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Abstract

Nilpotent quantum mechanics has developed over a twenty year period
into a uniquely powerful method of relativistic quantum mechanics and quan-
tum field theory, which offers many new results relating to particle physics
and other fundamental studies. A review of the developments shows that
they produce a coherent and integrated approach to a number of fundamen-
tal questions.
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1 Indroduction: Fundamental Symmetries

Nilpotent quantum theory first appeared in the literature twenty years ago,
[1][2], and provides an exceptionally streamlined and powerful route to quantum
mechanics, quantum field theory and particle physics. It can be derived in a
completely formal way using hypercomplex algebra in place of the usual matrix
formalisms associated with these subjects. Its origin, however, can be placed
twenty years earlier in a much more physically-inspired theory involving symme-
tries between the fundamental physical parameters. Because of the additional
information contained within these symmetries, in addition to providing a for-
malism for reproducing the known results of relativistic quantum mechanics and
the Standard Model of particle physics in an integrated and systematic way, nilpo-
tent quantum theory also generates many new ones which are not accessible by
any other known method. In effect, the formalisms which are used routinely in
these areas of physics are not there purely for mathematical convenience, but
also contain coded physical information which can be extracted if we can find a
more fundamental way of expressing them. The formalisms generated from the
hypercomplex algebra and the related symmetries also create further formalisms
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with additional physical information, which connect with areas such as Finsler
geometry, creating even further layers of physical meaning.

As a review, this will highlight significant developments rather than concen-
trating on detail. Physics, as we know it today, manifests a broken symmetry,
in the Standard Model. My view is that larger broken symmetries tend to be
the result of combining more perfect smaller ones. Nature does not create larger
symmetries and then find a mechanism for breaking them. If we want to under-
stand complex mathematical developments in physics (e.g. Finsler geometry) we
should start by finding their simpler components. The developments I am going to
outline started from some very basic ideas about physical symmetries in physics
many decades ago.[3][4] Over the years the mathematics grew organically with
the physics. The basic idea was that, if physics had a starting point it had to be
ultimately simple, and that the best bet was not in laws of physics, or equations,
or in particles or other structures. It had to be the fundamental parameters, the
ideas through which everything else is observed or constructed. Space and time
were obvious candidates, but what else? At the time, it seemed likely to be the
sources of the 4 interactions: mass(-energy) and 3 types of charge. I have never
seen the need to revise this list.

The next stage was to examine the properties of these quantities in as much
detail as possible and see how this might lead to physics as we know it. Quickly
it became apparent that there were 3 basic dualities, suggesting an overall group
structure. At first, this required one or two assumptions about how a broken
symmetry might emerge, but, after testing the model to destruction over nearly
forty years, I am now convinced that it is exact. Initial difficulties have proved to
be sources of further discovery.

Conserved Nonconserved
Mass Space
Charge Time

Conserved Imaginary
Mass Charge
Space Time

Anticommutative Commutative
Space Mass
Charge Time

The symmetry involved can be identified by arranging the dual properties in
a table:

mass conserved real commutative

time nonconserved imaginary commutative

charge conserved imaginary anticommutative

space nonconserved real commutative



Nilpotent quantum theory 101

mass x y z

time −x −y z

charge x −y −z

space −x y −z

This is a finite noncyclic group of order 4: Klein-4 or D2. We can produce this
group by devising a binary operation of the form:

x ∗ x = x ∗ x = x (1.1)

x ∗ −x = −x ∗ x = x (1.2)

x ∗ y = y ∗ x = 0 (1.3)

and similarly for y and z. Effectively, any combination of a single property or
antiproperty with itself gives the property; but a combination of a property with
its antiproperty gives the antiproperty; while the combination of any property
with any other property or antiproperty vanishes. This gives us the group table
with mass as identity element:

* mass charge time space

mass mass charge time space

charge charge mass space time

time time space mass charge

space space time charge mass

There is a suggestion here that, if these parameters are truly and absolutely
symmetrical in the way suggested, then each property held by two of the param-
eters is completely negated by the exactly opposite property held by two others.
The motivation for the original view that they were symmetric was the belief that
Nature could not be characterized. It was a totality zero in conceptual as well as
numerical terms. This motif repeats itself regularly as the mathematical struc-
ture unfolds. But this representation is not unique. We can easily rearrange the
algebraic symbols to make any of space, time or charge the identity element. For
example, we could have made space the identity element by assigning the symbols
as follows:

mass -x y -z
time x -y -z

charge -x -y z
space x y z

And, if we switch one of the properties around, we create a dual D2 group.
The easiest to change mathematically is the real / imaginary distinction. In this
case, we have:

mass* x −y z
time* −x y z

charge* x y −z
space* −x −y −z
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or

mass* conserved imaginary commutative

time* nonconserved real commutative

charge* conserved real anticommutative

space* nonconserved imaginary anticommutative

There is a C2 symmetry between the dual D2 structures, and the D2 × D2 of
order 8 creates a larger structure of the form:

* M C S T M* C* S* T*

M M C S T M* C* S* T*

C C M* T S* C* M T* T

S S T* M* C S* T M C*

T T S C* S* T* S* C M

M* M* C* S* T∗ M C S T

C* C* M T* S C M* T T*

S* S* T M C* S T* M* C

T* T* S* C S T S C* M*

Remarkably, this structure is identical to that of the quaternion group (Q):

* 1 i j k -1 -i -j -k

1 1 i j k -1 -i -j -k

i i -1 k -j -i 1 -k j

j j -k -1 i -j k 1 -i

k k j -i -1 -k -j i 1

-1 -1 -i -j -k 1 i j k

-i -i 1 -k j i -1 k -j

-j -j k 1 -i j -k -1 i

-k -k -j i 1 k j -i -1

Another fundamental aspect of the symmetry is that it suggests that physics
can be reduced to algebra. The parameters are defined by the successive algebras,
leading up to a full Clifford algebra, and all the physical properties can be ex-
plained entirely by the algebraic ones. The symmetry requires that charge forms a
quaternion structure, with units, i , j , k , following the well-known multiplication
rules:

i2 = j 2 = k2 = i j k = −1 (1.4)

i j = −j i = k (1.5)

j k = −kj = i (1.6)

ki = −ik = j . (1.7)

To be fully symmetric with charge, space has to be a multivariate vector, that
is, described by 3-D Clifford algebra. The multivariate vector units, i, j, k, i,
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are effectively complexified quaternions (ii) = i, (ij ) = j, (ik) = k, (i1) = i, and
follow the multiplication rules:

i2 = j2 = k2 = 1 (1.8)

ij = −ji = ik (1.9)

jk = −kk = ii (1.10)

ki = −ik = ij. (1.11)

They are isomorphic to Pauli matrices. If we complexify this algebra, we revert
to quaternions, so ii = i , ij = j , ik = k , etc. Multivariate vectors differ from
ordinary vectors in having a full (algebraic) product:

ab = a · b + ia× b (1.12)

from which all the rules concerning unit vector multiplication may be derived.[5]
They automatically include spin within the structure of 3-D space. Terms ii, ij,
ik are pseudovectors (e.g. area, angular momentum) and i is a pseudoscalar (e.g.
volume). The successive algebras now become:

Units Parameter

Real numbers 1 Mass
Imaginary numbers i Time

Quaternions i j k Charge
Vectors i j k Space

The first 3 algebras are the 3 subalgebras of the fourth

2 A dual vector space

The units i, j, k define a complete Clifford algebra of 3D space:

i j k vector
ii ij ik bivector pseudovector quaternion
i trivector pseudoscalar
1 scalar

Pseudovectors and pseudoscalars give us areas and volumes, etc. The intrinsic
complexification produces a kind of doubling of the elements. Combining the 3
subalgebras of charge (unit i , j , k), time (unit i) and mass (unit 1) produces the
equivalent of a second complete Clifford algebra of 3D space:

I J K vector
C iI iJ iK bivector pseudovector quaternion
T i trivector pseudoscalar
M 1 scalar
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There is no physical quantity relating to this space, with units I, J, K, but
the charge, time and mass combine algebraically to produce its equivalent. If
we wanted to find the group governing the combination of the four symmetric
parameters, we would take the algebraic product of the four sets of units, i, j, k,
i , j , k , i, 1, and obtain + and versions of:

i j k ii ij ik i 1
i j k ii ij ik
ii ji ki iii iji iki
ij jj kj iij ijj ikj
ik jk kk iik ijk ikk

This is a finite group of order 64. Alternatively, we could take the algebraic
product of the units of space, i, j, k, and those of the space combining the units
of mass, time and charge, I, J, K, to obtain + and versions of:

i j k ii ij ik i 1
I J K iI iJ iK
iI jI kI iiI ijI ikI
iJ jJ kJ iiJ ijJ ikJ
iK jK kK iiK ijK ikK

These are the units of a double vector algebra or a double Clifford algebra of
3D space. The group is completely isomorphic to the previous one and each is
derivable immediately from the other. In fact, both are also completely isomorphic
to a complexified double quaternion algebra, with units:

i j k ii ij ik i 1
I J K iI iJ iK
iI j I kI iiI ij I ikI
iJ j J kJ iiJ ij J ikJ
iK jK kK iiK ijK ikK

It is easy to show that the group requires a minimum of 5 generators. One
way of setting out the elements of the vector-quaternion version would be:

1 i −1 −i

i i i j ik ik j −i i −i j −ik −ik −j
j i j j jk ii k −j i −j j −jk −ii −k
k i k j kk ij i −k i −k j −kk −ij −i

ii i ii j iik ik j −ii i −ii j -iik −ik −j
ij i ij j ijk ii k -ij i −ij j -ijk −ii −k
ik i ik j ikk ij i −ik i −ik j −ikk −ij −i
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Here, we immediately see 12 sets of 5 generators. What we have is the com-
plete algebra of two spaces. Putting charge, time, and mass together gives us a
mathematical equivalent to another space I, J, K alongside real space, i, j, k.
Physically, this combination of of i with iI, iJ, iK and 1 is not a space, because
it is not a single quantity, and so it will never be measurable or observable in
the same way as space. However, mathematically it is the same. In addition, the
structure of the group suggests that it is a dual to space, a kind of antispace,
creating a zero totality when combined with space.

Now starting with the 8 units needed for the 4 parameters:

i i j k 1 i j k
time space mass charge

we have effectively compactified to the 5 generators by removing the three charge
units and attaching one to each of the other three parameters:

i i j k 1
k i j

and finally:

ik i i i j ik 1j

As a result, we have created 3 new composite parameters, each of which has
aspects of time, space or mass, but also some characteristics of charge.

ik i i i j ik 1j
E px py pz 1m

The significant thing here is that the physical quantities energy, momentum
and rest mass are defined by the algebraic units which arise out of the combina-
tion of the four fundamental parameters, not by their scalar values. The scalar
quantities E, px, py, pz and m have become respective coefficients of the algebraic
operators ik ; i i; i j; ik; 1j .

The packaging process has transformed time-space-mass into their energy-
momentum-rest mass conjugate. But it must also affect charge, for it simultane-
ously creates three new charge units, which take on the respective characteristics
of the parameters with which they are associated.

ik i i i j ik 1j
weak charge strong charge electric charge
pseudoscalar vector scalar

SU(2) SU(3) U(1)

Effectively, if we preserve the symmetry of space in the packaging process, we
cannot also preserve the symmetry of charge. The packaging, as we will see,
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becomes equivalent to the creation of the fermionic state, and it is in the fermionic
state that the symmetry of charge is broken.

The double space gives us another way of creating a D2 or Klein-4 group
representation, This is through the double algebra known as H4, which can be
expressed using 4 units, constructed from two commutative sets of quaternions,
1, i , j , k , and 1, I , J , K . The H4 algebra units can be constructed using coupled
quaternions, with units 1, iI , j J , kK , but the units iI , j J , kK commute with
each other, unlike the units of their parent systems. So iI j J = j J iI , etc. The
algebra is cyclic but commutative, with multiplication rules:

iI iI = jJ jJ = kKkK = 1 (2.1)

iI jJ = jJ iI = kK (2.2)

jJkK = kKjJ = iI (2.3)

kKiI = iI kK = jJ (2.4)

The H4 algebra units become a group with the multiplication table:

* 1 iI j J kK

1 1 iI j J kK

iI iI 1 kK jJ

j J j J kK 1 iI

kK kK iI j J 1

They are like quaternions with no negative signs. The group here is a subgroup
of the 64-part complexified double quaternion representation.An alternative rep-
resentation is via negative double vector units 1, −iI, −jJ, −kK:

* 1 −iI −jJ −kK

1 1 −iI −jJ −kK
−iI −iI 1 −kK jJ

−jJ −jJ −kK 1 iI

−kK −kK −iI −jJ 1

In this sense, it can be seen to emerge out of a double space. The unit 1 can even
be seen as equivalent to −ii.

Our system has involved 3 of the 4 division algebras: real, complex and quater-
nion. Is there any place for the fourth division algebra: octonions? This comes
when we consider the algebraic base units of mass, charge, time and space. It
is easiest to use the complexified double quaternion form, expressing the units of
space as complexified quaternions. So 1, i , j , k , i, ii , ij , ik represent the units of
m, s, e , w , x, y, z. Interestingly, the antiassociative parts of this algebra repre-
sent terms with no known physical meaning. The physical meanings are isolated
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within their individual substructures, with the octonion structure already repre-
senting a broken symmetry because it brings into itself the properties associated
with its components.

The parameters arranged in algebraic units:

* m s e w t x y z

m m s e w t x y z

s s −m w −e x t −z y

e e −w −m s y z −t −x

w w e −s −m z −y x −t

t t −x −y −z −m s e w

x x t −z y −s −m −w e

y y z t −x −e w −m −s

z z −y x t −w −e s −m

The octonion mapping:

* 1 i j k e f g h

* 1 i j k e f g h

i i -1 k -j f -e -h g

j j -k -1 i g h -e -f

k k j -i -1 h -g f -e

e e -f -g -h -1 i j k

f f e -h g -i -1 -k j

g g h e -f -j k -1 -i

h h -g f e -k -j i 1

If mass, time, charge and space are the truly the fundamental parameters of
physics, then the double vector group of order 64 should have some major physical
significance at the fundamental level. Here, we ask the question: what is physics
about at the fundamental level? The answer so far seems to be: fermions and
their interactions (the interactions also generating bosons). If we then ask whether
the group we have derived has significance for fermions and their interactions, we
immediately see that it does, for it is essentially that of the gamma algebra of
the Dirac equation, governing fermions and their interaction. The gamma algebra
in full is a set of 4 × 4 matrices. However, all possible gamma matrices can be
derived from the products of two commuting sets of Pauli matrices, say σ1, σ2,
σ3 and Σ1, Σ2, Σ3. Pauli matrices are isomorphic to multivariate vectors, so the
group formed by multiplying out i, j, k with I, J, K is identical in all respects to
the group formed by multiplying out σ1, σ2, σ3 with Σ1, Σ2, Σ3. We can set out
the whole algebra of relativistic quantum mechanics by using a dual vector space
or its equivalent.

Of course, the gamma algebra also has 5 generators and they can be matched
to the vector-quaternion group in a number of ways. One example would be:

γ0 = ik ; γ1 = i i; γ2 = i j; γ3 = ik; γ5 = ij .
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We could, of course, exchange vectors and quaternions, + and , complexified and
non-complexified, etc., but the overall structure will remain the same. Signifi-
cantly, 5 is not a truly symmetrical number in nature. Essentially, one set of
3-D operators (here, the quaternions) will have its symmetry broken. The other
set (here, the vectors) will have its symmetry preserved. This purely mathe-
matical requirement has major physical consequences. In fact, from now on, we
see mathematics developing out of the physics and physics developing out of the
mathematics. This symbiotic relationship will be one of the key features of what
follows.

3 Nilpotent quantum mechanics

The algebra, and specifically the 5 generators of the group we have chosen,
allows us to factorize

E2 − p2 −m2 = 0 (3.5)

in the form

(ikE + i ipx + i jpy + ikpz + jm)(ikE + i ipx + i jpy + ikpz + jm) = 0 (3.6)

or

(ikE + ip + jm)(ikE + ip + jm) = 0. (3.7)

These apparently classical expressions can be immediately restructured as rel-
ativistic quantum mechanics using a canonical quantization of the first bracket (E
becoming i∂ / ∂t, p becoming ki∇) and its application to a phase factor, which,
for a free particle, would be exp (−i(Et − p.r)). So that, including both sign
options for E and p, this becomes(

∓k ∂
∂t
∓ ii∇+ jm

)
(±ikE ± ip + jm)e−i(Et−p.r) = 0 (3.8)

for the nilpotent Dirac free particle equation. Here, the first bracket can be
considered a row vector and the second a column vector. Defining E and p in the
first bracket as operators, we can also write the second equation in the form

(±ikE ± ip + jm)(±ikE± ip + jm)e−i(Et−p.r) = 0 (3.9)

If we quantize both brackets of the classical form of the equation, we get the
Klein-Gordon equation:(

∓k ∂
∂t
∓ ii∇+ jm

)(
∓k ∂

∂t
∓ ii∇+ jm

)
e−i(Et−p.r) = 0 (3.10)

again with the first bracket a row vector and the second a column vector. Defining
E and p in the first bracket as operators, we can write it in the same form as the
Dirac equation
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(±ikE ± ip + jm)(±ikE± ip + jm)e−i(Et−p.r) = 0 (3.11)

We can, of course, obtain the nilpotent Dirac equation by left multiplying the
conventional Dirac equation by −iγ5:

−iγ5

(
γ0
∂

∂t
+ γ1

∂

∂x
+ γ2

∂

∂y
+ γ3

∂

∂z
+ im

)
= 0 (3.12)

and substituting algebraic operators for the gamma terms, as given above, and
transferring the variation of signs in E and p in the phase term into the differential
operator, now reconstructed as a column vector. The four separate sign variations
can be immediately identified as representing, typically:

(ikE + ip + jm) fermion spin up
(ikE− ip + jm) fermion spin down
(−ikE + ip + jm) antifermion spin down
(−ikE− ip + jm) antifermion spin up

The brackets, which can be imagined as arranged in a column vector, can
be cycled around to represent different real particle states. A column headed by
(ikE + ip + jm) would indicate a real fermion with spin up. One headed by
(−ikE + ip+ jm) would be an antifermion with spin down. The appropriate sign
variations would then follow automatically.

(ikE + i ipx + i jpy + ikpz + jm) = (ikE + ip + jm) (3.13)

always squares to zero, we can regard it as a nilpotent, either as a classical object
or as a wavefunction (±ikE ± ip + jm)e−i(Et−p.r).

As always, mathematical operations have a physical meaning. In the case
of the wavefunction, it is Pauli exclusion. Two identical fermion wavefunctions
will produce a zero combination state. In addition, nilpotent wavefunctions are
always explicit expressions in energy and momentum, never black boxes. We can
see an operator of the form

(
∓k ∂

∂t ∓ ii∇+ jm
)

as a generic object, which could,
for a non-free fermion, incorporate field terms or covariant derivatives, with, for
example, E and p becoming, respectively, and i∂ / ∂t+ ieφ and ki∇+ ieA. The
phase factor to which this is applied would no longer be exp (−i(Et − p.r)), but
whatever is needed to create an amplitude of the generic form

(
∓k ∂

∂t ∓ ii∇+ jm
)
,

still squaring to zero, but with eigenvalues E and p representing more complicated
expressions resulting from the presence of the field terms.

Nilpotency, the fact that the wavefunction always squares to zero means that
we can introduce an extra constraint such that the relativistic quantum mechanics
to be applied to any fermion state is totally defined with the operator and doesn’t
need an equation at all. An operator of the generic form

(
∓k ∂

∂t ∓ ii∇+ jm
)

will
always uniquely define the phase factor which makes the amplitude nilpotent, or
squaring to zero. So that

operator acting on phase factor2 = amplitude2 = 0. (3.14)
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A second constraint is that the four terms in the wavefunction are merely distin-
guished by sign variations. A third is that there is only one phase factor.

4 Vacuum, Pauli exclusion and the dual group

If the object (ikE + i ipx + i jpy + ikpz + jm) = (ikE+ ip+ jm) is a nilpotent,
squaring to 0, it is easy to show that

k(ikE + i ipx + i jpy + ikpz + jm) = k(ikE + ip + jm)

i(ikE + i ipx + i jpy + ikpz + jm) = i(ikE + ip + jm)

k(ikE + i ipx + i jpy + ikpz + jm) = j (ikE + ip + jm)

are idempotents, squaring to themselves up to a scale factor that can be nor-
malized away. Idempotents have a particular significance in nilpotent quantum
mechanics relating to vacuum.

Relativistic quantum mechanics was always assumed to require idempotent,
rather than nilpotent wavefunctions, essentially because spinors are built up from
primitive idempotents. We can, in fact, make exactly the same equation look
either idempotent or nilpotent simply by redistributing a single algebraic unit
between the sections of the equation defined as operator and wavefunction. So,
we can write the basic equation using either a nilpotent wavefunction:((

∓k ∂
∂t
∓ ii∇+ jm

)
j j

)
(±ikE ± ip + jm)e−i(Et−p.r) = 0 (4.1)

or an idempotent wavefunction:((
∓k ∂

∂t
∓ ii∇+ jm

)
j

)
(j (±ikE ± ip + jm)) e−i(Et−p.r) = 0 (4.2)

Where velocity operators are not in evidence, we can define a nilpotent am-
plitude

ψ = ikE + i iP1 + i jP2 + ikP3 + jm) (4.3)

and an operator

D = ik
∂

∂t
− i i

∂

∂X1
− i j

∂

∂X2
− ik

∂

∂X3
(4.4)

with
dF

dt
= [F ,H] = [F ,E] (4.5)

and
∂F

∂Xi
= [F ,Pi] (4.6)

As we will see, the discrete operators here do not need the i or i~ coefficient of
conventional quantum mechanics, which means that the equations that result are
equally classical and quantum, suggesting that, under appropriate conditions, it
can be applied to discrete classical, as well as quantum systems, and, as suggested
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by Marcer and Rowlands,[7] make nilpotency the key principle governing systems
which, like the fermion, become self-ordered by interacting with their environment
at many scales. This is because the mass term in the operator disappears because
of the use of commutators. After some basic algebraic manipulation, we obtain

D = iψ(ikE + i iP1 + i jP2 + ikP3 + jm) + i(ikE + i iP1 + i jP2 + ikP3 + jm)ψ

−2i(E− P2
1 − P2

2 − P2
3 −m2).(4.7)

When is ψ nilpotent, then

Dψ =

(
k
∂

∂t
+ ii∇

)
ψ = 0. (4.8)

Generalising this to four states, with D and ψ represented as 4-spinors, then

Dψ =

(
k
∂

∂t
± ii∇

)
(±ikE± i iP1 ± i jP2 ± ikP3 + jm) = 0 (4.9)

With the nilpotent structure, we have reached the minimal mathematical
structure that is possible for relativistic quantum mechanics. All redundancy
(and there is a great deal in the more conventional formulations) is removed. If
the minimal mathematical structure is reached, it is also likely to follow that it
will also be the most transparent in revealing physical information, and in fact
every mathematical development which follows seems to be loaded with physical
meaning.

A significant aspect of nilpotent theory is that its vacuum invokes the funda-
mental idea of totality zero. In nilpotent quantum mechanics the total structure
of the universe is exactly zero. We create a fermion in some particular state
(determined by added potentials, interaction terms, etc) ab initio, that is, from
absolutely nothing, a complete void or totality zero. Vacuum then becomes what
is left in nothing that is, everything other than the fermion. It is the rest of
the universe which allows that fermion to be created. In this context, of course,
(ikE− ip+ jm) of course defines conservation of energy, but it is only truly valid
over the entire universe, indicating that we need the second law of thermodynam-
ics as well as the first.

Pauli exclusion is an immediate consequence of the nilpotent definition of
vacuum, and it effectively says that no two fermions share the same vacuum.
Suppose we create a fermion wavefunction of the form ψf = (ikE+ ip+ jm) from
absolutely nothing; then we must simultaneously create the dual term, vacuum,
ψf = −(ikE+ip+jm)), which negates it both in superposition and combination:

ψf + ψv = (ikE + ip + jm)− (ikE + ip + jm) = 0 (4.10)

ψfψv = −(ikE + ip + jm)(ikE + ip + jm) = 0 (4.11)

This definition of vacuum also gives a new understanding to the meaning of
the terms ’local’ and ’nonlocal’. The ’local’ is defined what happens inside the
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nilpotent structure (ikE + ip + jm), which is, of course, Lorentz-invariant. The
nonlocal is defined by what happens outside it. The addition and multiplication
of wavefunctions: superposition and combination. Pauli exclusion is a nonlocal
correlation which results from the creation of each point-like localized fermion
being simultaneous with the creation of its nonlocal vacuum. Local and nonlocal
are always linked. Local changes cause nonlocal ones and vice versa. For example,
when we block off one slit in a Young’s slit experiment we create a local change.
This however causes a nonlocal one, removing the superposition and quantum
coherence.

Nilpotency isn’t the usual way of expressing Pauli exclusion mathematically.
In the standard interpretation, wavefunctions or amplitudes are also Pauli exclu-
sive because they are antisymmetric, with nonzero

(ψ1ψ2 − ψ2ψ1) = −(ψ2ψ1 − ψ1ψ2) (4.12)

This, however, is automatic in the nilpotent formalism, where the expression
becomes

(±ikE1±ip1+jm1)(±ikE2±ip2+jm2) = 4p1p2−4p2p1 = 8ip1×p2 = −8i×p1p2

(4.13)
This result is clearly antisymmetric, but it also has a quite astonishing conse-
quence, for it requires any nilpotent wavefunction to have a p vector, in real
space, the one defined by the axes i, j, k, at a different orientation to any other.
The wavefunctions of all nilpotent fermions then instantaneously correlate because
the planes of their p vector directions must all intersect. This is the only source
of the entire physical information relating to the fermion, for, at the same time,
the nilpotent condition requires the iE, p and m combinations to be unique, and
we can visualize this as constituting a unique direction in vacuum space along a
set of axes defined by k , i , j , or k, i, j, with coordinates defined by the values of
iE, p and m.

A number of significant results emerge automatically from the k , i , j or k,
i, j representation. For example, half of the possibilities on one axis (those with
−m) would be eliminated automatically (as being in the same direction as those
with m), providing clear evidence that invariant mass cannot have two signs.
Also eliminated would be fermions with zero m (since the directions would all be
along the line E = p). In addition, such hypothetical massless particles would be
impossible for fermions and antifermions with the same helicity, as E, p has the
same direction as −E, p.

We now have sufficient information to identify the nature of the elements in
the dual group to space, time, mass and charge. The extra quaternion units in the
expression (ikE + ip + jm) clearly change the norm of the timelike term (ikE)
from 1 to 1, and those of the spacelike and masslike terms (ip and jm) from
1 to −1, so making the quantized energy and momentum and rest mass terms
equivalent to time*, space* and mass*. The same would be true if we used the
nilpotent structure (ik t+ ir+ j τ) for the relativistic space-time invariance, where
τ is the proper time.
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The quantized angular momentum would then be equivalent to the charge*
term. Its 3 dimensions (on axes, k , i , j ) become sources for the handedness,
direction and magnitude which are separately conserved characteristics of angular
momentum, and relate to the fact that weak, strong and electric charges manifest
separate characteristics. (Ultimately these aspects of angular momentum carry
separate information about the charges.) The group of order 8 incorporating
the D2 parameter group and its mathematical dual, which is isomorphic to the
quaternions, would then be the quantized phase space for the fermion.

We now have at least five different meanings for the expression

j (ikE− ip + jm)j (ikE− ip + jm)φ = 0

with φ an (optional) arbitrary scalar factor (phase, etc.):

classical special relativity
operator × operator Klein-Gordon equation
operator × wavefunction Dirac equation
wavefunction × wavefunction Pauli exclusion
fermion × vacuum thermodynamics

It is characteristic of a theory in which duality is so deeply embedded to create
such multiple meanings.

The nilpotent operator can be used to do ordinary relativistic quantum me-
chanics. We define a probability density for a nilpotent wavefunction, (±ikE ±
ip+ jm). Here, we multiply by the complex quaternion conjugate (∓ikE ± ip+
jm) (the extra quaternion resulting from the premultiplication of ψ by a quater-
nion operator), and normalize to 1. The complex quaternion conjugate then be-
comes the reciprocal of the original wavefunction. More significantly, the nilpotent
formalism not only creates quantum mechanics, but also implies a full quantum
field theory in which the operators act on the entire quantum field, without re-
quiring any formal process of second quantization. A nilpotent operator, defined
from absolutely nothing, becomes a creation operator acting on vacuum to create
the fermion, together with all the interactions in which it is involved. Many stan-
dard results follow: spin , helicity, chirality of massless fermions, zitterbewegung.
In these cases, the nilpotent method is not significantly different from ordinary
relativistic quantum mechanics. There is also a nilpotent version of the Dirac
prescription for converting the operator to polar coordinates:(

±ik

(
E +

A

r

)
± i

(
∂

∂r
+

1

r
± i

(
j + 1

2

r

))
+ jm

)
. (4.14)
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±ik

(
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A

r

)
± i

(
∂

∂r
+

1

r
± i

(
j + 1

2

r

))
+ jm

)
. (4.15)

The last prescription produces a new result. It ensures that no nilpotent
solution is possible for a point-fermion with spherical symmetry unless a term
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proportional to r−1 (Coulomb potential) is added to the ikE term to counter the
similar term in the ∂ / ∂r part of the operator. In fundamental terms it arises
because defining a point in any meaningful way in 3-dimensional space requires
a dual space which is structured on the basis of point charges. In addition, the
only way of fixing a point in a nonconserved space with no identifiable units is
to fix it in the space of a conserved quantity which is made to coincide, through
nilpotency, with this one. By making this Coulomb component a consequence of
nilpotency, we can also see it as a consequence of Pauli exclusion.

5 CPT symmetry

Since the lead term in the fermionic column vector defines the fermion state,
then we can show that the remaining terms are equivalent to the lead term,
subjected to the respective symmetry transformations, P, T and C, by pre- and
post-multiplication by the quaternion units i , j , k , defining the vacuum space:

Parity P i(ikE + ip + jm)i = (ikE− ip + jm)
Time reversal T k(ikE + ip + jm)k = (− ikE + ip + jm)
Charge conjugation C −j (ikE + ip + jm)j = (− ikE− ip + jm)

We can easily show that PTC, TCP, andCPT also apply,

PT i(−ikE + ip + jm)i = (− ikE− ip + jm)
TC k(−ikE− ip + jm)k = (ikE− ip + jm)
CP −j (ikE− ip + jm)j = (− ikE + ip + jm)

and that TCP = CPT = identity.

k (−j (i(±ikE ± ip + jm)i) j ) k = −kj i(±ikE±ip+jm)i j k = (±ikE±ip+jm)
(5.1)

The relation between the P, T and C transformations and vacuum can be
shown in a relatively simple way. If we take ( ikE ip + jm) and post-multiply it
by the idempotent k(±ikE ± ip+ jm) any number of times, the only effect is to
introduce a scalar multiple, which can be normalized away.

(±ikE± ip+ jm)k(±ikE± ip+ jm)k(±ikE± ip+ jm) ... → (±ikE± ip+ jm)
(5.2)

Similarly with i(±ikE± ip+ jm) and j (±ikE± ip+ jm). All these idempotent
quantities can be regarded as vacuum operators, and k , i and j , or, equivalently,
k, i and j, as coefficients of a vacuum space. The observed particle state relating
to any fermion is the first in the column vector, while the others are the accompa-
nying vacuum states, or states into which the observed particle could transform
by respective P, T and C transformations. Replacing the observed fermion state
spin up with any of the others would simultaneously transform all four states by
P, T or C.
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The nilpotent formalism defines a continuous vacuum −(ikE + ip + jm) to
each fermion state (ikE + ip + jm), and this vacuum expresses the nonlocal
aspect of the state. However, the use of the operators k , i , j suggests that we
can partition this state into discrete components with a dimensional structure.
We can now interpret the three terms other than the lead term in the spinor
as the vacuum reflections that are created with the particle. We can regard the
existence of three vacuum operators as a result of a partitioning of the vacuum
as a result of quantization and as a consequence of the 3-part structure observed
in the nilpotent fermionic state, while the zitterbewegung can be taken as an
indication that the vacuum is active in defining the fermionic state.

Now, we know that the three vacuum coefficients k , i , j originate in (or
are responsible for) the concept of discrete (point-like) charge. However, the
operators, k , i and j , as we are using them here, perform another function of
weak, strong and electric charges or sources, in acting to partition the continuous
vacuum represented by −(ikE + ip+ jm) to each fermion state (ikE + ip+ jm),
and responsible for zero-point energy, into discrete components, whose special
characteristics are determined by the respective pseudoscalar, vector and scalar
natures of their associated terms iE, p and m.

6 Bosons and baryons

Among the most important of nilpotent quantum mechanics’ many new results
are the descriptions of three different boson-type states, which are combinations
of the fermion state with any of the P, T or C transformed ones, the result being a
scalar wavefunction. Many new results also emerge from the nilpotent formalism.

(±ikE ± ip + jm)(∓ikE± ip + jm) spin 1 boson
(±ikE ± ip + jm)(∓ikE∓ ip + jm) spin 0 boson
(±ikE ± ip + jm)(±ikE∓ ip + jm) fermion-fermion combination

One of the most significant aspects of this formalization is that a spin 1 boson
can be massless, but a spin 0 boson cannot, as then (±ikE ± ip)(∓ikE ∓ ip)
would immediately zero: hence Goldstone bosons must become Higgs bosons in
the Higgs mechanism. We can thus represent the four components of the nilpotent
spinor as creation operators for

fermion spin up (ikE + ip + jm)
fermion spin down (ikE− ip + jm)
antifermion spin down (− ikE + ip + jm)
antifermion spin up (− ikE− ip + jm)

or annihilation operators for

antifermion spin down (ikE + ip + jm)
antifermion spin up (ikE− ip + jm)
fermion spin up (− ikE + ip + jm)
fermion spin down (− ikE− ip + jm)
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Using just the lead terms of the nilpotents, and assuming that we can complete
the spinor structures using the 3 conventional sign variations, we could represent
any given fermion as:

(ikE + ip + jm)k(ikE + ip + jm)k(ikE + ip + jm)...
(ikE + ip + jm)j (ikE + ip + jm)j (ikE + ip + jm)...
(ikE + ip + jm)i(ikE + ip + jm)i(ikE + ip + jm)...

Here, we see that every alternate bracket reverses sign(s) in such a way that
it pairs with the fermion on its left to become a boson. In general, a fermion
converts to a boson by multiplication by an antifermionic operator Q†; a boson
converts to a fermion by multiplication by a fermionic operator Q, and we can
represent a sequence such as (ikE− ip+ jm)k(ikE− ip+ jm)k(ikE− ip+ jm)...
by the supersymmetric QQ†QQ†QQ†QQ†Q... We can interpret this as the series of
boson and fermion loops, of the same energy and momentum, required by the exact
supersymmetry which would eliminate the need for self-energy renormalization.
The fermions and bosons are their own supersymmetric partners through the
creation of vacuum states.

Baryons can be represented as three-component structures in which the vector
nature of p plays an explicit role:

(ikE ± i ipx + jm)(ikE± i jpy + jm)(ikE± i jpz + km)

This has nilpotent solutions when p = ±ipx, p = ±jpy, or p = ±kpz, or when the
momentum is directed entirely along the x, y, or z axes, in either direction, though
these, of course, are arbitrarily defined. Using the appropriate normalization,
these reduce to

(ikE + i ipx + jm) +RGB
(ikE − i ipx + jm) −RBG
(ikE − i jpy + jm) +BRG

(ikE + i jpy + jm) −GRB

(ikE ± ikpz + jm) +GBR
(ikE ± ikpz − jm) −BGR

with the third and fourth changing, very significantly, the sign of the p component.
Because of this, there has to be a maximal superposition of left- and right-handed
components, thus explaining the zero observed chirality in the interaction. Gluons
would be represented as (ikE ± i ipx)(−ikE + i i jpy + jm), etc.

7 The three gauge interactions

The three gauge interactions can all be seen to arise from nonlocal origins,
which then have corresponding local manifestations. All definition of locality at
a point with spherical symmetry requires, as we have seen, a Coulomb potential
to maintain nilpotency or nonlocal Pauli exclusion. So all gauge interactions
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require a Coulomb component. Now the strong interaction, reflecting the vector
nature of the strong charge, requires a combination state with three components
of momentum switching nonlocally between three fermionic brackets. As this is
local, there is a force or rate of change of momentum which is not dependent
on distance. Locally, this will manifest itself as a linear potential. The weak
interaction, reflecting the pseudoscalar nature of the strong charge, emerges from
a superposition between fermionic and antifermionic (or + and ikE) states. It is
built into the spinor structure of the fermionic state itself. The dual structure of
the pseudoscalar term means that the weak charge is, at the least, always part
of a dipole with its vacuum reflection. To reproduce the nonlocal connection in
a local form, this would require at least one extra potential, proportional to rn,
where is a positive or negative integer 6= 1, in addition to the Coulomb term.

The nonlocal manifestations of the three gauge interactions can thus be re-
alised first nonlocally through structures that reflect the status of the charges in
the fermionic nilpotent as scalar, vector or pseudoscalar, and then through the
local interactions which produce the equivalent result.

electric Coulomb
strong Coulomb + linear
weak Coulomb + dipole or higher order terms

In fact, these and only these potentials all provide analytic nilpotent solutions.
The Coulomb solution is well known (the hydrogen atom) but the nilpotent
method reproduces it in only six lines of calculation. The others are new re-
sults. The Coulomb + linear potential produces a phase term which leads to
a solution with the required characteristics of infrared slavery and asymptotic
freedom, exactly as required in the strong interaction. Coulomb + any other
potential or combination of potentials (excluding linear) yields a harmonic oscil-
lator solution with the (12 unit energy term correlated to fermion spin. This is
exactly in line with the weak interaction as a creator and annihilator of boson
states, with the spin creating the dipolar connection of the fermion with vacuum
through zitterbewegung.

The particle-vacuum weak dipole mechanism, as a fundamental ordering mech-
anism involving annihilation and creation, also connects with similar dipole-generated
phenomena at a wide variety of scales, giving support the conjecture by Marcer
and Rowlands that nilpotency of some kind is a very general phenomenon which
extends well beyond quantum mechanics, and appears as a key factor in creating
systems, like the fermion, which self-order with respect to their environment.[7]
Since the Coulomb + dipole or higher order terms solution is so general, and the
Coulomb term is required for spherical symmetry, then no other nilpotent solu-
tion is available for a point particle. Since the last solution is so general, and the
Coulomb term is required for spherical symmetry, then no other nilpotent solution
is available for a point particle.

Quantum field theory is very amenable to the nilpotent method. Second quan-
tization is redundant as the vacuum is a fundamental part of the structure. Per-
turbation theory calculations for QED can be done with relative efficiency, along
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with renormalization of the interactive parts, but the self-energy term cancels at
first order.[4] Similarly, cancellation of boson and fermion loops can be carried
out at all orders for the self-energy[6] using

(ikE− ip + jm) = (ikE− ip + jm)k(ikE− ip + jm)k(ikE− ip + jm)...

Also, boson propagators being inverses of terms like (±ikE ± ip + jm)(∓ikE ±
ip+jm), (±ikE±ip+jm)(∓ikE∓ip+jm), and (±ikE±ip+jm)(±ikE∓ip+
jm), have denumerators which are never zero, completely removing the infrared
divergence.[4] Propagators can also be written for weak and strong interactions.
Weak interactions can be calculated directly from the bosonic states without the
use of trace theorems, a method which is capable of much greater generalisation,
and probable application in QCD as well. Other significant nilpotent calculations
and interpretations involve BRST quantization and the Higgs mechanism. The
method is clearly capable of a great deal more generalisation than it has so far
received.

8 Dimensions and spinors

With our mapping of the component units of the four parameters onto an
octonion structure, it is interesting that Baez and Herta have proposed that an
octonion space is the true basis of physics, and that it can be used as a basis
to support 2-D strings within the 10-D of string theory.[8] Now, the nilpotent
structure is an 8-D object in at least two senses, and it has been apparent from
the beginning that (±ikE± ip + jm) can be regarded as 10-D in containing 5-D
for E, p), m and 5-D for the charges, and that 6 of the dimensions (all except
E and p) are fixed or compactified. However, in (±ikE ± ip + jm, two of the
dimensions are redundant due to nilpotency, and we reduce to 8 using a point
source rather than a 2-D string.

The combination of two spaces or a space and antispace in a point source with
zero norm is responsible for the symmetry-breaking between them. But there is
one aspect of the fermion where they are equal: the angular momentum or spin.
A set of primitive idempotents constructing a spinor can be defined in terms of
the H4 algebra, constructed from the dual vector spaces:

(1−iI−jJ−kK)/4
(1−iI+jJ+kK)/4
(1+iI−jJ+kK)/4
(1+iI+jJ−kK)/4

or from coupled quaternions:

(1+iI+jJ+iI )/4
(1+iI−jJ−iI )/4
(1−iI+jJ−iI )/4
(1−iI−jJ+iI )/4
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As required the 4 terms add up to 1, and are orthogonal as well as idempotent,
all products between them being 0. One of the remarkable things about the
structures is that they have the exact form of the components of the two forms of
the quartic Berwald-Moor metric of Finsler geometry:

(t− x− y − z)(t− x+ y + z)(t+ x− y + z)(t+ x+ y − z) (8.1)

(t+ x+ y + z)(t+ x− y − z)(t− x+ y − z)(t− x− y + z) (8.2)

If we multiply the 4 components in any order, we will always get zero. In a
sense this is like defining a singularity in spinor space. The zero product can thus
be interpreted as a fermionic singularity arising from the distortion introduced
into the vacuum (or spinor) space by the application of a nilpotent condition.
The space becomes quartic because it is created out of two quadratic spaces.
The quartic Berwald-Moor metric becomes an expression of the fundamentally
rotationally quartic nature of the underlying algebra. While multiplication of the
units of the algebra produces rotations in the spaces and identity after a complete
cycle, multiplication of the spin metric shows that it describes a singularity. It is
fitting that the only place where the perfect symmetry between the two spaces is
preserved is in the description of the quantity, angular momentum or spin, which
we have shown carries the entire information about the fermion state. It also only
occurs where we reduce the information about the real spatial state to a zero size.
Ultimately, nilpotent quantum mechanics is an expression of the creation of the
perfect self-organizing singularity state.
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