
Bulletin of the Transilvania University of Braşov • Vol 7(56), No. 2 - 2014

Series III: Mathematics, Informatics, Physics, 169-176

MINIMUM FLOWS IN NETWORKS WITH PARAMETRIC
LOWER BOUNDS FOR SINK ARCS

Eleonor CIUREA1

Abstract

In this paper, we study minimum flows in network with parametric lower
bounds for sink arcs problem. In this problem, the lower bounds for sink
arcs are a nonincreasing linear function of a parameter λ, and we wish to
determine a minimum flow for q values 0 = λ1, λ2, . . . , λq of parameter λ.
Assume, that 0 = λ1 < λ2 < . . . < λq and q ≤ n, where n is a number of
nodes.

2000 Mathematics Subject Classification: 90B10, 90C35, 05C35, 68R10.

Key words: network flow, networks algorithms, minimum flow problem,
paramatric networks.

1 Minimum flow problem

The theory of flow is one of the most important parts of Combinatorial Opti-
mization. The maximum flow problem is presented in books [1], [2], [5]. In this
section we discuss some basic notation and results for minimum flow problem,
which are presented in paper. [3].

Let N be the natural number set and G = (N,A, l, u) a network with the nodes
set N = {1, . . . , n}, the arcs set A = {a1, . . . , ak, . . . , am}, ak = (i, j), the lower
bound function l : A→ N, the upper bound (capacity) function u : A→ N, 1 the
source node and n the sink node.

For a given pair of subset X,Y of the nodes set N we use the notation:
(X,Y ) = {(i, j)|(i, j) ∈ A, i ∈ X, j ∈ Y } and for a given function g : A → N
we use the notation

g(X,Y ) =
∑

(X,Y ) g(i, j)

A flow is a function f : A→ N satisfying the next conditions:

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
e.ciurea@unitbv.ro



170 Eleonor Ciurea

f(i,N)− f(N, i) =


v, if i = 1

0, if i 6= 1, n

−v, if i = n

(1.1)

for some v ≥ 0. We refer to v as the value of flow f . A flow is called feasible if f
satisfies the following constraints:

l(i, j) ≤ f(i, j) ≤ u(i, j), (i, j) ∈ A, (1.2)

The minimum flow problem is to determine a flow f for which v is minimized.
A preflow f is a function f : A→ N satisfying the next conditions:

f(i,N)− f(N, i) ≤ 0, i ∈ N − {1, n} (2.1)

l(i, j) ≤ f(i, j) ≤ u(i, j), (i, j) ∈ A (2.2)

For any preflow f , we define the deficit of node i as

e(i) = f(i,N)− f(N, i), i ∈ N (3)

We refer to a node i with e(i) = 0 as balanced. A preflow f satisfying the
condition e(i) = 0, i ∈ N − {1, n} is a flow. Thus, a flow is a particular case of
preflow.

We further assume, without loss of generality, that if (i, j) ∈ A the (j, i) ∈ A
(if (j, i) /∈ A we consider that (j, i) ∈ A with l(i, j) = u(i, j) = 0).

A cut is a partition of the nodes set N into two subsets X and X̄ = N −X.
We represent this cut using the notation [X, X̄]. We refer to a cut [X, X̄] as a
1 − n cut if 1 ∈ X and n ∈ X̄. An arc (i, j) with i ∈ X and j ∈ X̄ is a forward
arc of the cut, and an arc (i, j) with i ∈ X̄ and j ∈ X is a backward arc of the
cut. Let (X, X̄) denote the set of backward arcs, and let (X̄,X) denote the set of
backwards arcs. Hence, all the arcs of a 1− n cut are [X, X̄] = (X, X̄)

⋃
(X̄,X).

For the minimum flow problem, the capacity c[X, X̄] of a 1−n cut is c[X, X̄] =
l(X, X̄)−u(X̄,X). We refer to a 1−n cut whose capacity is the maximum among
all 1− n cuts as a maximum cut.

Theorem 1. The value of the minimum flow from a source node 1 to a sink node
n in a network G = (N,A, l, u) equals the capacity of the maximum 1− n cut.

For the minimum flow problem, the residual capacity r̂(i, j) of any arc (i, j) ∈
A, with respect to a given preflow f is given by r̂(i, j) = c(j, i)− f(j, i) + f(i, j)−
l(i, j). The residual network is Ĝ = (N, Â, r̂), Â = {(i, j)|(i, j) ∈ A, r̂(i, j) > 0}.

The minimum flow problem in a network G = (N,A, l, u) can be solved in two
phases:



Minimum flows in networks with paramatric lower bounds for sink arcs 171

(1) establishing a feasible flow;

(2) from a given feasible flow, establish a minimum flow.

The solution of phase one is presented in [1], [3], [5]. There are three ap-
proaches for solving the minimum flow problem: (1) using decreasing path al-
gorithms, (2) using preflow algorithms and (3) minmax algorithms. These ap-
proaches are presented in [3]. The preflow algorithms are the following: generic
preflow algorithm, FIFO preflow algorithm, highest label preflow algorithm and
deficit scaling algorithm. Because in Section 2 we use a variant of FIFO preflow
algorithm, next we present this algorithm.

Before describing the FIFO preflow algorithm for the minimum flow problem,
we introduce some definitions. In the residual network Ĝ, the distance function
d is a function d : N → N. We say that a distance function is valid if it satisfies
the following conditions: d(1) = 0, d(j) ≤ d(i) + 1, (i, j) ∈ Â. We refer to d(i)
as the distance label of node i. We say that the distance labels are exact if for
each node i, d(i) equals the length of the shortest path from source node 1 to
node i in the residual network Ĝ = (N, Â, r̂). We refer to an arc (i, j) ∈ Â as an
admissible arc if d(j) = d(i) + 1; otherwise it is inadmissible. We refer to a path
from source node 1 to sink node n, in residual network Ĝ, consisting entirely of
admissible arcs as an admissible path; otherwise it is inadmissible. We denote by
Â−(j) the arcs set Â−(j) = {(i, j)|(i, j) ∈ Â}. We assume Â−(j) to have a fixed
order. For each node j, there always is a distinguished current arc. Initially, this
arc is always the first arc of Â−(j).

The FIFO preflow algorithm for the minimum flow problem is presented in
Figure 1.

1: FIFO PF;
2: BEGIN
3: PREPROCESS;
4: while L 6= 0 do
5: BEGIN
6: remove the j from the front of the queue L;
7: PULL/RELABEL(j);
8: END
9: end while

10: END.

1: PROCEDURE PREPROCESS;
2: BEGIN
3: let f be a feasible flow in network G;
4: compute the residual network Ĝ;
5: compute the exact distance labels d(•) in Ĝ;
6: if d(t) ≥ n then
7: f is a minimum flow;
8: else
9: BEGIN

10: L := ∅;



172 Eleonor Ciurea

11: for (i, n) ∈ Â−(n) do
12: BEGIN
13: f(i, n) := r̂(i, n);
14: if (e(i) < 0) AND (i 6= 1) then
15: add i to the rear of L;
16: end if
17: end for
18: d(n) := n;
19: end if
20: END;

1: PROCEDURE PULL/RELABEL(j);
2: BEGIN
3: select the first arc (i, j) ∈ Â−(j);
4: b := 1;
5: repeat
6: if (i, j) is an admissible arc then
7: BEGIN
8: pull g := min{−e(j), r̂(i, j)} units of flow from node j to node i;
9: if (i /∈ L) AND (i 6= 1) AND (i 6= t) then

10: add i to the rear of L;
11: end if
12: END
13: end if
14: if e(j) < 0 then
15: if (i, j) is not the last arc in Â−(j) then
16: select the next arc in Â−(j) as current arc
17: else
18: BEGIN
19: d(j) := min{d(i) + 1|(i, j) ∈ Â};
20: b := 0;
21: END
22: end if
23: end if
24: until (e(j) = 0) OR (b = 0);
25: if e(j) < 0 then
26: add j to the rear of L;
27: end if
28: END;

Figure 1: The FIFO preflow algorithm

The FIFO preflow algorithm for minimum flow examines active nodes in the
first in, first out (FIFO) order. The algorithm maintains the list L of the active
nodes as a queue. A pull of g units of flow from node j to node i increases both e(j)



Minimum flows in networks with paramatric lower bounds for sink arcs 173

and r̂(j, i) by g units and decreases both e(i) and r(i, j) by g units. We refer to the
process of increasing the distance label of node j, d(j) := min{d(i)+1|(i, j) ∈ Â},
as a relabel operation.

In paper [3] the follows two theorems are presented.

Theorem 2. The FIFO preflow algorithm computes correctly a minimum flow.

Theorem 3. The FIFO preflow algorithm runs in O(n3) time.

The proof of Theorem 3 uses the following remarks:

1) It partitions the total number of node examination into different phases.
The first phase consists of node examinations for those nodes that become ac-
tive during the procedure PREPROCESS. The second phase consist of the node
examinations of all the nodes that are in the queue L after the algorithm has
examined the nodes in the first phase and so on.

2) The total number of relabel operations is at most 2n2.

3) The total number of phases is at most 2n2 + n.

4) A bound of O(nm) on the number of saturating pulls.

5) A bound of O(n3) on the number of nonsaturating pulls.

6) The bottleneck operation in the FIFO preflow algorithm is the number of
nonsaturating pulls.

2 Minimum flows in networks with parametric lower
bounds for sink arcs

Gallo, Grigoriadis and Tarjan [4] solve the source parametric maximum flow
problem. In this problem, the upper bound of every source arc (1, j) is a non-
decreasing linear function of parameter λ, i.e. ū(1, j) = u(1, j) + λu0(1, j) for
some constant u0(1, j) ≥ 0. The upper bound of every other arc is fixed and they
determine a maximum flow for q values λ1, λ2, . . . , λq with 0 = λ1 < λ2 < . . . < λq
and q ≤ n.

In this Section we study the sink parametric minimum flow problem. In this
problem, the lower bound of every sink arc (i, n) is a nonincreasing linear function
of a parameter λ, i.e. l̄(i, n) = l(i, n)−λl0(i, n) for some constant l0(i, n) ≥ 0. The
lower bound of every other arc is fixed. We assume that λ ∈ Λ = {λ1, λ2, . . . , λq}
with 0 = λ1 < λ2 < . . . < λq and q ≤ n. Let l̊(i, n) be l̊(i, n) = min{l(i, n)|(i, n) ∈

A} and let
∗
l0(i, n) be

∗
l0(i, n) = max{l0(i, n)|(i, n) ∈ A}. We assume that

∗
l0(i, n) ≤

l̊(i, n)/λq. In this case we have l̄(i, n) ≥ 0 for all (i, n) ∈ A.

Let MFPk denote the minimum flow problem for specific value of λ = λk.
Let vk denote the minimum flow value of MFPk and let [Xk, X̄k] denote an
associated maximum cut. Given a minimum flow fk of MFPk, we solve MFPk+1

as follows: with fk as starting flow and the corresponding distance labels as
the initial distance labels, we perform the procedure PREPROCESS by pulling
additional flow along the sink arcs so that they all become saturated, i.e. fk(i, n)−



174 Eleonor Ciurea

f
′
k+1(i, n) = l̄k+1(i, n) with l̄k+1(i, n) = l(i, n) − λk+1l0(i, n). Then we apply the

FIFO preflow algorithm.

The parametric FIFO preflow algorithm for solving all problems MFP1,
MFP2, . . ., MFPq is presented in Figure 2.

1: PFIFO PF;
2: BEGIN
3: for k := 1 to q do
4: FIFO PF;
5: end for

Figure 2: The parametric FIFO preflow algorithm

The procedure FIFO PF is the FIFO preflow algorithm presented in Figure 1
in which the feasible flow in network Gk = (N,A, lk, u) is the minimum flow fk−1

with f0 the initial feasible flow.

Theorem 4. The PFIFO PF algorithm computes correctly a minimum flow in
network with parametric lower bounds for sink arcs.

Proof. Results from Theorem 2 and the structure of the PFIFO PF.

Theorem 5. The ending distance labels of MFPk are valid distances for MFPk+1

in the residual network Ĝk after the procedure PREPROCESS.

Proof. TheMFPk andMFPk+1 are the same except that the lower bound of some
sink arcs in MFPk+1 is less. So we take the minimum flow for the MFPk and
decrease the lower bound of the sink arcs, then all distance labels other than for
the sink node satisfy the validity conditions. But when we perform the procedure
PREPROCESS and saturate the sink arcs with positive residual capacities, then
all distance labels resatisfy the validity conditions. Observe that in the procedure
PREPROCESS we need to saturate only those arcs (i, n) for which r̂(i, n) > 0
and d(i) < n.

Theorem 6. The PFIFO PF algorithm runs in O(n3) time.

Proof. As all distance labels remain valid throughout, the total number of relabel
in O(n2). This immediately implies that the arc saturations are O(nm) and
nonsaturating pulls are O(n3). Conclude that the PFIFO PF algorithm runs in
O(n3) time.

In the proof of Theorem 6 we taken into account the remarks presented in
Theorem 3.

Theorem 7. There are the inequalities v1 ≥ v2,≥, . . . ,≥ vq and some associated
maximum cuts satisfy the nesting condition X̄1 ⊆ X̄2 ⊆ . . . ⊆ X̄q.



Minimum flows in networks with paramatric lower bounds for sink arcs 175

Proof. Obviously, v1 ≥ v2,≥, . . . ,≥ vq. Let X̄k define a maximum cut for MFPk

satisfying that each node j ∈ X̄k is reachable from node n in the residual network
Ĝk. If this maximum cut contains no sink arc (i, n) with l0(i, n) > 0, then
the capacity of this cut does not increase by increasing λ and X̄k also defines a
maximum cut for MFPk+1,MFPk+2, . . . ,MFPq and the desired property holds.
In case, the maximum cut defined by X̄k contains a sink arc (i, n) with l0(i, n) > 0,
then the node i ∈ Xk is reachable from sink node n in MFPk+1. As all other
nodes in X̄k remain reachable from node n. It follows that X̄k

⋃
{i} ⊆ X̄k + 1 and

alternatively, X̄k ⊆ X̄k+1. As this result is true for all k, we obtain X̄1 ⊆ X̄2 ⊆
. . . ⊆ X̄q.

References

[1] Ahuja, R. K., Magnanti, T. L. and Orlin, J. B. Network flows. Theory, algo-
rithms and applications, Prentice Hall, Englewood, Cliffs, N. J., 1993.

[2] Bazaraa, M. S., Jarvis, J. J. and Sherali, H. D. Linear programming and
networks flows (third edition), Wiley, New York, 2005.

[3] Ciurea, E. and Ciupala, L., Sequential and parallel algorithms for minimum
flows, Journal of Applied Mathematics and Computing, 15, no. 1-2, (2004),
53-75.

[4] Gallo, G., Grigoriades, M. D. and Tarjan, R. E. A fast parametric maximum
flow algorithm and applications, SIAM J. Comp., 18 (1989), 30-55.

[5] Jungnickel, D., Graphs, networks and algorithms, Springer, Berlin, 1999.



176 Eleonor Ciurea


