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Abstract

The object of the present paper is to characterize Kenmotsu manifolds
satisfying certain curvature conditions on the conharmonic curvature tensor.
Next we study 3-dimensional Kenmotsu manifolds admitting a non-null con-
circular vector field. Also we study 3-dimensional locally φ-conharmonically
symmetric Kenmotsu manifolds. Finally, we give an example of a locally φ-
conharmonically symmetric Kenmotsu manifolds.
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1 Introduction

The product of an almost contact manifold M and the real line R carries a
natural almost complex structure. However, if one takes M to be an almost contact
metric manifold and suppose that the product metric G on M × R is Kaehlerian,
then the structure on M is cosymplectic [10] and not Sasakian. On the other hand,
Oubina [14] pointed out that if the conformally related metric e2tG, t being the
coordinates on R, is Kaehlerian, then M is Sasakian and conversely.
In [20] S. Tanno classified almost contact metric manifolds whose automorphism
groups possesses the maximum dimension. For such a manifold M , the sectional
curvature of a plane section containing ξ is a constant, say c. If c > 0, M is a
homogeneous Sasakian manifold of constant sectional curvature. If c = 0, M is
the product of a line or a circle with a Kaehler manifold of constant holomorphic
sectional curvature. If c < 0, M is a warped product space R × fCn

.In 1972 , K.
Kenmotsu [13] abstracted the differential geometric properties of the third case.
We call it Kenmotsu manifold. Kenmotsu manifolds have been studied by several
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authors such as G.Pitis ([18],[19]), Jun, De and Pathak [12], De and Pathak [7], De
and De ([5],[6]) Binh, Tamassy, De and Tarafdar [2], Ozgur ([16],[17]) and many
others.

It is known that a harmonic function is defined as a function whose Laplacian
vanishes. In general a harmonic function is not transformed into a harmonic func-
tion. The conditions under which a harmonic function remains invariant have been
studied by Ishii [11] who introduced the conharmonic transformation as a subgroup
of the conformal transformation (1.1) satisfying the condition

σi,i + σ,iσ
i
, = 0, (1.1)

where comma denotes the covariant differentiation with respect to the metric g.

A rank four tensor C that remains invariant under conharmonic transformation
for an 2n+ 1-dimensional Riemannian manifold M2n+1, is given by

C(X,Y, Z,W ) = R(X,Y, Z,W )

− 1

2n− 1
[g(Y,Z)S(X,W )− g(X,Z)S(Y,W )

+S(Y, Z)g(X,W )− S(X,Z)g(Y,W ], (1.2)

where R denotes the Riemannian curvature tensor of type (0, 4) and C denotes
the Conharmonic curvature tensor of type (0, 4) defined by

R(X,Y, Z,W ) = g(R(X,Y )Z,W ),

C(X,Y, Z,W ) = g(C̃(X,Y )Z,W ),

where R is the Riemannian curvature tensor of type (1, 3), C̃ is the conharmonic
curvature tensor of type (1, 3) and S denotes the Ricci tensor of type (0, 2) .

The curvature tensor defined by equation (1.2) is known as conharmonic cur-
vature tensor. A manifold whose conharmonic curvature vanishes at every point of
the manifold is called conharmonically flat manifold. Thus this tensor represents
the deviation of the manifold from conharmonic flatness. It satisfies all the sym-
metric properties of the Riemannian curvature tensor R. There are many physical
applications of tensor C̃. For example, in [1], Abdussattar showed that the sufficient
condition for a space-time to be conharmonic to a flat space-time is that tensor C̃
vanishes identically. A conharmonically flat space-time is either empty, in which
case it is flat, or filled with a distribution represented by energy momentum tensor
T possessing the algebraic structure of an electromagnetic field and conformal to a
flat space-time [1]. Also, he described the gravitational field due to a distribution
of pure radiation in presence of disordered radiation by means of spherically sym-
metric conharmonically flat space-time. Conharmonic curvature tensors have been
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studied by Ghosh, De and Taleshian [9], Özgür [15] and many others. Motivated by
the above studies we would like to study the properties of conharmonic curvature
tensor in a Kenmotsu manifold.

Again a Kenmotsu manifold is called Einstein if the Ricci tensor S is of the form
S = λg, where λ is a constant and η- Einstein if the Ricci tensor S is of the form
S = ag + bη ⊗ η, where a, b are smooth functions on M .

The paper is organized as follows:
After preliminaries in Section 3 and 4, we consider conharmonically flat and φ-
conharmonically flat Kenmotsu manifold and prove that the manifold is an Ein-
stein manifold and a η- Einstein manifold. In the next section we study a 3-
dimensional Kenmotsu manifold admitting a non-null concircular vector field. Sec-
tion 6, deals with the study of 3-dimensional locally φ-conharmonically symmetric
Kenmotsu manifolds. We prove that a 3-dimensional Kenmotsu manifold is locally
φ-conharmonically symmetric if and only if it is locally φ-symmetric. Finally, we
cited an example of φ-conharmonically symmetric Kenmotsu manifold.

2 Preliminaries

Let M be a (2n + 1)- dimensional connected almost contact metric manifold
with an almost contact metric structure (φ,ξ,η,g),that is, φ is an (1,1) tensor field,
ξ is a vector field ,η is a 1 - form and g is a compatible Riemannian metric such
that

φ2(X) = −X + η(X)ξ, η(ξ) = 1, φξ = 0, ηφ = 0 (2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ) (2.2)

g(X, ξ) = η(X) (2.3)

for all X,Y ε T (M)([3],[4], [19]).

If an almost contact metric manifold satisfies

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, (2.4)

then M is called a Kenmotsu manifold [13], where ∇ is the Levi-Civita connec-
tion of g. From the above equation it follows that

∇Xξ = X − η(X)ξ, (2.5)

and

(∇Xη)Y = g(X,Y )− η(X)η(Y ). (2.6)

Moreover, the curvature tensor R and the Ricci tensor S satisfy

R(X,Y )ξ = η(X)Y − η(Y )X (2.7)
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and
S(X, ξ) = −2nη(X). (2.8)

From [7] we know that for a 3-dimensional Kenmotsu manifold

R(X,Y )Z = (
r + 4

2
)[g(Y,Z)X − g(X,Z)Y ]

−(
r + 6

2
)[g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y ], (2.9)

S(X,Y ) =
1

2
[(r + 2)g(X,Y )− (r + 6)η(X)η(Y )], (2.10)

where S is the Ricci tensor of type (0,2), R is the curvature tensor of type (1,3) and
r is the scalar curvature of the manifold M .

In a (2n + 1)-dimensional almost contact metric manifold, if {e1, ..., e2n, ξ} is
a local orthonormal basis of vector fields, then {φe1, ..., φe2n, ξ} is also a local or-
thonormal basis. It is easy to verify that

2n∑
i=1

g(ei, ei) =
2n∑
i=1

g(φei, φei) = 2n. (2.11)

2n∑
i=1

g(ei, Z)S(Y, ei) =
2n∑
i=1

g(φei, Z)S(Y, φei) (2.12)

= S(Y,Z)− S(Y, ξ)η(Z),

for Y,Z ∈ T (M). In particular in view of η ◦ φ = 0, we get

2n∑
i=1

g(ei, φZ)S(Y, ei) =
2n∑
i=1

g(φei, φZ)S(Y, φei) = S(Y, φZ), (2.13)

for Y, Z ∈ T (M). If M is a Kenmotsu manifold then it is known that

R(X, ξ)ξ = η(X)ξ −X, X ∈ T (M) (2.14)

and
S(ξ, ξ) = −2n. (2.15)

From (2.15) we get

2n∑
i=1

S(ei, ei) =

2n∑
i=1

S(φei, φei) = r + 2n, (2.16)

where r is the scalar curvature. In a Kenmotsu manifold we also have

R(ξ, Y, Z, ξ) = −g(φY, φZ), Y, Z ∈ T (M). (2.17)
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Consequently

2n∑
i=1

R(ei, Y, Z, ei) =

2n∑
i=1

R̃(φei, Y, Z, φei) = S(Y,Z) + g(φY, φZ). (2.18)

Now we state the following Lemmas:
Lemma 2.1 [7] :A 3-dimensional Kenmotsu manifold is a manifold of constant neg-
ative curvature if and only if the scalar curvature r = −6.

Lemma 2.2 [7]: A 3-dimensional Kenmotsu manifold is locally φ-symmetric if
and only if the scalar curvature r is constant.

Lemma 2.3 [12]: Any η-Einstein Kenmotsu manifold of dimension ≥ 5 with
b = constant is Einstein.

3 Conharmonically flat Kenmotsu manifold

In this section we study conharmonically flat Kenmotsu manifold.

Definition 3.1. A Kenmotsu manifold is said to be conharmonically flat if

g(C̃(X,Y )Z,W ) = 0. (3.1)

Let a (2n+1)-dimensional Kenmotsu manifold M be conharmonically flat. Then
using (3.1) in (1.2) we have

R(X,Y )Z =
1

2n− 1
[S(Y,Z)X − S(X,Z)Y

+g(Y, Z)QX − g(X,Z)QY ]. (3.2)

Taking Z = ξ and using (2.7) and (2.8) we have

η(X)Y − η(Y )X =
1

2n− 1
[2n{η(X)Y − η(Y )X}

−η(X)QY + η(Y )QX].. (3.3)

Again putting Y = ξ in (3.3) we get

η(X)ξ −X =
1

2n− 1
[2n{η(X)ξ −X}

−η(X)Qξ +QX] (3.4)

and after simplification the above equation reduces to

S(X,Y ) = g(X,Y )− (2n+ 1)η(X)η(Y ). (3.5)

So in view of (3.5) and Lemma 2.3 we state the following:
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Theorem 3.1. A conharmonically flat Kenmotsu manifold is an Einstein manifold
.

Now we consider conharmonically flat Kenmotsu manifolds. Then using Theo-
rem 3.1 in equation (3.2) we obtain the following :

Corollary 1. A conharmonically flat Kenmotsu manifold is a manifold of constant
curvature.

4 φ-Conharmonically flat Kenmotsu manifold

In this section we study φ-conharmonically flat Kenmotsu manifolds.

Definition 4.1. A Kenmotsu manifold is said to be φ-conharmonically flat if

g(C̃(φX, φY )φZ, φW ) = 0, (4.1)

where X,Y, Z,W ∈ T (M).

The notion of φ-conformally flat for K-contact manifolds was first introduced
by G. Zhen [23]. In a recent paper [15] Chian Ozgur studied φ-conformally flat
Lorentzian Para-Sasakian Manifold.

Let a (2n + 1)-dimensional Kenmotsu manifold M be φ-conharmonically flat.
Then using (4.1) in (1.2) we have

R(φX, φY, φZ, φW ) =
1

2n− 1
[S(φY, φZ)g(φX, φW ) (4.2)

−S(φX, φZ)g(φY, φW )

+S(φX, φW )g(φY, φZ)

−S(φY, φW )g(φX, φZ)].

Let {e1, ..., e2n, ξ} be a local orthonormal basis of vector fields in M . Putting
X = W = ei in (4.2) and summing up from 1 to 2n we have

2n∑
1

R̃(φei, φY, φZ, φei) =
1

2n− 1

2n∑
1

[S(φY, φZ)g(φei, φei) (4.3)

−S(φei, φZ)g(φY, φei)

+S(φei, φei)g(φY, φZ)

−S(φY, φei)g(φei, φZ)].

Using (2.11), (2.12), (2.16) and (2.18) in (4.3) we get

S(φY, φZ) + g(φ2Y, φ2Z) =
2n− 2

2n− 1
S(φY, φZ) (4.4)

+
r + 2n

2n− 1
g(φY, φZ).
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i.e.,
S(φY, φZ) = (r + 1)g(φY, φZ). (4.5)

Substituting Y by φY and Z by φZ in (4.5) we have

S(φ2Y, φ2Z) = (r + 1)g(φY, φZ). (4.6)

Using (2.1), (2.2) and (2.8) in (4.6) we get

S(Y,Z) = (r + 1)g(Y,Z)− (2n+ 1 + r)η(Y )η(Z). (4.7)

Contacting (4.7) we have
r = 0. (4.8)

In view of (4.7) and (4.8) we have the following :

Theorem 4.1. A φ-conharmonically flat Kenmotsu manifold is an η-Einstein man-
ifold with vanishing scalar curvature.

5 3-dimensional Kenmotsu manifold admitting a non-
null concircular vector field

Definition 5.1. A vector field V on a Riemannian manifold is said to be a concir-
cular vector field [22] if it satisfies an equation of the form

∇XV = ρX (5.1)

for all X, where ρ is a scalar function. In particular if ρ = 0, then V is parallel.

We suppose that a 3-dimensional Kenmotsu manifold admits a non-null concir-
cular vector field. Then differentiating (5.1) covariantly we get

∇Y∇XV = ρ∇YX + dρ(Y )X. (5.2)

From (5.2) it follows that (since the torsion tensor T (X,Y ) = ∇XY −∇YX −
[X,Y ] = 0)

∇Y∇XV −∇X∇Y V −∇[X,Y ]V = dρXY − dρ(Y )X. (5.3)

Hence by Ricci identity we obtain from (5.3)

R(X,Y )V = dρ(X)Y − dρ(Y )X, (5.4)

which implies that

R(X,Y, V, Z) = dρ(X)g(Y, Z)− dρ(Y )g(X,Z), (5.5)

where R(X,Y, V, Z) = g(R(X,Y )V,Z).
Replacing Z by ξ in (5.5) we get

η(R(X,Y )V ) = dρ(X)η(Y )− dρ(Y )η(X). (5.6)
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Again
η(R(X,Y )V ) = η(Y )g(X,V )− η(X)g(Y, V ). (5.7)

From (5.6) and (5.7) we have

dρ(X)η(Y )− dρ(Y )η(X) = η(Y )g(X,V )− η(X)g(Y, V ). (5.8)

Putting X = φX and Y = ξ in (5.8), we get

dρ(φX) = g(φX, V ). (5.9)

Substituting X by φX in (5.9), we obtain

dρ(X)− dρ(ξ)η(X) = g(X,V )− η(X)η(V ). (5.10)

Here g(X,V ) 6= 0 for all X. For, if g(X,V ) = 0 for all X, then g(V, V ) = 0 which
means that V is a null vector field. This is contradicting our assumption. Hence
multiplying both sides of (5.10) by g(X,V ) we get

dρ(X)g(X,V )− dρ(ξ)g(X,V )η(X) = g(X,V )[g(X,V )− η(X)η(V )]. (5.11)

Also putting Z = V in (5.5), we get

dρ(X)g(Y, V ) = dρ(Y )g(X,V ). (5.12)

For Y = ξ, we obtain from (5.12) that

dρ(X)η(V ) = dρ(ξ)g(X,V ). (5.13)

Since η(X) 6= 0 for all X, multiplying both sides of (5.13) by η(X), we have

dρ(X)η(V )η(X) = dρ(ξ)η(X)g(X,V ). (5.14)

By virtue of (5.11) and (5.14) we get

[dρ(X)− g(X,V )][g(X,V )− η(X)η(V )] = 0. (5.15)

Hence it follows from (5.15) that

either dρ(X) = g(X,V ) for all X (5.16)

or, g(X,V )− η(X)η(V ) = 0 for all X. (5.17)

First we consider the case of (5.16). Then we obtain from (5.5)

R(X,Y, V, Z) = g(X,V )g(Y,Z)− g(Y, V )g(X,Z). (5.18)

Then putting X = Z = ei, i = 1, 2, 3 in (5.18) and taking summation over
1 ≤ i ≤ 3, we get

S(Y, V ) = −2g(Y, V ). (5.19)
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By virtue of (2.10) and (5.19) we obtain

(r + 6)[g(Y, V )− η(Y )η(V )] = 0. (5.20)

Since in this case g(Y, V )− η(Y )η(V ) 6= 0, it follows from (5.20) that

r = −6. (5.21)

Next, we consider case (5.17). Differentiating (5.17) covariantly along Z, we get

(∇Zη)(X)η(V ) + (∇Zη)(V )η(X) = 0. (5.22)

Using (2.6) in (5.22), we obtain

g(X,Z)η(V ) + g(V,Z)η(X)− 2η(X)η(Z)η(V ) = 0. (5.23)

Then putting X = Z = ei, i = 1, 2, 3 in (5.23) and taking summation over 1 ≤ i ≤ 3,
we get η(V ) = 0 , which contradicts our assumption.
Therefore, by virtue of (5.21) and Lemma 2.1 we can state the following:

Theorem 5.1. If a 3-dimensional Kenmotsu manifold admits a non-null concircu-
lar vector field, then the manifold is a manifold of constant negative curvature.

6 Locally φ- conharmonically symmetric Three dimen-
sional Kenmotsu manifolds

The notion of locally φ-symmetry was first introduced by Takahashi [21] on a
Sasakian manifold. In a recent paper [8] De and Sarkar introduced the notion of
locally φ-Ricci symmetric Sasakian manifolds again. In this paper we consider a
locally φ- conharmonically symmetric 3- dimensional Kenmotsu manifolds.

Definition 6.1. A three- dimensional Kenmotsu manifold is said to be locally φ-
conharmonically symmetric if the conharmonic curvature tensor C̃ satisfies

φ2(∇W C̃)(X,Y )Z = 0, (6.1)

where X,Y and Z are horizontal vector fields.

Using (2.10) in (1.2),in a 3-dimensional Kenmotsu manifold the conharmonic
curvature tensor is given by

C̃(X,Y )Z = (
r

2
)[g(X,Z)Y − g(Y,Z)X]

−(
r + 6

2
)[g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )ξ − η(X)ξ]. (6.2)
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Taking the covariant differentiation to both sides of equation (6.2), we have

(∇W C̃)(X,Y )Z =
dr(W )

2
[g(X,Z)Y − g(Y, Z)X]

−dr(W )

2
[g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )ξ − η(X)ξ]

−(
r + 6

2
)[g(Y,Z)(∇W η)(X)ξ − g(X,Z)(∇W η)(Y )ξ

+g(Y,Z)η(X)∇W ξ − g(X,Z)η(Y )∇W ξ

+(∇W η)(Y )ξ + η(Y )(∇W ξ

−(∇W η)(X)ξ − η(X)(∇W ξ]. (6.3)

Now assume that X,Y and Z are horizontal vector fields. So equation (6.3) becomes

(∇W C̃)(X,Y )Z =
dr(W )

2
[g(X,Z)Y − g(Y, Z)X]

−(
r + 6

2
)[g(Y,Z)(∇W η)(X)ξ − g(X,Z)(∇W η)(Y )ξ

−(∇W η)(X)ξ − η(X)(∇W ξ]. (6.4)

From (6.4) it follows that

φ2((∇W C̃)(X,Y )Z) =
dr(W )

2
[g(Y,Z)X − g(X,Z)Y ]. (6.5)

Hence we can state the following :

Theorem 6.1. A 3-dimensional Kenmotsu manifold is locally φ-conharmonically
symmetric if and only if the scalar curvature r is constant.

Using Lemma 2.2, we can state the following theorem:

Theorem 6.2. A 3-dimensional Kenmotsu manifold is locally φ-conharmonically
symmetric if and only if it is locally φ-symmetric.

7 Examples of a 3-dimensional Kenmotsu manifold

We consider the 3-dimensional manifold M = {(x, y, z)εR3, z 6= 0}, where
(x, y, z) are standard coordinates of R3.

The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z ∂

∂z

are linearly independent at each point of M.
Let g be the Riemannian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,
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g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Zεχ(M).
Let φ be the (1, 1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = 1,

φ2Z = −Z + η(Z)e3,

g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,Wεχ(M).
Then for e3 = ξ , the structure (φ, ξ, η, g) defines an almost contact metric

structure on M .
Let ∇ be the Levi-Civita connection with respect to metric g. Then we have

[e1, e3] = e1e3 − e3e1

= z
∂

∂x
(−z ∂

∂z
)− (−z ∂

∂z
)(z

∂

∂x
)

= −z2 ∂2

∂x∂z
+ z2

∂2

∂z∂x
+ z

∂

∂x
= e1.

Similarly
[e1, e2] = 0 and [e2, e3] = e2.

The Riemannian connection ∇ of the metric g is given by

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]), (7.1)

which is known as Koszul’s formula.
Using (7.1) we have

2g(∇e1e3, e1) = −2g(e1,−e1)
= 2g(e1, e1). (7.2)

Again by (7.1)
2g(∇e1e3, e2) = 0 = 2g(e1, e2) (7.3)

and

2g(∇e1e3, e3) = 0 = 2g(e1, e3). (7.4)

From (7.2), (7.3) and (7.4) we obtain

2g(∇e1e3, X) = 2g(e1, X),
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for all Xεχ(M).
Thus

∇e1e3 = e1.

Therefore, (7.1) further yields

∇e1e3 = e1, ∇e1e2 = 0, ∇e1e1 = −e3,

∇e2e3 = e2, ∇e2e2 = e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0. (7.5)

From the above it follows that the manifold satisfies ∇Xξ = X − η(X)ξ, for ξ =
e3.Hence the manifold is a Kenmotsu manifold. It is known that

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (7.6)

With the help of the above results and using (7.6), it can be easily verified that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,

R(e1, e2)e2 = −e1, R(e2, e3)e2 = e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = e3.

From the above expressions of the curvature tensor R we obtain

S(e1, e1) = g(R(e1, e2)e2, e1) + g(R(e1, e3)e3, e1)

= −2.

Similarly, we have
S(e2, e2) = S(e3, e3) = −2.

Therefore,
r = S(e1, e1) + S(e2, e2) + S(e3, e3) = −6.

We note that here r is constant. Thus Theorem 6.1 is verified.
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