθ
α +N j

k)ηj . (14)

The dual induced coframe d̃zk = dz̃k and δθα = dθα + Nα
j dz̃j may be also

considered. The dual coframe from T ′M can be expressed by the elements of the
induced dual coframe as:

dzk = dz̃k şi δηk = Bk
αδθ

α + ηkH0
j dz̃j ,

The induced frame and co-frame on the whole TCI and the induced metric structure
are obtained by conjugation everywhere:

G̃ = gij̄ d̃z
i ⊗ d̃z̄j + gαβ̄δθ

α ⊗ δθ̄β, (15)

where gij̄(z̃, η(θ)) is the metric tensor of the space along the indicatrix points.

4 The equations of the indicatrix as hypersurface

In this section first will deduce the Gauss-Weingarten equations relative to the
induced (c.n.c.) on the hypersurface space of the indicatrix, followed then by the
equations of Gauss, H- and A-Codazzi, and Ricci equations.

To find the induced C-F or Berwald linear connections the Gauss-Weingarten
equations of the hypersurface I will be considered , with respect to the Chern-Finsler
complex linear connection, briefly C-F (c.l.c.), respectively Berwald (c.l.c.), of the
space T ′M .

Considering Ñ o fixed (c.n.c.) on I (let it be the one induced by (c.n.c.) N
from T ′M , by (12)), so that TC(I) = HI⊕ V I⊕HI⊕ V I takes place. Following the
steps to define a d-(c.l.c.) on a complex space from [8], a linear connection on TCI
can be defined as a map

D̃ : Γ(TCI)→ Γ(TCI⊗ TCI∗),

such that D̃(fu) = ud̃f+fD̃u, ∀f ∈ A0(I) and u ∈ Γ(TCI). Assuming D̃ conserves
the above distributions, in the local frame {δ̃k, ∂̇α, δ̃k̄, ∂̇k̄} a d-(c.l.c.) is well defined
by the next set of coefficients:

D̃δ̃k
δ̃j = L̃ijkδ̃i, D̃∂̇γ

δ̃j = C̃ijγ δ̃i, D̃δ̃k̄
δ̃j = L̃i

jk̄
δ̃i, D̃∂̇γ̄

δ̃j = C̃ijγ̄ δ̃i,

D̃δ̃k
∂̇β = L̃αβk∂̇α, D̃∂̇γ

∂̇β = C̃αβγ ∂̇α, D̃δ̃k̄
∂̇β = L̃α

βk̄
∂̇α, D̃∂̇γ̄

∂̇β = C̃αβγ̄ ∂̇α,

D̃δ̃k
δ̃j̄ = L̃ı̄

j̄k
δ̃ı̄, D̃∂̇γ

δ̃j̄ = C̃ ı̄
j̄γ
δ̃ı̄, D̃δ̃k̄

δ̃j̄ = L̃ı̄
j̄k̄
δ̃ı̄, D̃∂̇γ̄

δ̃j̄ = C̃ ı̄
j̄γ̄
δ̃ı̄,

D̃δ̃k
∂̇β̄ = L̃ᾱ

β̄k
∂̇ᾱ, D̃∂̇γ

∂̇β̄ = C̃ᾱ
β̄γ
∂̇ᾱ, D̃δ̃k̄

∂̇β̄ = L̃ᾱ
β̄k̄
∂̇ᾱ, D̃∂̇γ̄

∂̇β̄ = C̃ᾱ
β̄γ̄
∂̇ᾱ.

It can be noticed that on the indicatrix space an N − (c.l.c.) cannot be intro-
duced, because the necessary condition is not fulfilled.

Let Ñα
k be the induced (c.n.c.) on the indicatrix I. Then the tangent connec-

tion DΓ̃ induced by d-(c.l.c.) DΓ =

(
N i
j ,

1

Lijk,
1

Cijk,
3

Li
jk̄
,

3

Ci
jk̄
,

2

Lijk,
2

Cijk,
4

Li
jk̄
,

4

Ci
jk̄

)
will
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be a (c.l.c.) with respect to the induced connection and therefore the following
decomposition occurs:

DXY = D̃XY +H(X,Y ), ∀X,Y ∈ Γ(TCI), (16)

known as Gauss’s formula, in which D̃XY ∈ Γ(TCI) is the induced tangent con-
nection and H(X,Y ) ∈ Γ(TCI⊥) is the normal part of DXY . The map H :
Γ(TCI) × Γ(TCI) → Γ(TCI⊥) is F(I)-bilinear and is called the second fundamen-
tal form of the indicatrix subspace.

On the adapted frame of (c.n.c.) on I and the normal frame formed only by N,
the second fundamental form H is well-defined by the next set of coefficients:

H(δ̃j , δ̃i) = HijN, H(δ̃j , δ̃ı̄) = Hı̄jN̄, H(∂̇β, ∂̇α) = HαβN, H(∂̇β, ∂̇ᾱ) = HᾱβN̄,

H(δ̃j , ∂̇α) = HαjN, H(δ̃j , ∂̇ᾱ) = HᾱjN̄, H(∂̇β, δ̃i) = HiβN, H(∂̇β, δ̃ı̄) = Hı̄βN̄.

These coefficients are Hermitian (Hαβ = Hᾱβ̄) and by a direct computation, taking
into account that for the normal component occurs G(DXY, N̄) = G(H(X,Y ), N̄),
it takes:

Hij = δj(H
0
i ) +H0

j N(H0
i ) +H0

i H
0
j −H0

i ηl(N
l
j − ηk

2

Llkj) +H0
i H

0
j ηkη

nηl
2

Cknl,

Hı̄j = δj(H
0
ı̄ ) +H0

ı̄

4

Lk̄
l̄j
η l̄ηk̄ +H0

j N(H0
ı̄ ) +H0

ı̄ H
0
j ηk̄η

lηn̄
4

C k̄n̄l,

Hαβ = Bj
αBk

β

2

Cijkηi, Hᾱβ = B j̄
ᾱB

k
β

4

C ı̄
j̄k
ηı̄,

Hαj =

(
Bi
αj +Bk

α

2

Likj

)
ηi +H0

jB
i
αη

lηk
2

Ckil,

Hᾱj = B ı̄
ᾱ

4

Lk̄ı̄jηk̄ +H0
jB

ı̄
ᾱη

lηk̄

4

C k̄ı̄l,

Hiβ = Bj
β ∂̇j(H

0
i ) +Bj

βH
0
i η

lηk
2

Cklj , Hı̄β = Bj
β ∂̇j(H

0
ı̄ ) +Bj

βH
0
ı̄ η

l̄ηk̄

4

C k̄
l̄j
.

(17)

Next, using the Gauss’s formula (16), the coefficients of the induced d-(c.l.c.)
are obtained:

L̃ijk =
1

Lijk +H0
kη

l
1

Cijl; L̃ı̄j̄k =
3

Lı̄j̄k +H0
kη

l
3

C ı̄j̄l;

C̃ijγ = Bk
γ

1

Cijk; C̃ ı̄j̄γ = Bk
γ

3

C ı̄j̄k;

L̃αβk =

(
Bi
βk +Bl

β

2

Lilk

)
Bα
i +H0

kB
i
βB

α
p η

l
2

Cpil;

L̃ᾱβ̄k = Bᾱ
p̄B

ı̄
β̄

4

Lp̄ı̄k +H0
kB

ᾱ
p̄B

ı̄
β̄η

l
4

C p̄ı̄l;

C̃αβγ = Bα
i B

j
βB

k
γ

2

Cijk; C̃ᾱβ̄γ = Bᾱ
ı̄ B

j̄

β̄
Bk
γ

4

C ı̄j̄k. (18)
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Similarly, following the settings of the general geometry of subspaces, a linear
connection DΓ(T ′M) induces a normal connection D⊥Γ(I). For X ∈ Γ(TCI) and
W ∈ Γ(TCI⊥), we have

DXW = −AWX +D⊥XW, (19)

where AWX ∈ Γ(TCI) and D⊥XW ∈ Γ(TCI⊥). This formula is called Weingarten’s
formula.

The map A : Γ(TCI⊥) × Γ(TCI) → Γ(TCI) is F(I)-bilinear, AWX = A(W,X),
and AW is called the shape operator (or Weingarten operator). Also TCI⊥ is spanned
by N, N̄, namely it has only the vertical component and thus it can be concluded
that D⊥XW ∈ Γ(VCI⊥) and A : Γ(VCI⊥) × Γ(TCI) → Γ(VCI). Thus, as before, the
action of the shape operator may be expressed AN(X) := A(X) ∈ V I on δ̃k and ∂̇α
as:

AN(δ̃k ) = Aαk ∂̇α; AN(∂̇β) = Aαβ ∂̇α;

AN(δ̃k̄ ) = Aαk̄ ∂̇α; AN(∂̇β̄) = Aαβ̄ ∂̇α,

these coefficients being Hermitian, i.e. Aαk = Aᾱ
k̄
. Thus, considering G(DXN,∂̇β̄) =

−G(A(X),∂̇β̄), ∂̇β̄ = Bk̄
β̄
∂̇k̄ and bilinearG, we obtain the following relationG(DXN,∂̇k̄) =

−G(A(X),∂̇k̄). Thereby

Aαk = Bα
i

(
N i
k − ηj

2

Lijk −H0
kη

lηj
2

Cijl

)
; Aαβ = −Bα

i

(
Bi
β +Bk

βη
j

2

Cijk

)
;

Aαk̄ = −Bα
i

(
ηj

4

Lijk̄ +H0
k̄η

l̄ηj
4

Cijl̄

)
; Aαβ̄ = −Bα

i B
k̄
β̄η

j
4

Cijk̄. (20)

Next, using these, a relation between the induced and intrinsic particular con-
nections introduced on the indicatrix bundle will be obtained.

On T ′M a Hermitian N-(c.l.c.) D of (1, 0)−type can be introduced, known as
Chern-Finsler (c.l.c), locally given by the following set of coefficients:

CF
D Γ =

(
CF

N i
j = gm̄i

∂glm̄
∂zj

ηl,
CF

Lijk = gm̄i
δgjm̄
δzk

,
CF

Cijk = gm̄i
∂gjm̄
∂ηk

,
CF

Lı̄j̄k = 0,
CF

C ı̄j̄k = 0

)
.

Considering (12), Proposition 1, the tangent connection
CF
D Γ̃ induced by

CF
D Γ

will be a complex linear connection, so the Gauss formula (16) can be applied and

from (18) and homogeneity conditions
CF

Cijkη
j =

CF

Cijkη
k = 0, the induced d-(c.l.c.)

coefficients may be calculated:
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CF
D Γ̃ =

(
CF

Ñα
j = gβ̄α

∂gγβ̄
∂z̃j

θγ ;
CF

L̃ijk =
CF

Lijk;
CF

C̃ijγ = Bk
γ

CF

Cijk;
CF

L̃ı̄
j̄k

= 0;
CF

C̃ ı̄
j̄γ

= 0;

CF

L̃αβk = Bα
i

(
Bi
βk +Bj

β

CF

Lijk

)
;
CF

C̃αβγ = Bα
i B

j
βB

k
γ

CF

Cijk;
CF

L̃ᾱ
β̄k

= 0;
CF

C̃ᾱ
β̄γ

= 0

)
.

(21)

On a complex Finsler space relation (5) takes place, that is
CF

Lijk = ∂̇j

(
CF

N i
k

)
.

For the induced connection, using (12), this is preserved:

∂̇β

CF

Ñα
k = ∂̇β

{
Bα
j (z)

(
Bj
γkθ

γ +
CF

N j
k

)}
= Bα

j

(
Bj
βk +Bi

β

CF

Ljik

)
=

CF

L̃αβk

Using (17), the homogeneity condition
CF

Cijkη
j =

CF

Cijkη
k = 0 and ηj

CF

Lijk = N i
k,

obtained from
CF

Lijk =
∂
CF

N i
k

∂ηj
and 1-homogeneity of

CF

N i
k, the coefficients of the second

fundamental form H for the induced C-F d-(c.l.c.):

Hij = δj(H
0
i ) +H0

j N(H0
i ) +H0

i H
0
j , Hı̄j = δj(H

0
ı̄ ) +H0

j N(H0
ı̄ ),

Hαβ = Bj
αBk

β

CF

Cijkηi, Hᾱβ = 0,

Hαj = Bi
αjηi +Bk

α

CF

Likjηi, Hᾱj = 0,

Hiβ = Bj
β ∂̇j(H

0
i ), Hı̄β = Bj

β ∂̇j(H
0
ı̄ ).

Similar, using these conditions and Weingarten formula (19), the coefficients of
the shape operator can be expressed:

Aαk = 0; Aαβ = −δαβ ;

Aαk̄ = 0; Aαβ̄ = 0. (22)

Using the good vertical connection technique, an intrinsic (c.n.c.) Nα
k can be

determined on I and some of the d-(c.l.c.) coefficients, defined on the vertical
bundle D : TCI × VCI → VCI, DΓ(N) = (Lαβk, L

ᾱ
β̄k
, Cαβγ , C

ᾱ
β̄γ

). For example, in the

C-F (c.n.c.)
CF
Nα
j = gβ̄α

∂gγβ̄
∂z̃j

θγ = gβ̄α ∂2L
∂z̃j∂θ̄β

, we can introduce on the vertical fibers

CF
D Γ

(
CF

Nα
j

)
=

(
CF

Lαβk = gσ̄α
δgβσ̄
δz̃k

,
CF

Cαβγ = gσ̄α
∂gβσ̄
∂θγ

,
CF

Lᾱβ̄k =
CF

Cᾱβ̄γ = 0

)
Considering that the C-F intrinsic and induced (c.n.c.) coincide according to

Proposition 1, using (14), the homogeneity condition
∂gjm̄
∂ηl

ηl = 0 and gn̄iηn̄B
α
i =



72 Elena Popovici

gn̄igjn̄η
jBα

i = δijη
jBα

i = ηiBα
i = 0, we obtained that the corresponding coefficients

coincide too:
CF
Lαβk =

CF

L̃αβk and
CF
Cαβγ =

CF

C̃αβγ . Similarly, the coefficients on the horizontal
fibers can be defined:

CF

Lijk

∣∣∣∣∣
I

= gm̄i
δgjm̄
δz̃k

,
CF

Cijγ = gm̄i
∂gjm̄
∂θγ

,
CF

Lı̄j̄k

∣∣∣∣∣
I

=
CF

C ı̄j̄γ = 0

and they coincide with the corresponding ones:
CF

Lijk

∣∣∣∣∣
I

=
CF

L̃ijk and
CF

Cijγ =
CF

C̃ijγ , and

so we have proved that

Proposition 2. On the indicatrix bundle, the induced and the intrinsic C-F d-
(c.l.c.) coincide, i.e. the (21) relation concur with

CF
D Γ

∣∣∣∣
I

=

(
CF
Nα
j = gβ̄α

∂gγβ̄
∂z̃j

θγ ;
CF

Lijk

∣∣∣∣∣
I

= gm̄i
δgjm̄
δz̃k

,
CF

Cijγ = gm̄i
∂gjm̄
∂θγ ,

CF

Lı̄
j̄k

∣∣∣∣
I

=
CF

C ı̄
j̄γ

= 0,

CF
Lαβk = gσ̄α

δgβσ̄
δz̃k

,
CF
Cαβγ = gσ̄α

∂gβσ̄
∂θγ ,

CF

Lᾱ
β̄k

=
CF

Cᾱ
β̄γ

= 0

)
.

From the general theory of sprays on a manifold M (see [8]) from the coefficients

of a spray
c
G := 1

2

CF

N i
kη
k = 1

2

CF

N i
0 a (c.n.c.) can determined

c

N i
k = ∂

c

Gi

∂ηk
, called the

canonical (c.n.c.). Correspondingly, a complex linear connection can be associated
known as Berwald type complex connection, locally given by the set of coefficients:

BΓ =

(
c

N i
j =

1

2
∂̇j

(
CF

N i
kη
k

)
,

B

Lijk = ∂̇k

c

N i
j =

B

Likj ,
B

Lijk̄ = ∂̇k̄

c

N i
j ,

B

Cijk = 0,
B

Cijk̄ = 0

)
.

with (6), (7) properties and, moreover,
B

Li
jk̄
ηk̄ = 0 takes place (see [3], Lemma

2.2.a.).

Considering (12),
c

Ñα
j = Bα

k

(
Bk
βjθ

β +
c

Nk
j

)
, the tangent connection BΓ̃ induced

by BΓ is a (c.l.c), therefore the Gauss formula (16) can be applied and from (18)
the induced d-(c.l.c.) coefficients can be estimated:

BΓ̃ =

(
c

Ñα
j = Bα

k

(
Bk
βjθ

β +
c

Nk
j

)
;

B

L̃ijk =
B

Lijk;
B

L̃i
jk̄

=
B

Li
jk̄

;
B

C̃ijγ = 0;
B

C̃ijγ̄ = 0;

B

L̃αβk = Bα
i

(
Bi
βk +Bj

β

B

Lijk

)
;

B

L̃α
βk̄

= Bα
i B

j
β

B

Li
jk̄

;
B

C̃αβγ = 0;
B

C̃αβγ̄ = 0

)
.

(23)



The equations of the indicatrix of a complex Finsler space 73

From (17) and (20), using ηj
B

Lijk =
B

N i
k, the coefficients of the second fundamental

form H and the coefficients of the shape operator can be obtained for the induced
Berwald d-(c.l.c.):

Hij = δj(H
0
i ) +H0

j N(H0
i ) +H0

i H
0
j , Hı̄j = δj(H

0
ı̄ ) +H0

j N(H0
ı̄ ) +H0

ı̄

B

Lk̄
l̄j
η l̄ηk̄,

Hαβ = 0, Hᾱβ = 0,

Hαj = Bi
αjηi +Bk

α

B

Likjηi, Hᾱj = B ı̄
ᾱ

B

Lk̄ı̄jηk̄,

Hiβ = Bj
β ∂̇j(H

0
i ), Hı̄β = Bj

β ∂̇j(H
0
ı̄ ).

Aαk = 0; Aαβ = −δαβ ;

Aαk̄ = −Bα
i η

j
B

Lijk̄; Aαβ̄ = 0.

Similarly as in the intrinsic C-F d-(c.l.c.) case, first we introduce the coefficients
of the intrinsic Berwald d-(c.l.c.) on the vertical fibers

BΓ

(
c

Nα
j

)
=

 B

Lαβk =
∂

c
Nα
k

∂θβ
,

B

Lαβk̄ =

∂

(
Bj
β

c
Nα
j

)
∂ηk̄

,
B

Cαβγ = 0,
B

Cαβγ̄ = 0

 (24)

where
c
Nα
j = 1

2

∂

(
CF
Nα
i η

i

)
∂ηj

is the intrinsic canonical (c.n.c.) on the indicatrix bundle.
Then it can be proved:

Proposition 3. The canonical (c.n.c.)
c

Ñα
j induced on I from the canonical (c.n.c.)

c

N i
j of the base manifold T ′M coincides with the intrinsic canonical (c.n.c.)

c
Nα
j of

the indicatrix bundle.

So, it can be easily verified that the coefficients of the vertical fields of the
intrinsic and induced Berwald d-(c.l.c.) coincide. Using (24) and (13) it can be
checked that the induced Berwald connection is of Berwald type, i.e.

Proposition 4. The induced Berwald connection coincides with the intrinsic Berwald
connection of the indicatrix bundle, namely:

B

L̃αβj =

c

∂Ñα
j

∂θβ
.

On the horizontal fibers can be introduced:

B

Lijk

∣∣∣∣∣
I

=
∂

c

N i
k

∂ηj
= ∂̇k

c

N i
j ,

CF

Lijk̄

∣∣∣∣∣
I

= ∂̇k̄

c

N i
j ,

CF

Cijγ = 0,
CF

C ı̄j̄γ = 0

and we can state:
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Proposition 5. On the indicatrix bundle, the induced and the intrinsic Berwald
type d-(c.l.c.) coincide, i.e. the (23) relation concur with

BΓ|I =

 c
Nα
j = 1

2

∂

(
CF
Nα
i η

i

)
∂ηj

;
B

Lijk

∣∣∣∣∣
I

= ∂̇j
c

N i
k,

B

Li
jk̄

∣∣∣∣∣
I

= ∂̇k̄

c

N i
j ,

B

Cijγ = 0,
B

Cijγ̄ = 0,

B
Lαβk = ∂̇β

c
Nα
k ,

B
Lα
βk̄

= ∂̇k̄

(
Bj
β

c
Nα
j

)
,

B
Cαβγ = 0,

B

Cᾱ
β̄γ

= 0

)
.

In order to introduce Gauss, Codazzi and Ricci equations on the indicatrix
hypersurface let us consider D a N-(c.l.c.) on T ′M and D̃, D⊥ Ñ - the induced
tangent and normal connection on I, as above. Let ṽ and h̃ denote the projectors

on V I and HI distributions, respectively, and through ṽ and h̃ the projectors on
conjugate distributions will be denoted. Without the tilde the same projectors on
TCT

′M will be noted.
To get a link between curvatures R(X,Y )Z of D connection and R̃(X,Y )Z of

D̃ connection, for X,Y, Z ∈ Γ(TCI) we act similar steps as in [4] for real Finsler
manifolds and in [9] for complex Finsler space. First, the covariant derivative of the
second fundamental form is defined:

(DXH) (Y,Z) = D⊥X (H(Y, Z))−H
(
D̃XY, Z

)
−H

(
Y, D̃XZ

)
.

Now, using the curvature definition R (X,Y )Z = DXDY Z−DYDXZ−D[X,Y ],
the torsion definition T (X,Y ) = DXY −DYX − [X,Y ], for X,Y, Z ∈ Γ(TCI) and
applying the Gauss-Weingarten formulae (16) and (19), we get:

R(X,Y )Z = R̃(X,Y )Z +A (H(X,Z), Y )−A (H(Y, Z), X) + (DXH) (Y,Z)−
− (DYH) (X,Z) +H

(
T̃ (X,Y ), Z

)
Equating the components from TCI and T⊥C I with the help of the metric struc-

tures G and G̃ introduced in previous sections, we obtain

G (R(X,Y )Z,U) = G̃
(
R̃(X,Y )Z,U

)
+ G̃

(
AH(X,Z)Y −AH(Y,Z)X,U

)
where U ∈ Γ

(
T ′I
)
, and respectively, using that TCI⊥ is spanned only by N, N̄,

G
(
R(X,Y )Z, N̄

)
= G

(
(DXH) (Y, Z)− (DYH) (Y,Z), N̄

)
+ G

(
H
(
T̃ (X,Y ), Z

)
, N̄
)

called the Gauss equations, respectively H-Codazzi equations of (I,L̃) subspace.
Analogously, for normal curvatures R (X,Y ) N and R̃ (X,Y ) N, defining the

covariant derivative of the shape operator
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(DXA) (N, Y ) = D̃X (ANY )−A
(
D⊥XN, Y

)
−A

(
N, D̃XY

)
,

and the curvature formR⊥ of the normal Finsler connection, R⊥(X,Y )N = D⊥X
(
D⊥Y N

)
−

D⊥Y
(
D⊥XN

)
−D⊥[X,Y ]N, using the Gauss-Weingarten equations (16) and (19) it is ob-

tained that:

R(X,Y )N = R⊥ (X,Y ) N +H (Y,ANX)−H (X,ANY ) + (DYA) (N, X)−
− (DXA) (N, Y )−AN

(
T̃ (X,Y )

)
.

Equating their components from TCI and T⊥C I, we have

G (R(X,Y )N, Z) = G̃ ((DYA) (N, X)− (DXA) (N, Y ) , Z)− G̃
(
AN

(
T̃ (X,Y )

)
, Z
)

where X,Y ∈ Γ (TCT
′I) , Z ∈ Γ

(
T ′I
)
, and

G
(
R(X,Y )N, N̄

)
= G

(
R⊥ (X,Y ) N, N̄

)
+ G

(
H (Y,ANX)−H (X,ANY ) , N̄

)
called the A-Codazzi equations, respectively Ricci equations of (I,L̃) subspace.

Further on, we will try to give some conditions when the indicatrix hypersurface
is an umbilical submanifold.

Roughly speaking, a submanifold of a Riemannian manifold is totally umbilical,
or simply umbilical, if it is equally curved in all tangent directions. A point x ∈M
is called an umbilical point of the indicatrix if the shape operator A is proportional
to the identity transformation for all vector fields from TCI⊥, i.e. for W ∈ T⊥I ,
the Weingarten operator satisfies:

AWX = λX, where λ ∈ R, ∀W ∈ TCI⊥.

The submanifold is said to be totally umbilical if every point of the submanifold is
an umbilical point.

Considering that TCI⊥ is spanned only by N, N̄, and given the fact that

AN(δ̃k ) = Aαk ∂̇α; AN(∂̇β) = Aαβ ∂̇α;

AN(δ̃k̄ ) = Aαk̄ ∂̇α; AN(∂̇β̄) = Aαβ̄ ∂̇α,

where the shape operator coefficients are given by (20), for the indicatrix to be
an umbilical manifold we must have Aαk = Aα

k̄
= Aα

β̄
= 0 and Aαβ = λδαβ , where

λ ∈ R. It can be noticed that if the induced C-F d-(c.l.c.) is considered, relation
(22) confirms that the indicatrix is umbilical with λ = −1, and we may conclude
that in this case the indicatrix is a totally umbilical hypersurface of constant mean
curvature.
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In [6], the definition of an extrinsic sphere is given as a submanifold of a Rie-
mannian manifold that is a totally umbilical submanifold with a nonzero parallel
mean curvature vector. So, in the case of the C-F N-(c.l.c.) connection considered
on the complex Finsler space (M,L), the indicatrix Ix is an extrinsic sphere of T ′M .
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