
Bulletin of the Transilvania University of Braşov • Vol 7(56), No. 2 - 2014

Series III: Mathematics, Informatics, Physics, 203-210

BASIC TYPES OF FLIP-FLOPS: SPECIFICATION AND
AUTOMATIC VERIFICATION

Anca VASILESCU1

Abstract

The computers hardware components are regarded as very modern real
systems, properly to be modeled through formal methods. Specifically, our
interests are concerning an algebraic prototype for the entire computer be-
haviour based on the interconnected hardware components. The authors
contributions in this paper are following two directions: presenting the orig-
inal specification and implementation agents for modelling all the four types
of basic flip-flop circuits behaviour and applying automatic verification of the
corresponding agents equivalences. These results represent the background
of the sequential part of our prototype.

2000 Mathematics Subject Classification: 68M07, 68Q60, 68Q85.
Key words: automatic verification, bisimulation equivalence, hardware,

process algebra.

1 Introduction

In the framework of modern research, an important direction is to use an
algebra-based calculus for analyzing and modelling the behaviour of a specific
class of real systems, both hardware [2] and software [9]. Moreover, the mathe-
matics is ready to value the formal methods support, especially for developing the
automated provers and for obtaining fully verified axiomatic proofs of substantial
mathematical theorems [3].

Out of these examples, the computers hardware components are also regarded
as very modern real systems properly to be modeled through formal methods.
A formal-based approach focuses on the communication and synchronization be-
tween the involved components and also provides a valuable solution for system-
atically and exhaustively analysis of the interconnected computer components
behaviour in order to prove the correctness and to avoid the bugs before the real
circuit assembly.

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
vasilex@unitbv.ro

204 Anca Vasilescu

Specifically, our interests are concerning an algebraic model for the entire com-
puter behaviour based on the interconnected hardware components. Following
this approach, our prototype already consists of many agents which are modelling
the internal combinational and/or sequential logic structure of specific hardware
components behaviour. Starting from a given hardware component operation,
the appropriate modelling agents are defined with respect to the SCCS/CWB-NC
syntax. Using the operational semantics of the given SCCS algebra [8], we have
evaluated and formal verified if the proposed implementation-based model relates
to the intended specification-based definition of the given component behaviour.
Further, as an extra mark for our model correctness, the CWB-NC platform [15],
as a tool based on the state space method, has to be used for the automatic veri-
fication of the model. As final results, we have to collect the TRUE answers from
the CWB-NC platform for all of the appropriate verified equivalences between the
specification and corresponding implementation agents. These CWB-NC answers
authenticate the theoretical result previously proved using the SCCS operational
semantics.

Out of these achievements, the authors contributions in this paper consist in
presenting the original specification and implementation agents for modelling all
the four types of flip-flop circuits behaviour and the CWB-NC automatic veri-
fication of these agents equivalences. This represents the background of the se-
quential part of our prototype. Because SCCS could scale up easily, starting with
the model of the flip-flops we were able to continue with specifying the behaviour
of many flip-flop-based component, namely memories [11], registers [12] or data-
transfer components. For the benefit of our research direction, these results are
acknowledged by the recent paper [7].

2 Main results

The final outcome of this paper consists in developing an algebraic model of
communicating and synchronized hardware components given by flip-flops rep-
resented at digital logic level. An algebraic approach is used here not only for
studying the general concurrent communicating processes, but for applying it in
a practical area, namely the computer architecture and organization. We ben-
efit from the Milner’s process algebra SCCS - the synchronous calculus derived
from CCS (Calculus of Communicating Processes) [8] and we shall combine this
process algebra and the automata theory by using the CWB-NC (Concurrency
WorkBench) platform [15] for automatic verification of the targeted models. Us-
ing together SCCS and CWB-NC we have many advantages, such as: CWB-NC
recognizes the SCCS specification files, CWB-NC can simulate the behaviour of
the system specified in SCCS and, moreover, the CWB platform can automat-
ically verify many types of equivalences between models, including bisimilarity
as the most appropriate equivalence between SCCS specifications of the targeted
system behaviour.

Following the structural point of view, the targeted models are based on the

Basic types of flip-flops: specification and automatic verification 205

behaviour of four types of flip-flops [7], as follows: the D flip-flops, based on in-
ternal SR flip-flops, the T flip-flops, based on internal JK flip-flops, which are
consequently based on the SR flip-flops. For each of these hardware components
we define the appropriate SCCS agents for two different specifications: a high-
level one, based on the definition of the specific type of circuit, and a lower-level
one, based on the structure of the internal communicating logic gates combina-
tions. Explicit CWB-NC automated verifications of the bisimulation equivalence
between the corresponding specifications are proving our model correctness.

A flip-flop is a sequential circuit, a binary cell capable of storing one bit of
information. Its number of inputs varies from one flip-flop type to another, but
it always has two outputs: one for the normal value and one for the complement
value of the bit stored in it. A flip-flop maintains a binary state until it is directed
by a clock pulse to change that state. At the different levels of detailing, the
theoretical flip-flop might be asynchronous, but the synchronous models are widely
used in practice. The difference among various types of flip-flops comes from the
manner in which the inputs, both data inputs and the clock signal, affect the
current binary state. Depending on the number of data inputs, the most common
types of flip-flops are: SR flip-flop, D flip-flop, JK flip-flop and T flip-flop [7].

For the interest of this research, we present here the specific case of the
synchronous flip-flops behaviour starting from a specific current state (m,n) ∈
{(0, 1)} and for the clock signal c = 1. The values m and n represent the current
values on the circuit outputs and the c is for the clock input signal. This combi-
nation in addition with its symmetrical (m,n) ∈ {(1, 0)} and c = 1 are the most
important cases in analyzing the real computer systems operation.

We have obtained successful CWB-NC automatic verification for the corre-
sponding specification agents and for the bisimilarity tests. These CWB-NC an-
swers are guarantees for the correctness of our model and endorsed the involved
agents as prerequisites in more complex specifications for scaling up the prototype.

2.1 SR flip-flop

From the structural point of view, we are interested here in modelling the
synchronous SR flip-flop behaviour. Its structure consists of an asynchronous
circuit plus an extra level of AND gates for involving the clock signal. Hence,
the definition of the synchronous SR flip-flop is based on the asynchronous SR
flip-flop structure. We consider two levels for specifying the synchronous SR flip-
flop behaviour, a specification and an implementation, and we conclude with the
equivalence result for these models.

The corresponding specification and implementation agents for the SR flip-
flop behaviour are:

*************** SPECIFICATION AGENTS ********************
set Com_SRs1 = {CLK1, S0, S1, R0, R1, m0, m1, n0, n1}
proc SpecClock1 = ‘CLK1.S0.R0.˜s0.˜r0’:SpecClock1 +

‘CLK1.S0.R1.˜s0.˜r1’:SpecClock1 +
‘CLK1.S1.R0.˜s1.˜r0’:SpecClock1 +

206 Anca Vasilescu

‘CLK1.S1.R1.˜s1.˜r1’:SpecClock1

proc SpecSR01s1 = (SpecClock1 # SpecSR01) ! Com_SRs1

****************IMPLEMENTATION AGENTS********************
proc AND = ‘andin10.andin20.˜andout0’:AND +

‘andin10.andin21.˜andout0’:AND +
‘andin11.andin20.˜andout0’:AND +
‘andin11.andin21.˜andout1’:AND

proc ImpClock1 = ‘CLK1.˜Cup1.˜Cdown1’:ImpClock1
proc AND_S = AND [andin10/‘S0’, andin11/‘S1’, andin20/‘Cup0’,

andin21/‘Cup1’, andout0/‘s0’, andout1/‘s1’]
proc AND_R = AND [andin10/‘R0’, andin11/‘R1’, andin20/‘Cdown0’,

andin21/‘Cdown1’, andout0/‘r0’, andout1/‘r1’]
set Com_Level1s1 = {CLK1, S0, S1, R0, R1, s0, s1, r0, r1}
proc Level1s1 = (ImpClock1 # AND_S # AND_R) ! Com_Level1s1

proc ImpSR01s1 = (Level1s1 # ImpSR01) ! Com_SRs1

For this Spec-Imp pair of agents, we have to verify the appropriate bisimilarity.
The corresponding CWB-NC answer for the automated verification is TRUE,
like in Figure 1, and the same result is formally proved in [10] using the SCCS
operational semantics.

cwb-nc> eq SpecSR01s1 ImpSR01s1
Building automaton...
States: 10
Transitions: 40
Done building automaton.
Transforming automaton...
Done transforming automaton.
TRUE
Execution time (user, system, gc, real) : (0.111, 0.000, 0.001, 0.111)
cwb-nc>

Figure 1: The CWB-NC answer for SpecSR01s1 ∼ ImpSR01s1

2.2 D flip-flop

A D flip-flop is derived from an SR flip-flop by replacing the R input with
an inverted version of the S input. For the synchronous D flip-flop it is essential
that when the clock is reset the circuit does not operate, meaning it does not
change the state, and when the clock is set the D flip-flop loads the D input. The
next specification and implementation agents model the synchronous D flip-flop
operation:

*************** SPECIFICATION AGENTS *****************************
set Com_Ds1 = {CLK1, D0, D1, m0, m1, n0, n1}
proc SpecInD = ‘D0.˜S0.˜R1’:SpecInD + ‘D1.˜S1.˜R0’:SpecInD

proc SpecD01s1 = (SpecInD # SpecSR01s1) ! Com_Ds1

Basic types of flip-flops: specification and automatic verification 207

**************** IMPLEMENTATION AGENTS ****************************
proc NOT = ‘in0.˜out1’:NOT + ‘in1.˜out0’:NOT
proc NODE = ‘in0.˜up0.˜down0’:NODE + ‘in1.˜up1.˜down1’:NODE
proc Gate1 = NODE [in0/‘D0’,in1/‘D1’,up0/‘S0’,up1/‘S1’]
proc Gate2 = NOT [in0/‘down0’,in1/‘down1’,out0/‘R0’,out1/‘R1’]
set Com_ImpInD = {D0,D1,S0,S1,R0,R1}
proc ImpInD = (Gate1 # Gate2) ! Com_ImpInD

proc ImpD01s1 = (ImpInD # ImpSR01s1) ! Com_Ds1

For this Spec-Imp pair of agents, we have formally proved the bisimulation
equivalence of these agents in [11] and that theoretical result is automated verified
here. Favorably, the corresponding CWB-NC answer is TRUE, like in Figure 2.

cwb-nc> eq SpecD01s1 ImpD01s1
Building automaton...
States: 8
Transitions: 16
Done building automaton.
Transforming automaton...
Done transforming automaton.
TRUE
Execution time (user, system, gc, real) : (0.041, 0.000, 0.000, 0.041)
cwb-nc>

Figure 2: The CWB-NC answer for SpecD01s1 ∼ ImpD01s1

2.3 JK flip-flop

A JK flip-flop is a refinement of the SR flip-flop in that the indeterminate
condition of the SR type is defined in the JK type. Inputs J and K behave
like inputs S and R, respectively, in order to set and to clear the flip-flop current
state, respectively. When inputs J and K are both equal to 1, a clock transition
switches the outputs of the flip-flop to their complement state. Following these
definitions, the specific agents for JK flip-flop behaviour are:

******************** SPECIFICATION AGENTS ********************
set Com_JKs1 = {CLK1,J0,J1,K0,K1,m0,m1,n0,n1}
proc InJK0100 = ‘J0.K0.˜S0.˜R0’:InJK0100
proc InJK0101 = ‘J0.K1.˜S0.˜R1’:InJK0101
proc InJK0110 = ‘J1.K0.˜S0.˜R0’:InJK0110
proc InJK0111 = ‘J1.K1.˜S0.˜R1’:InJK0111

proc SpecJK01s1 = (InJK0100 # SpecSR01s1) ! Com_JKs1 +
(InJK0101 # SpecSR01s1) ! Com_JKs1 +
(InJK0110 # SpecSR01s1) ! Com_JKs1 +
(InJK0111 # SpecSR01s1) ! Com_JKs1

******************** IMPLEMENTATION AGENTS ********************
proc AND00 = ‘in0.˜out0’:AND00
proc AND01 = ‘in1.˜out0’:AND01
proc AND10 = ‘in0.˜out0’:AND10

208 Anca Vasilescu

proc AND11 = ‘in1.˜out1’:AND11
proc ANDJS00 = AND00 [in0/‘J0’,out0/‘S0’]
proc ANDJS01 = AND01 [in1/‘J1’,out0/‘S0’]
proc ANDJS10 = AND10 [in0/‘J0’,out0/‘S0’]
proc ANDJS11 = AND11 [in1/‘J1’,out1/‘S1’]
proc ANDKR00 = AND00 [in0/‘K0’,out0/‘R0’]
proc ANDKR01 = AND01 [in1/‘K1’,out0/‘R0’]
proc ANDKR10 = AND10 [in0/‘K0’,out0/‘R0’]
proc ANDKR11 = AND11 [in1/‘K1’,out1/‘R1’]
proc InJK01 = ANDJS00 # ANDKR10 + ANDJS00 # ANDKR11 +

ANDJS01 # ANDKR10 + ANDJS01 # ANDKR11

proc ImpJK01s1 = (InJK01 # ImpSR01s1) ! Com_JKs1

We have formally proved the bisimulation equivalence of these specification
and implementation agents in [13] and that theoretical result is automated verified
here. Favorably, the corresponding CWB-NC answer is TRUE, like in Figure 3.

cwb-nc> eq SpecJK01s1 ImpJK01s1
Building automaton...
States: 14
Transitions: 20
Done building automaton.
Transforming automaton...
Done transforming automaton.
TRUE
Execution time (user, system, gc, real) : (0.081, 0.000, 0.000, 0.081)
cwb-nc>

Figure 3: The CWB-NC answer for SpecJK01s1 ∼ ImpJK01s1

2.4 T flip-flop

By definition, a T flip-flop is obtained from a JK type with respect to the
next rule: when T = 0 a clock transition does not change the state of the flip-flop
and when T = 1 a clock transition complements the state of the flip-flop. For
the current state (m,n) = (0, 1) and the clock signal c = 1, the corresponding
specification and implementation agents are:

******************** SPECIFICATION AGENTS ********************
set Com_Ts1 = {CLK1, T0,T1,m0,m1,n0,n1}
proc InT0 = ‘T0.˜J0.˜K0’:InT0
proc InT1 = ‘T1.˜J1.˜K1’:InT1

proc SpecT01s1 = (InT0 # SpecJK01s1) ! Com_Ts1 +
(InT1 # SpecJK01s1) ! Com_Ts1

******************** IMPLEMENTATION AGENTS ********************
proc NODE = ‘in0.˜up0.˜down0’:NODE + ‘in1.˜up1.˜down1’:NODE
proc InT = NODE [in0/‘T0’,in1/‘T1’,up0/‘J0’,up1/‘J1’,down0/‘K0’,down1/‘K1’]

proc ImpT01s1 = (InT # ImpJK01s1) ! Com_Ts1

Basic types of flip-flops: specification and automatic verification 209

The theoretical result that these two agents are bisimulation equivalent is
formally proved in [12] and it is automated verified here. In Figure 4 we show the
corresponding CWB-NC TRUE answer.

cwb-nc> eq SpecT01s1 ImpT01s1
Building automaton...
States: 8
Transitions: 10
Done building automaton.
Transforming automaton...
Done transforming automaton.
TRUE
Execution time (user, system, gc, real) : (0.037, 0.000, 0.000, 0.037)
cwb-nc>

Figure 4: The CWB-NC answer for SpecT01s1 ∼ ImpT01s1

3 Conclusions

Using the platforms like CWB-NC is still a reliable approach, following the
research interest revealed by the consistent publications like [1] or [14], even in
connection with CCS, SCCS and other modelling and verification tools. Despite
these references, unfortunately, our experience with bigger models proves that the
execution time achieved for some verifications is not convenient. That is why we
consider as one of our future work directions the possibility of moving on from
this combination based on SCCS/CWB-NC to a more modern opportunity based
on functional programming. At this moment, such an interesting solution could
follow the alternative of the CHP library [4], namely Communicating Haskell
Processes - as a set of Haskell packages for implementing the concurrency ideas
from Hoare’s CSP [6] instead of Milner’s CCS [8].

Considering Haskell as a very active functional programming language, we
remark also the research interest for functional-based modelling of hardware com-
ponents behaviour, especially of the synchronous digital circuits in [5].

Moving forward from an equation-based algebraic modelling approach to a
Haskell-based functional one means to exploit the most valuable Haskell features
like lazy evaluation, pattern matching or manipulating the high level functions.
From the scientific point of view, these features are the basic guarantees for a
substantial improvement of the previous execution time obtained in our prototype
for the automatic verification of the agents bisimilarity equivalences.

References

[1] Aceto, L., Ingolfsdottir, A., Larsen, K. and Srba, J., Reactive Systems: Mod-
elling, Specification and Verification, Cambridge University Press, 2007.

[2] Almeida, A. A., Llanos, C. H., Arias-Garćıa, J. and Ayala-Rincón, M., Veri-
fication of Hardware Implementations through Correctness of their Recursive

210 Anca Vasilescu

Definitions in PVS, Proceedings of the 27th Symposium on Integrated Cir-
cuits and Systems Design, SBCCI ’14, ACM, New York, USA, Article 14, 8
pages, 2014.

[3] Avigad, J. and Harrison, J., Formally verified mathematics, Commun. ACM
57, 4 (2014), 66-75.

[4] Brown, N. C. C, Communicating Haskell Processes, PhD Thesis, The Uni-
versity of Kent, Computer Science subject, UK, May 2011.

[5] Gammie, G., Synchronous digital circuits as functional programs, ACM Com-
put. Surv. 46, Article 21 (2013), no. 2, 27 pages, 2013.

[6] Hoare, C. A. R., Communicating sequential processes, Prentice-Hall, 1985.

[7] Kumar, V. and Mishra, N., Flip-flop and its applications, Intl. J. of Innovative
Research in Technology, 1 (2014), no. 5, 621-625.

[8] Milner, R., Communication and concurrency, Prentice Hall, 1989.

[9] Riccobene, E. and Scandurra, P., A formal framework for service modeling
and prototyping, Form. Asp. Comput. 26 (2014), no. 6, 1077-1113.

[10] Vasilescu, A., Algebraic model for the synchronous SR-flip-flop behaviour,
Special Issue of Studia Universitatis Babes-Bolyai Informatica as Proc. of
the Intl. Conf. on Knowledge Engineering, Principles and Techniques, KEPT
2009, Anul LIV (2009), 235-238.

[11] Vasilescu, A., Algebraic model for the behaviour of a D-flip-flops-based mem-
ory component, chapter in book Mathematical Methods, Computational Tech-
niques, Intelligent Systems, Proc. of the 12th WSEAS Intl Conf MAMEC-
TIS’10, El Kantaoui, Sousse, Tunisia, May 3-6 2010, 42-47, 2010.

[12] Vasilescu, A. and Georgescu, O., Algebraic Model for the Counter Register
Behaviour, IJCCC - Supplem. Issue as Proc. of ICCCC2006, Oradea, Roma-
nia, Vol. I, (2006), 459–464.

[13] Vasilescu, A., Algebraic model for the JK flip-flop behaviour, Proc. of
SEEFM05 2nd South-East European Workshop on Formal Methods, Ohrid,
FYROM, 209-223, 2005.

[14] Zhang, D., Cleaveland, R. and Stark, E. W., The Integrated CWB-
NC/PIOATool for Functional Verification and Performance Analysis of Con-
current Systems. Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science Volume 2619, (2003), 431-436.

[15] CWB *** The CWB-NC homepage on http://www.cs.sunysb.edu/∼cwb.

