ON QUANTITATIVE ESTIMATION FOR THE LIMITING SEMIGROUP OF LINEAR POSITIVE OPERATORS

Bucurel MINEA ${ }^{1}$

Abstract

We give an improved quantitative estimation of the approximation of iterates for a sequence of positive linear operators $\left(L_{n}\right)_{n}$ to their limting $C_{0^{-}}$ semigroup $T(t), 0 \leq t<\infty$, as given in Trotter's theorem.

2010 Mathematics Subject Classification: 41A36.
Key words: positive linear operators, Trotter theorem, limiting semigoup of operators, Durrmeyer type operators

1 Introduction

The study of iterates of Bernstein operators was initiated by Kelisky and Rivlin [9] and the first quantitative results were be obtained by Nagel [11] and Gonska [6]. The semigroup of operators generated by iterates of Bernstein operators was considered by da Silva [5]. More generally, as application to the Trotter's theorem [13] the semigroups generated by linear positive operators are considered in the last decades. For a general reference on semigroups of operators we cite [2] and [1]. Recently there were obtained quantitative results for Trotter's theorem in certain contexts, see: [7], [10], [3], [8].

Our aim is to give a modified method then in the paper by Gonska and Raşa [7] for a quantitative version of the Trotter's theorem in the case of a class of sequences of positive linear operators described below, which includes the sequence of Bernstein operators. We show that our method leads to estimates with better constants than in [7], when we apply this method to Bernstein operators.

Let $\left(L_{n}\right)_{n}: C[0,1] \rightarrow C^{4}[0,1]$ be a sequence of positive linear operators which preserves linear functions. We consider that L_{n} are convex of orders i, for $0 \leq i \leq 4$, i.e. if $f \in C^{i}[0,1]$ and $f^{(i)} \geq 0$ on $[0,1]$, then $\left(L_{n}(f)\right)^{(i)} \geq 0$ on $[0,1]$. Denote

$$
M_{n}^{k}(x):=L_{n}\left((t-x)^{k}, x\right) k \in \mathbb{N}, x \in[0,1]
$$

We suppose that $M_{n}^{2}(x)=a_{n} x(1-x), x \in[0,1]$, where $a_{n}=\mathrm{O}\left(\frac{1}{n}\right), n \in \mathbb{N}$ and

$$
\lim _{n \rightarrow \infty} n\left(L_{n}(f, x)-f(x)\right)=\frac{a}{2} \cdot x(1-x) \cdot f^{\prime \prime}(x), \text { uniformly, for } f \in C^{2}[0,1]
$$

[^0]where $a=\lim _{n \rightarrow \infty} n a_{n}$.
We consider the differential operator $A: D(A)=C^{2}[0,1] \rightarrow C[0,1]$, given by $A(f)(x)=\frac{a}{2} x(1-x) f^{\prime \prime}(x), f \in C^{2}[0,1], x \in[0,1]$. Note that $D(A)$ is dense in $C[0,1]$.

In the condition above, from the general result of Trotter, we deduce that there exists a C_{0}-semigroup $T(t)$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}^{m_{n}} f=T(t) f, f \in C[0,1] \tag{1}
\end{equation*}
$$

if $\frac{m_{n}}{n} \rightarrow t, t \geq 0$.

2 Main results

Firstly, we present two auxiliary general results.
Lemma 1. For every $g \in C^{4}[0,1]$, we have:

$$
\left\|L_{n} g-g-\frac{1}{n} A g\right\| \leq \frac{1}{6}\left\|M_{n}^{3}\right\|\left\|g^{(3)}\right\|+\frac{|a|}{8}\left|\frac{a_{n}}{a}-\frac{1}{n}\right| \cdot\left\|g^{\prime \prime}\right\| .
$$

Proof. Let $x \in[0,1]$ be fixed. For $t \in[0,1]$, with Taylor's formula, we write:

$$
\left|g(t)-g(x)-(t-x) g^{\prime}(x)-\frac{1}{2}(t-x)^{2} g^{\prime \prime}(x)\right| \leq \frac{1}{6}|t-x|^{3}\left\|g^{(3)}\right\| .
$$

Since L_{n} reproduces linear functions we obtain:

$$
\left\|L_{n} g-g-\frac{a_{n}}{a} A g\right\| \leq \frac{1}{6}\left\|M_{n}^{3}\right\|\left\|g^{(3)}\right\|,
$$

then we write

$$
\begin{aligned}
\left\|L_{n} g-g-\frac{1}{n} A g\right\| & \leq\left\|L_{n} g-g-\frac{a_{n}}{a} A g\right\|+\left\|\frac{a_{n}}{a} A g-\frac{1}{n} A g\right\| \\
& \leq \frac{1}{6}\left\|M_{n}^{3}\right\|\left\|g^{(3)}\right\|+\left|\frac{a_{n}}{a}-\frac{1}{n}\right| \cdot\|A g\| \\
& \leq \frac{1}{6}\left\|M_{n}^{3}\right\|\left\|g^{(3)}\right\|+\frac{|a|}{8}\left|\frac{a_{n}}{a}-\frac{1}{n}\right| \cdot\left\|g^{\prime \prime}\right\| .
\end{aligned}
$$

Lemma 2. For every $g \in C^{4}[0,1]$, we have:

$$
\left\|T\left(\frac{1}{n}\right) g-g-\frac{1}{n} A g\right\| \leq \frac{a^{2}}{128 n^{2}}\left(8\left\|g^{\prime \prime}\right\|+8\left\|g^{(3)}\right\|+\left\|g^{(4)}\right\|\right) .
$$

Proof. From

$$
\|T(t) g-g-t A g\| \leq \frac{t^{2}}{2}\left\|A^{2} g\right\|, t \geq 0
$$

Denoting $\Psi(x)=x(1-x), x \in[0,1]$ we obtain

$$
A^{2}(g)=A\left(\frac{a}{2} \Psi g^{\prime \prime}\right)=\frac{a^{2}}{4} \Psi\left(\Psi g^{(4)}+2 \Psi^{\prime} g^{(3)}+\Psi^{\prime \prime} g^{\prime \prime}\right)
$$

Taking $t=\frac{1}{n}$ in the relation given above, we get

$$
\left\|T\left(\frac{1}{n}\right) g-g-\frac{1}{n} A g\right\| \leq \frac{1}{2 n^{2}}\left\|A^{2} g\right\| \leq \frac{a^{2}}{128 n^{2}}\left(8\left\|g^{\prime \prime}\right\|+8\left\|g^{(3)}\right\|+\left\|g^{(4)}\right\|\right)
$$

Lemma 3. Let $f \in C^{k}[0,1], 0 \leq k \leq 4$ and fix $n, j \geq 0$. The following estimation holds:

$$
\left\|\left(L_{n}^{j} f\right)^{(k)}\right\| \leq\left(\sigma_{k}\right)^{j}\left\|f^{(k)}\right\|
$$

where $\sigma_{k}:=\frac{1}{k!}\left(L_{n} e_{k}\right)^{(k)}$.
Proof. Denote $g:=\frac{1}{k!}\left\|f^{(k)}\right\| e_{k} \pm f$. It is clear that $g^{(k)} \geq 0$. Since L_{n} is convex of order k, we also have $\left(L_{n} g\right)^{(k)} \geq 0$, hence

$$
\left\|L_{n}^{(k)} f\right\| \leq \frac{1}{k!}\left\|f^{(k)}\right\|\left(L_{n} e_{k}\right)^{(k)}
$$

and by induction we obtain

$$
\left\|\left(L_{n}^{j} f\right)^{(k)}\right\| \leq\left(\frac{1}{k!}\left(L_{n} e_{k}\right)^{(k)}\right)^{j}\left\|f^{(k)}\right\|
$$

Next, we present the main result of the paper.
Theorem 1. Let $f \in C^{4}[0,1]$. The following estimation holds:

$$
\begin{aligned}
& \left\|L_{n}^{m} f-T(t) f\right\| \leq\left[\left(\frac{|a|}{8}\left|\frac{a_{n}}{a}-\frac{1}{n}\right|+\frac{a^{2}}{16 n^{2}}\right) \frac{1-\left(\sigma_{2}\right)^{m}}{1-\sigma_{2}}+\frac{|a|}{8}\left|\frac{m}{n}-t\right|\right]\left\|f^{\prime \prime}\right\| \\
& +\left(\frac{1}{6}\left\|M_{n}^{3}\right\|+\frac{a^{2}}{16 n^{2}}\right) \frac{1-\left(\sigma_{3}\right)^{m}}{1-\sigma_{3}}\left\|f^{(3)}\right\|+\frac{a^{2}}{128 n^{2}} \frac{1-\left(\sigma_{4}\right)^{m}}{1-\sigma_{4}}\left\|f^{(4)}\right\|
\end{aligned}
$$

Proof. Firstly:

$$
\begin{align*}
\left\|L_{n}^{m} f-T(t) f\right\| & \leq\left\|L_{n}^{m} f-T\left(\frac{m}{n}\right) f\right\|+\left\|T\left(\frac{m}{n}\right) f-T(t) f\right\| \\
& \leq\left\|L_{n}^{m} f-T\left(\frac{m}{n}\right) f\right\|+\left\|\int_{t}^{\frac{m}{n}} T(u) A f d u\right\| \\
& \leq\left\|L_{n}^{m} f-T\left(\frac{m}{n}\right) f\right\|+\left|\frac{m}{n}-t\right|\|A f\| \\
& \leq\left\|L_{n}^{m} f-T\left(\frac{m}{n}\right) f\right\|+\frac{|a|}{8}\left|\frac{m}{n}-t\right|\left\|f^{\prime \prime}\right\| \tag{2}
\end{align*}
$$

Now, using a telescopic sum and $\|T(t)\|=1, t \geq 0$, we write:

$$
\begin{align*}
\left\|L_{n}^{m} f-T\left(\frac{m}{n}\right) f\right\| & =\left\|\sum_{j=0}^{m-1} T\left(\frac{m-1-j}{n}\right)\left(L_{n}-T\left(\frac{1}{n}\right)\right) L_{n}^{j} f\right\| \leq \\
& \leq \sum_{j=0}^{m-1}\left\|\left(L_{n}-T\left(\frac{1}{n}\right)\right) L_{n}^{j} f\right\| \tag{3}
\end{align*}
$$

Denote $g:=L_{n}^{j} f \in C^{4}[0,1]$. It is convenient to write:

$$
\left\|\left(L_{n}-T\left(\frac{1}{n}\right)\right) g\right\| \leq\left\|L_{n} g-g-\frac{1}{n} A g\right\|+\left\|T\left(\frac{1}{n}\right) g-g-\frac{1}{n} A g\right\|
$$

Applying Lemmas 1 and 2, we can continue with

$$
\begin{aligned}
& \left\|\left(L_{n}-T\left(\frac{1}{n}\right)\right) g\right\| \leq \frac{1}{6}\left\|M_{n}^{3}\right\|\left\|g^{(3)}\right\|+\frac{|a|}{8}\left|\frac{a_{n}}{a}-\frac{1}{n}\right|\left\|g^{\prime \prime}\right\| \\
& +\frac{a^{2}}{128 n^{2}}\left(8\left\|g^{\prime \prime}\right\|+8\left\|g^{(3)}\right\|+\left\|g^{(4)}\right\|\right) \\
& =\left(\frac{|a|}{8}\left|\frac{a_{n}}{a}-\frac{1}{n}\right|+\frac{a^{2}}{16 n^{2}}\right)\left\|g^{\prime \prime}\right\|+\left(\frac{1}{6}\left\|M_{n}^{3}\right\|+\frac{a^{2}}{16 n^{2}}\right)\left\|g^{(3)}\right\|+\frac{a^{2}}{128 n^{2}}\left\|g^{(4)}\right\| .
\end{aligned}
$$

Now, applying Lemma 3 , we have $\left\|g^{(j)}\right\| \leq\left(\sigma_{k}\right)^{j}\left\|f^{(j)}\right\|$, for $j=2,3,4$.
Then, from (3)

$$
\begin{align*}
& \left\|L_{n}^{m} f-T\left(\frac{m}{n}\right) f| | \leq\left(\frac{|a|}{8}\left|\frac{a_{n}}{a}-\frac{1}{n}\right|+\frac{a^{2}}{16 n^{2}}\right) \frac{1-\sigma_{2}^{m}}{1-\sigma_{2}}\right\| f^{\prime \prime} \| \\
& +\left(\frac{1}{6}\left\|M_{n}^{3}\right\|+\frac{a^{2}}{16 n^{2}}\right) \frac{1-\sigma_{3}^{m}}{1-\sigma_{3}}\left\|f^{(3)}\right\|+\frac{a^{2}}{128 n^{2}} \frac{1-\sigma_{4}^{m}}{1-\sigma_{4}}\left\|f^{(4)}\right\| \tag{4}
\end{align*}
$$

Combining (2) and (4) we now get the conclusion.
Remark 1. From the estimate given in Theorem 1 one could obtain estimates with moduli of smoothness, similarly as in [7]. See the method given there.

3 Applications

Denote

$$
p_{n k}(x):=\binom{n}{k} x^{k}(1-x)^{n-k}, x \in[0,1]
$$

I. Consider the sequence of Bernstein operators $\left(B_{n}\right)_{n}$ given by

$$
B_{n}(f, x)=\sum_{k=0}^{n} p_{n k}(x) f\left(\frac{k}{n}\right), f \in C[0,1]
$$

For these operators, we have $a=1, a_{n}=\frac{1}{n},\left\|M_{n}^{3}\right\|=\frac{1}{4 n^{2}}$ and, from [4] we deduce:

$$
\begin{aligned}
\sigma_{2} & =\frac{n-1}{n} \\
\sigma_{3} & =\frac{(n-1)(n-2)}{n^{2}} \\
\sigma_{4} & =\frac{(n-1)(n-2)(n-3)}{n^{3}} .
\end{aligned}
$$

Hence, we find the following estimation:

$$
\begin{aligned}
\left\|B_{n}^{m} f-T(t) f\right\| \leq & \left(\frac{1-\left(\sigma_{2}\right)^{m}}{16 n}+\frac{1}{8}\left|\frac{m}{n}-t\right|\right)\left\|f^{\prime \prime}\right\|+\frac{5\left(1-\left(\sigma_{2}\right)^{m}\right)}{48(3 n-2)}\left\|f^{(3)}\right\| \\
& +\frac{n\left(1-\left(\sigma_{4}\right)^{m}\right)}{128\left(6 n^{2}-11 n+6\right)}\left\|f^{(4)}\right\|
\end{aligned}
$$

As consequence, we obtain:

$$
\begin{aligned}
\left\|B_{n}^{m} f-T(t) f\right\| \leq & \left(\frac{1}{16 n}+\frac{1}{8}\left|\frac{m}{n}-t\right|\right)\left\|f^{\prime \prime}\right\|+\frac{5}{48(3 n-2)}\left\|f^{(3)}\right\| \\
& +\frac{n}{128\left(6 n^{2}-11 n+6\right)}\left\|f^{(4)}\right\|
\end{aligned}
$$

These estimate improves the following estimate given in [7] - formula (12):

$$
\left\|B_{n}^{m} f-T(t) f\right\| \leq \frac{1}{8}\left(\left|\frac{m}{n}-t\right|+\frac{1}{2 n-1}\right)\left\|f^{\prime \prime}\right\|+\frac{5}{96(2 n-1)}\left(4\left\|f^{(3)}\right\|+\left\|f^{(4)}\right\|\right)
$$

II. For the sequence of genuine Durrmeyer operators $\left(U_{n}\right)_{n}$, given by

$$
U_{n}(f, x)=(1-x)^{n} f(0)+x^{n} f(1)+(n-1) \sum_{k=1}^{n} p_{n k}(x) \int_{0}^{1} p_{n-2, k-1}(t) f(t) d t
$$

we find $a=1, a_{n}=\frac{2}{2 n+1},\left\|M_{n}^{3}\right\|=\frac{3}{2(2 n+1)(2 n+2)}$ and from [12], pag. 149 we deduce:

$$
\begin{aligned}
\sigma_{2} & =\frac{n-1}{n+1} \\
\sigma_{3} & =\frac{(n-1)(n-2)}{(n+1)(n+2)} \\
\sigma_{4} & =\frac{(n-1)(n-2)(n-3)}{(n+1)(n+2)(n+3)}
\end{aligned}
$$

Thus, we can write the following estimation:

$$
\begin{aligned}
\left\|U_{n}^{m} f-T(t) f\right\| & \leq\left[(n+1)\left(\frac{1}{16 n(2 n+1)}+\frac{1}{32 n^{2}}\right)\left(1-\sigma_{2}^{m}\right)+\frac{1}{8}\left|\frac{m}{n}-t\right|\right]\left\|f^{\prime \prime}\right\| \\
& +\left(\frac{1}{4(2 n+1)(2 n+2)}+\frac{1}{16 n^{2}}\right) \frac{n^{2}+3 n+2}{6 n}\left(1-\sigma_{3}^{m}\right)\left\|f^{(3)}\right\| \\
& +\frac{n^{3}+6 n^{2}+11 n+6}{1536 n^{2}\left(n^{2}+1\right)}\left(1-\sigma_{4}^{m}\right)\left\|f^{(4)}\right\|
\end{aligned}
$$

References

[1] Altomare, F., Campiti, M., Korovkin-type approximation theory and its applications, Walter de Gruyter, Berlin, 1994.
[2] Butzer, P., Berens, H., Semi-groups of operators and approximation, Springer, Berlin, 1967.
[3] Campiti, M., Tacelli, C., Rate of convergence in Trotter's approximation theorem, Constructive Approximation 28 (2008), 333-341.
[4] Cooper, S., Waldron, S. The eigenstructure of the Bernstein operator, J. Approx. Theory, 105 (2000), 133165.
[5] da Silva, M.R., The limiting semigroup of the Bernstein iterates: properties and applications, Ph.D. Thesis, Imperial College, University of London 1978.
[6] H. Gonska, Quantitative aussagen zur approximation durch positive lineare operatoren, Dissertation, Universität Duisburg 1979.
[7] Gonska, H. Raşa, I., The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungarica 111 (2006), 119-130.
[8] Gonska, H.., Heilmann, M., Raşa, I., Convergence of iterates of genuine and ultraspherical Durrmeyer operators to the limiting semigroup:C2-estimates, J. Approx. Theory, 160 (2009), 243-255.
[9] Kelisky, R. P., Rivlin, T. J. Iterates of Bernstein polynomials, Pacific J. Math. 21 (1967), 511520.
[10] Mangino, E., Raşa, I., A quantitative version of Trotters theorem, J. Approx. Theory 146 (2007), 149156.
[11] Nagel, J., Sätze Korovkinschen typs fur die approximation linearer positiver operatoren, Dissertation, Universität Essen (1978).
[12] Păltănea, R. Approximation theory using positive linear operators, Birkhäuser, Boston, 2004.
[13] Trotter, H. F., Approximation of semi-groups of operators, Pac. J. Math. 8 (1958), 887919.

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: bucurel.minea@gmail.com

