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THE EQUATIONS OF THE INDICATRIX OF A COMPLEX
FINSLER SPACE
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Abstract

In this paper we extend the study of the indicatrix of a complex Finsler
space initiated in [10, 11]. The equations that can be introduced on the in-
dicatrix, which is studied as a hypersurface of a complex Finsler space, are
investigated. In this manner, using the equations of Gauss-Weingarten, the
link between the intrinsic and induced connection is deduced. The equations
of Gauss, H-and A-Codazzi, and Ricci equations of the indicatrix are consid-
ered. Also, conditions for totally umbilical indicatrix are obtained.
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1 Introduction

The study of the indicatrix of a real Finsler space is one of interest, mainly because it
is a compact and strictly convex set surrounding the origin. The geometry of (real)
indicatrix as a hypersurface of a total space has been studied by Akbar-Zadeh in [2],
where it is proved that it plays a special role in obtaining necessary and sufficient
conditions for an isotropic Finsler manifold to be of constant sectional curvature.
A comprehensive study of the indicatrix hypersurface could be found in [7]. In [5],
a smooth compact and connected manifold with the properties of a indicatrix was
called by Bryant with generalized Finsler structure.

The study of the indicatrix of a complex Finsler space was discussed in [10, 11],
in which the general framework of the indicatrix bundle is established.

In the present paper, in Section 2, some preliminary properties of the n- di-
mensional complex Finsler space are recalled. The main relations of the intrinsic
geometry of its indicatrix bundle are considered in Section 3. Since the approach of
the indicatrix is as a complex hypersurface of 7'M, it is natural to consider in Sec-
tion 4 the equations of a subspace in this case and to analyse the link between the
main induced and intrinsic connections considered. Some conditions for the indica-
trix to be a totally umbilical submanifold of a complex Finsler space are obtained
in Section 4.
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2 Complex Finsler spaces: settings

Firstly, we will make a short overview of the concepts and terminology used in
complex Finsler geometry, for more see [1, 8]. Let M be a complex manifold and
(2%) the complex coordinates on a local chart.

The complexified of the real tangent bundle TcM splits into the sum of holo-
morphic tangent bundle T7"M and its conjugate 7" M, i.e. TcM = T'M @& T"M.
The bundle 7'M is in its turn a complex manifold and the local coordinates in a
local chart are (2%, 7).

Definition 1. A complex Finsler space is a pair (M,F), where F : T'M — R is
a continuous function that satisfies the following conditions:

i. L:=F? is a smooth function on T'M :=T'M \ {0};
ii. F(z,n) >0, , the equality holds iff n = 0;

iii. F(z,An) = |A\[F(z,n), YA € C, is the homogeneity condition of the Finsler func-

tion F';

iv. the Hermitian matrix (gﬁ(z,n)), with g;; = 87?1'26671' the fundamental metrig t@n—
sor is positive definite. This means that the indicatriz 1, = {n | g;;(z,n)n'n’ =
1} is strongly pseudoconvez, for any z € M.

By applying Euler’s formula for homogeneous functions, from iii. we get that:

oL oL _ 09;5 0g;5 L
o =g =L gt =gl =0 and L=ggn'. (1)

Thus, the aim of the geometry of a complex Finsler space is to study the ge-
ometric objects of the complex manifold 7'M endowed with a Hermitian metric
structure defined by g;;. Regarding this, the first step is the study of the sec-
tions of the complexified tangent bundle of 7'M which splits into the direct sum
Tc(T'M) =T (T'M)a® T"(T'M). Let V(T'M) C T'(T"M) be the vertical bundle,

locally spanned by {a%k} and let V(T" M) be its conjugate.

The idea of complex nonlinear connection, briefly (c.n.c.), is fundamental in
"linearization” of this geometry. A (c.n.c.) is a supplementary complex subbun-
dle to V(T'M) in T(T'M), i.e. T'(T'M) = H(T'M) & V(T'M). The horizontal
distribution H,(7"M) is locally spanned by {% = B%k - Ng%}, where Ng(z, n)
are the coefficients of the (c.n.c.), which follow the local maps rule change, so that

5 _ 91 s _ 09 9
ozk T 0zk 5277 T Ozk onli-

The pair {5k = 6%’” O = %} will be called the adapted frame of the (c.n.c.).

is fulfilled. Obviously, we also have 8%’9

By conjugation everywhere we get an adapted frame {Jz, 8,;} on T))(T"M). The
dual adapted bases are {dzk, onF = dnF + N]’?dzj}, respectively {dz*, 67*}, where
§iF = di* + Nfdzﬂ'.
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Let us consider the Sasaki type lift of the metric tensor g;5, as

G = g;d2' ® dZF + g;6n' @ 617 (2)

One main problem of this geometry is to determine a (c.n.c) related only by the
fundamental function of a complex Finsler space (M, L); one almost classical now
is the Chern-Finsler (c.n.c) ([1],[8]):

CF
le_c _ gmkaag% I (3)

The next step is to specify the derivation law D on sections of Tc(T'M). A
Hermitian connection D, of (1,0)-type, which satisfies D;xY = JDxY , for all
horizontal vectors X and the natural complex structure J on the manifold, will be
the Chern-Finsler linear connection, in brief C-F, locally given by the next set of
coefficients (notations from [8]):

é'kz = gliék(gjf)a C]Zk = gliak(gj[)’ L%k =0, Cgk =0, (4)
where D(;k&j = L;kéi, D5k3j :7 L;kai, Dakaj = ;k&, Dak(sj = C;k(sz Of
course, there is also DxY = DgY. From the homogeneity conditions (1) it takes:
C;knj = ;knk = 0. On the other hand, from ¢™gpn = 5}; it follows that

— = —g"Pg?—— and it is obtained that L%, is of Berwald type, i.e.
ond onJ J
CF e
. ON;
L= —E, (5)
jk 877]

Another (c.n.c.) with a special importance in the study of geodesics on a com-
plex Finsler space, is the canonic (c.n.c.), given by:

¢ 1. (CF 1|, G, oF 1(eF, CF
Nj =50 | Nen™ | = 5 |9 (Nin™ + Nydj | = o | L™ + Nj (6)
It comes from a spray and using it the Berwald (c.l.c) can be introduced:
c c_
B c. B QNI B ON: B B
_ 7 7 _ 2 _ 7 —_ K3 —_
DI' = | Ng, = Pk L;,.C—Wa k=0, C3 =0

The Berwald (c.l.c) is defined on the vertical bundle V(T'M) and it is easy to
check that:

¢ CF CF\ B | [CF CF . CF 5 B
Ni=5 Lo+ Ni| s Ljp =5 | Lin+ Ly | +505(Lim)n™, and Ly, = Li; (7)

cF 2
[ o R |
where L, := Lj 17’
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On T¢(T' M) the following 1-form: w = W' +w” := ndz* +7,dz* is well-defined,
where 1y == gp57 = %.

Further we will use the following notation 7/ =: 773 to denote a conjugate object.

3 The intrinsic geometry of complex indicatrix

Let M be a complex manifold, dim¢M =n+ 1, 7 : T"M — M be its holomorphic
bundle and consider (zk , nk) k=TT the complex coordinates on the manifold 7'M,
dimcT'M = 2n + 2.

Consider I, = {n | gl-j(z,n)ninj = 1} the indicatrix at z of a complex Finsler

space (M, L) and 7y : I — M the indicatrix bundle, where I = (J L. I C T'M
zeM
is a holomorphic subbundle and a complex and strictly connected in the 0 origin

hypersurface of 7'M, dimcl = 2n + 1. Let i : I — T'M be the inclusion map
and i, : Tcl — To(T'M) be the extension of the tangent inclusion map to the
complexified bundles.

Further on, we will study the geometry of the complex hypersurface I of the com-
plex manifold 7"M. If we consider (Z,0%) o=Tm: k=Tn71 & Parametric representation
of the indicatrix hypersurface then we have the following local representation:

k
k= 2% and nf = BE(2)6% where rang(BY) =n, Bf(z) = gza (8)

The involved immersion and holomorphy implies that BX(z) = % = 0 and
7 —k
B’O‘i(z) = %. Computing the Jacobi matrix in a point of the complexified tangent
space T¢I, tangent vectors are obtained:

0B,

where B(J)ék = ﬁ (9)

0

) o 0 .0
0zk 9z

+ ak 5773’ B aank’

The vertical distribution VI, spanned by {aa = %}, is a subdistribution of

V(T'M). We will note the tangent vectors %, 8‘% obtained by conjugation every-
where in the above relations. The dual bases are (by differentiation in (8)):

d#F =dzF  and  dn" = Bl;0*d% + BEdo“. (10)
The abbreviated formula ng = BikGO‘ can be used above.

On the indicatrix I we have L(z*, n*(0)) = gﬁ(z,n(ﬁ))n"(ﬁ)ﬁj(é) = 1 and by
differentiation with respect to d, we obtain %Bsniﬁj + gingﬁj = 0. In terms
of homogeneity conditions (1), it follows g;;B,%’ = 0, i.e. the Liouville vector
N:= nka%k is normal to the vertical distribution V1 spanned by the tangent vectors
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ds to the hypersurface I. Moreover, N is a unit vector, because nn* = 1, where
Mk = i -

Along VT'M the frame R = {3 = Bk_2 2

be R~! = { B¢ ni}! the inverse matrices of this base, i.e.:

N= n'“a%} can be considered and

BBk =63, Bin* =0, Bigy=0, BEBY+nfn; =0k nnf=1(11)

The fundamental function L(Z,0) = L(z,7(0)) of the complex Finsler space

defines a metric tensor g,5 on the indicatrix 1, g5 = B2 ,Bkg,-, where Bk Bk It

95,
Bt
is easy to verify that gﬂa = gﬂBf‘Bf is the inverse of g, 5 and gjZ = B! Bl gﬂa+77 77].
Moreover, along (I,L) subspace 9rxh = 9rn 1Ky, takes place, where g,; = By Bﬁgaﬂ'
Also on the indicatrix I, from nknk =1 it follows that 0,0 = 1, where 6, = ga/;@ﬁ .

On T'I the local frame {Sk = 6% - N?%ﬁa = %} can be considered and
its dual base is given by {dz*, 0% = d6* + Njadéj}, where N will be called the
coefficients of the induced (c.n.c) iff 60% = B¥dn*, i.e. do* + J\Nf]‘-"dij = BY(dn* +
Nfdzj), and using (10), we have ([10])

N = B (BE0” + N)). (12)

CF _
Let Nf = gmk%nl be the Chern-Finsler (c.n.c) from (3), and

CF - 3 - 27
No = g#a %93y _ pa L,
J 0z 021008
the intrinsic (c.n.c.) coefficients. Then it takes place (with complete demonstration

n [11]):

CF CF
Proposition 1. The induced (c.n.c.) Ni* by the Chern-Finsler (c.n.c) Njk coincides

CF
with the intrinsic (c.n.c.) N3*.

Further on, the problem of the induced canonical (c.n.c.) is being studied and
CF CF
using (12), from which B?N]k = N{¥ — Bg‘B’g]ﬂﬁ, and (6) the link between this and

the induced Chern-Finsler (c.n.c.) is obtained:

c CF CF
K 1 . | 2
N =By | BE;+ BsLY | 0° + SN& (13)
We note that in general { & 0 g No 0 are not d-tensor fields
n in gener = — = = = —_— re n -tensor
& BT 55k T gk T Uk gga

on T'M, i.e. they cannot change as vectors on the manifold. Also, by the inclusion
tangent map, z*(ék) which for convenience will be often identified with d, on T"M,
using (9), (11) and (12), we have:
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Op =0+ H'N and 8 = B0y + miN;  where H) = (Bi,ﬁa + Ng)nj. (14)

The dual induced coframe dzF = dz*F and 66° = do* + Njo‘dij may be also
considered. The dual coframe from 7'M can be expressed by the elements of the
induced dual coframe as:

deF =dzF s ont = BhoO™ +nFHIdZ,
The induced frame and co-frame on the whole T¢I and the induced metric structure
are obtained by conjugation everywhere:

G = g;dz' @ A7 + g,560" ® 66°, (15)

where g;5(Z,7(0)) is the metric tensor of the space along the indicatrix points.

4 The equations of the indicatrix as hypersurface

In this section first will deduce the Gauss-Weingarten equations relative to the
induced (c.n.c.) on the hypersurface space of the indicatrix, followed then by the
equations of Gauss, H- and A-Codazzi, and Ricci equations.

To find the induced C-F or Berwald linear connections the Gauss-Weingarten
equations of the hypersurface I will be considered , with respect to the Chern-Finsler
complex linear connection, briefly C-F (c.l.c.), respectively Berwald (c.l.c.), of the
space T'M.

Considering N o fixed (c.n.c.) on I (let it be the one induced by (c.n.c.) N
from T"M, by (12)), so that To(I) = HI& VI® HI® VI takes place. Following the
steps to define a d-(c.l.c.) on a complex space from [8], a linear connection on T¢I
can be defined as a map

D :T(Tel) — T(Tel @ Tel?),

such that D(fu) = udf+ fDu, Vf € A%(I) and u € I'(Tel). Assuming D conserves
the above distributions, in the local frame {dj, 04, 0z, O3} a d-(c.l.c.) is well defined
by the next set of coefficients:

D, 05 = Ly, Dy 05 = Cj, D505 = Ligoin - Dy 05 = Cg50i,
D5,08 = LjtOa, Dy 03 = C,0a, D5 0p = LiggOa, Dy 03 = C50a,
D505 = Ly, Dy 05=C5.0n, Dy 05 = Ligds, Dy 05 = Ch0n,
D5, 05 = L3, 05, Dy 05 = C4 Oa, Dj 95 = L30a, Dy 5= C3 s

It can be noticed that on the indicatrix space an N — (c.l.c.) cannot be intro-
duced, because the necessary condition is not fulfilled.
Let Ni* be the induced (c.n.c.) on the indicatrix I. Then the tangent connec-

- o183 2 2 4 Ay
tion DI induced by d-(c.l.c.) DT = (N;,L;k,c;k,L;k,C;k,L;k,c;k,L;k,C;k) will
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be a (c.l.c.) with respect to the induced connection and therefore the following
decomposition occurs:

DxY =DxY + HX,Y), VX,Y €I(Tcl), (16)

known as Gauss’s formula, in which DxY € ['(T¢1) is the induced tangent con-
nection and H(X,Y) € I'(T¢It) is the normal part of DxY. The map H :
[(Tel) x T(Tel) — T(Telt) is F(I)-bilinear and is called the second fundamen-
tal form of the indicatrix subspace.

On the adapted frame of (c.n.c.) on I and the normal frame formed only by N,
the second fundamental form H is well-defined by the next set of coefficients:

. : ) H(a:ﬁ,@a) = H.gN, H(a (? ) = HapN,
H(bj,00) = HajN, H(8j,0a) = HayN, H(D,6;) = HigN,  H(Jp,8;) = HygN.

These coefficients are Hermitian (H,g = H, aﬁ) and by a direct computation, taking
into account that for the normal component occurs G(DxY,N) = G(H(X,Y),N),
it takes:

2
Hi; = 0;(HY) + HON(HO) + H)H) — H)n (N} — nkLﬁcj) + HZ.OHJann”nlC’“

nl’

Hy = §;(HY) + HOL’“ Loy, + HN(HY) + HOHOnm 77”0’“

nl’

Hop = BLBY c © T H@g = B] B’“Clkm,

H,j = Béj + BQL};J) i+ HOB’ on nkCﬁ,

4 4
Haj = BLLEng + H) Bin nkCﬁ,
4
Hig = Béaj(HZ-O) + BéH?nlnkaj, Hipz = B (‘3 (H?) + B! Hon nka.
(17)
Next, using the Gauss’s formula (16), the coefficients of the induced d-(c.l.c.)
are obtained:

- .3
by = le+H ’le, Lk, :sz+H,g lc;l,
1
i k . k
Ci, = BFCi; c: _Bvcjlk,
2
LY, = <ng+3g h) B?+H,gB’ﬁB§‘nlC£,
~ — — 4—
L§, = ByBjLy + H\B B} lcf;,

2

Cg, = BIBiBFCY; cg, _BaBJB§C;k. (18)
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Similarly, following the settings of the general geometry of subspaces, a linear
connection DT'(T"M) induces a normal connection DLT(I). For X € I'(T¢I) and
W € I'(TcIh), we have

DxW = —AwX + DxW, (19)

where Ay X € T'(Tel) and DxW € T'(T¢lh). This formula is called Weingarten’s
formula.

The map A : T(ToIt) x T'(Tel) — T(Tel) is F(I)-bilinear, Ay X = A(W, X),
and Ay is called the shape operator (or Weingarten operator). Also ToIt is spanned
by N, N, namely it has only the vertical component and thus it can be concluded
that DxW € T'(VoIt) and A : T(Velt) x T(Tel) — T(Vel). Thus, as before, the
action of the shape operator may be expressed Ax(X) := A(X) € VI on &}, and d,
as:

An(Or) = Afda;  An(9p) = AfOa;
AN(Og) = AfDa;  A(95) = A0,

these coefficients being Hermitian, i.e. AY = Ag. Thus, considering G (D XN,E)B) =
—G(A(X),QB), 35 = Bg@,; and bilinear G, we obtain the following relation G(DxN,d;) =
—G(A(X),z). Thereby

2 2
Ay = BY (Né — 'Ly - Hgn’n”Cg’fz) ; =57 (BB + By’ C; )
AY = -B? ( L+ Hn nﬂc%) Af = -Bf Bn’C;-,C- (20)

Next, using these, a relation between the induced and intrinsic particular con-
nections introduced on the indicatrix bundle will be obtained.

On 7'M a Hermitian N-(c.l.c.) D of (1,0)—type can be introduced, known as
Chern-Finsler (c.l.c), locally given by the following set of coefficients:

CF CF B 'agl* CF 5 CF o CF CF
_ 1 __ M m 1 mi g]m i mi ng T T
DF—<Nj—g o Ly =9" =0 Cl=yg o , Lh,=0,C =0,

CF .
Considering (12), Proposition 1, the tangent connection DT induced by DF

will be a complex linear connection, so the Gauss formula (16) can be applied and
CF CF

from (18) and homogeneity conditions C’]Z:knj = C;knk = 0, the induced d-(c.l.c.)

coefficients may be calculated:
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CF CF - g CF CcF CF CF CF CF
M va — BaIBay. Tio o _7i . Mo pkevi . TTo—0. (T — (-
DT = N] =g’ 5% 07; ij = ij, Cﬂ = BWCjk, ij =0; ij =0;

CF CF CF ) CF CF CF

Ta _ ] J T .o I pkei . Ta _ (. @ _

L‘ék = B} B,%k;JFBﬁL;k ) CE‘V _B?B/BB'Y ;k’ L%k =0 Cﬂgv =0].
(21)

crF . [CF
On a complex Finsler space relation (5) takes place, that is Lék = 0; (N,ﬁ)

For the induced connection, using (12), this is preserved:

Lo , CF ) CF CF
dsNe = dy {B;.”(z) (B;km + N,i) } — B¢ (ng + BgL§k> — 1%

¢r CF COF A
Using (17), the homogeneity condition Chn’ = C]’knk = 0 and /Lj, = Ny,
CF
CF o CF

obtained from L;'.k. = o and 1-homogeneity of N}, the coefficients of the second

fundamental form H for the induced C-F d-(c.l.c.):
Hij = 6;(H) + H)N(H}) + HYH,  Hy = 6;(H) + H)N(HY),
F
H@ﬁ - 0,
. F
Heaj = BYmi + BYLjmi, Haj =0,
Hig = B30;(H}), Hys = BRo;(HY).

el
C

Similar, using these conditions and Weingarten formula (19), the coefficients of
the shape operator can be expressed:

Af 0; 5= —03;
A2 = 0 A% =0, (22)
Using the good vertical connection technique, an intrinsic (c.n.c.) Ny can be

determined on I and some of the d-(c.l.c.) coefficients, defined on the vertical

bundle D : Tl x Vel — Viel, DI'(N) = (Lgf,€7 L%‘w s, Cgv)' For example, in the

C-F ]C\’fﬂ Ba 9945 07 Bo_02L ; h ical fi
-F (cnc) NJ¥= g7 52707 = gP% 52255, we can introduce on the vertical fibers

CF_(CF CF 200985 CF o 0gss CF  CF
DP<Nja> = ( gk:gmﬁ,cgvzgm ,Lgkzcngo

o0

Considering that the C-F intrinsic and induced (c.n.c.) coincide according to

Proposition 1, using (14), the homogeneity condition ag;’f"‘ n' = 0 and g"ny By =
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g g B = (5;-17j B& = n'B$ = 0, we obtained that the corresponding coefficients
cr CF cr CF

coincide too: Lgk = L%, and CE,"V = Cgv‘ Similarly, the coefficients on the horizontal

fibers can be defined:

CF . CF .. CF CF
i | o mi 0 cl = mi O9m Lt —
k| = sk T T 9 ey k| T Ny T
I I
cr| CoF  cr  CF
and they coincide with the corresponding ones: L7, | = L) and i, = Cj, ,and
I

so we have proved that

Proposition 2. On the indicatriz bundle, the induced and the intrinsic C-F d-
(c.l.c.) coincide, i.e. the (21) relation concur with

(Er = ]C\ﬂ = gﬁaagv.ﬁm' LCzF — gmi9%im fff = omi99m %; — ng =0
. i GEZi ’ ik : g 53k 7 g 0607 ik v )
EaF — Fa 095 8€ — 5a 995 gg :Cc:g :O>
e =9 Sz Yy =9 Bev 0 Lpg By :

From the general theory of sprays on a manifold M (see [8]) from the coefficients

c CF CF c. ¢
of a spray G := %N,ﬁnk = %N{) a (cn.c.) can determined N; = g%, called the
canonical (c.n.c.). Correspondingly, a complex linear connection can be associated
known as Berwald type complex connection, locally given by the set of coefficients:

e 1, (¢F N B e B B c B B
BT = (N} = 30; | Nin® | Liy = 9N} = Ly, Li = 9N}, Cjp =0, Cjp= 0.

B
with (6), (7) properties and, moreover, L;Enk = 0 takes place (see [3], Lemma
2.2.a.).
Considering (12), N&* = B! (B]g]ﬂﬂ +N J’?>, the tangent connection BI" induced

by BT is a (c.l.c), therefore the Gauss formula (16) can be applied and from (18)
the induced d-(c.l.c.) coefficients can be estimated:

c c B B B B B B
M — VO k EY. 7i 78 . Ji_ _ i . —( (. — ()
Bl'= | N¢ =By (Bﬁjﬂﬁ + Nj> p Loy, = Ly Ll = L €, =0; Chy =0

B . B\ B B B B
(23)
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B B
From (17) and (20), using 7’ L; » = N, the coefficients of the second fundamental

form H and the coefficients of the shape operator can be obtained for the induced
Berwald d-(c.l.c.):

B
Hij = 6;(H}) + H)N(H}) + H)H),  Hy = 6;(HY) + H)N(H) + H) L',
Ha,@ - 07 H@B - O,
, B B

Heaj = BYmi + BYLjmi, Hgj = BE Ly,
Hig = BLO;(HY), Hip = B40;(HY).

AY = 0; Af = —d5;

B
AY = =B LY Ag =0.

Similarly as in the intrinsic C-F d-(c.l.c.) case, first we introduce the coefficients
of the intrinsic Berwald d-(c.l.c.) on the vertical fibers

. C
J
(o g o)
BU\Nj' ) = | Lie = g5 Lgp = T oE Cgy =0, C35=0 (24)

CF |
7 1 a(zv;w)
a 1
Where.Nj =3 oy
Then it can be proved:

is the intrinsic canonical (c.n.c.) on the indicatrix bundle.

C
Proposition 3. The canonical (c.n.c.) N3 induced on 1 from the canonical (c.n.c.)
c c
N3 of the base manifold T'M coincides with the intrinsic canonical (c.n.c.) N2 of

the indicatriz bundle.

So, it can be easily verified that the coefficients of the vertical fields of the
intrinsic and induced Berwald d-(c.l.c.) coincide. Using (24) and (13) it can be
checked that the induced Berwald connection is of Berwald type, i.e.

Proposition 4. The induced Berwald connection coincides with the intrinsic Berwald
connection of the indicatriz bundle, namely:

B gNe
La- — J
B3 o968

On the horizontal fibers can be introduced:

Bl oni . e CF| e CF CF
2 — — (2 1 — A (] (— 2
1 I

and we can state:
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Proposition 5. On the indicatriz bundle, the induced and the intrinsic Berwald
type d-(c.l.c.) coincide, i.e. the (23) relation concur with

B

C
e o(Newr) Bl e B e B B
— o . 7 — . i 7 — _ (] 7 _ (A _
B = (Ne=12 700 il —9Nj, Li| =&Ni, Ci =0, C =0,
1

I

(B; ) At Ba 3 J A Ba Béz
15, = dsNg., Lo =& (BBNj ) . Cg,=0, 05 = 0) .

In order to introduce Gauss, Codazzi and Ricci equations on the indicatrix
hypersurface let us consider D a N-(c.l.c.) on T'M and D, D+ N- the induced
tangent and normal connection on I, as above. Let v and h denote the projectors

on VI and HI distributions, respectively, and through o and h the projectors on
conjugate distributions will be denoted. Without the tilde the same projectors on
TcT' M will be noted.

To get a link between curvatures R(X,Y)Z of D connection and R(X,Y)Z of
D connection, for X,Y,Z € ['(TeI) we act similar steps as in [4] for real Finsler
manifolds and in [9] for complex Finsler space. First, the covariant derivative of the
second fundamental form is defined:

(DxH)(Y,Z) = D% (H(Y,Z)) — H <DXY, Z> —H (Y, DXZ) .
Now, using the curvature definition R (X,Y)Z = DxDyZ — Dy DxZ — Dx y],

the torsion definition T'(X,Y) = DxY — Dy X — [X,Y], for X,Y,Z € T'(T¢1) and
applying the Gauss-Weingarten formulae (16) and (19), we get:

RX,Y)Z =R(X,Y)Z+A(H(X,Z),Y)— A(H(Y,Z),X)+ (DxH) (Y, Z)—
(DyH)(X,Z)+ H (T(X, Y), Z)

Equating the components from T¢I and TéI with the help of the metric struc-
tures G and G introduced in previous sections, we obtain

G (R(X,Y)Z,U)=G (R(X, Y)Z, U> +G (AgixY — Apyp X, U)

where U € T’ (ﬁ) , and respectively, using that ToI- is spanned only by N, N,

G (R(X,Y)Z,N) =G ((DxH)(Y,Z)— (DyH) (Y, 2),N) + G (H (T(X,Y), Z) ,

called the Gauss equations, respectively H-Codazzi equations of (I,I:) subspace.
Analogously, for normal curvatures R (X,Y)N and R (X,Y)N, defining the
covariant derivative of the shape operator

N

)
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(DxA) (N,Y) = Dx (AxY) — A (D;%N,Y) | (N, [)XY> ,

and the curvature form R* of the normal Finsler connection, R*(X,Y)N = Dy (DyN)—
D¢ (DxN) —D&)Y]N, using the Gauss-Weingarten equations (16) and (19) it is ob-
tained that:

R(X,Y)N =R (X,Y)N+ H (Y,AnX) — H (X, ANY) + (Dy A) (N, X) —

—(DxA)(N,Y) — Ax (T (X,Y)) .

Equating their components from T¢I and Té:I, we have

G(R(X,Y)N.Z) =G ((DyA)(N,X) ~ (Dx4)(N,Y),2) - G (Ax (T (X, V), 2)

where X,Y € ' (T¢T'T), Z €' (T'T) , and

G (R(X,Y)N,N) =G (R*(X,Y)N,N) + G (H (Y,AxX) — H (X, AxY),N)
called the A-Codazzi equations, respectively Ricci equations of (I,INJ) subspace.

Further on, we will try to give some conditions when the indicatrix hypersurface
is an umbilical submanifold.

Roughly speaking, a submanifold of a Riemannian manifold is totally umbilical,
or simply umbilical, if it is equally curved in all tangent directions. A point x € M
is called an umbilical point of the indicatrix if the shape operator A is proportional
to the identity transformation for all vector fields from ToI+, ie. for W € THI
the Weingarten operator satisfies:

AwX = \X, where A € R, YW € ToIt.

The submanifold is said to be totally umbilical if every point of the submanifold is
an umbilical point.
Considering that T¢I+ is spanned only by N, N, and given the fact that

AN(ék) = Agéa; AN(éﬁ):Agéa;
AN(Og) = AfDa;  AN(05) = A0,

where the shape operator coefficients are given by (20), for the indicatrix to be
an umbilical manifold we must have A7 = A? = A% = 0 and Ag = )\(53, where
A € R. It can be noticed that if the induced C-F d-(c.l.c.) is considered, relation
(22) confirms that the indicatrix is umbilical with A = —1, and we may conclude
that in this case the indicatrix is a totally umbilical hypersurface of constant mean
curvature.
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In [6], the definition of an extrinsic sphere is given as a submanifold of a Rie-
mannian manifold that is a totally umbilical submanifold with a nonzero parallel
mean curvature vector. So, in the case of the C-F N-(c.l.c.) connection considered
on the complex Finsler space (M, L), the indicatrix I, is an extrinsic sphere of T"M.
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