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Abstract

In this article we present a study of the subspaces of the manifold OscM,
the total space of the osculator bundle of a real manifold M. We obtain the in-
duced connections of the canonical metrical N-linear connection determined
by the homogeneous prolongation of a Finsler metric to the manifold OscM.
We present the Gauss-Weingarten equations of the associated osculator sub-
manifold.
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1 Introduction

The Sasaki N-prolongation G to the osculator bundle without the null section
OscM = OscM\ {0} of a Finslerian metric g, on the manifold M given by

G = gap (7,y) dz @ da® + gap (2, y) 5y" @ 5y *)

is a Riemannian structure on OscM, which depends only on the metric gqp.
The tensor G is not invariant with respect to the homothetis on the fibres of

OscM, because G is not homogeneous with respect to the variable y®.

In this paper, we use a new kind of prolongation G to O/SEJ\/J , ([8]), which
depends only on the metric gq,. Thus, G determines on the manifold m a
Riemannian structure which is 0-homogeneous on the fibres of OscM.

Some geometrical properties of G are studied: the canonical metrical N-linear
connection, the induced linear connections etc.
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2 Preliminaries

As far as we know the general theory of submanifolds (in particular the
Finsler submanifolds or the complex Finsler submanifolds) is far from being set-
tled ([1],[10], [3],[11], [12]). In [9] and [10] R.Miron and M. Anastasiei give the
theory of subspaces in generalized Lagrange spaces. Also, in [6] and [5] R. Miron
presented the theory of subspaces in higher order Finsler and Lagrange spaces
respectively.

If M is an immersed manifold in manifold M, a nonlinear connection on OscM
induces a nonlinear connection N on OscM.

The d-tensor G from (*) is not homogeneous with respect to the variable
y®. This is an incovenient from the point of view of mechanics. Moreover, the
physical dimensions of the terms of G are not the same. This disadvantage was

corrected by R. Miron. He took a new kind of prolongation G to OscM of the
fundamental tensor of a Finsler space, ([8]) (5), which depends only on the metric

GJap- Thus, G determines on the manifold OscM a Riemannian structure which
is 0-homogeneous on the fibres of OscM and p is a positive constant required
by applications in order that the physical dimensions of the terms of G be the
same. He proved that there exist metrical N-linear connections with respect to
the metric tensor G.

We take this canonical N-linear metric connection D on the manifold OscM
and obtain the induced tangent and normal connections and the relative covariant
derivation in the algebra of d-tensor fields ([13], [16]).

In this paper we get the Gauss-Weingarten formulae of submanifold OscM.

Let us consider F™ = (M, F) a Finsler space ([10]), and F' : TM = OscM — R
the fundamental function. F'is a C'°° function on the manifold OscM and it is
continuous on the null section of the projection 7 : OscM — M. The fundamental
tensor on F" is

1 9?F?
Jab (T,y) = §W7 Y (z,y) € OscM.
. 2 . : 0 0
The lagrangian F'* (z,y) determines the canonical spray S = y* —2G*
ox® dy°

1
with the coefficients G* = ?ygc (z,y) yby°, where vi. (z,y) are the Christoffels

symbols of the metric tensor g (x,y) . The Cartan nonlinear connection N of the
space F" has the coeflicients

N = —. 1
b ayb ( )

N determines a distribution on the manifold OscM, (][10],[9]), which is supple-
mentary to the vertical distribution V. We have the next decomposition

TwOscM = Ny, @ Vi,V = (x,y) € OscM. (2)
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0

M’aya} 5 (CL — 1,..7771) and 1tS

The adapted basis of this decomposition is {

dual basis is (dz®, 0y®), where

0 9 Nbi

sza  Oxo “ oy’
(3)
o 0
oye oy®
and
dz® = dz®
’ 4
{ 5ya — dya —I—Nabdl‘b. ( )
We use the next notations:
1) . 0
6a = < a =™ 3 4°
ox? & oy®

The fundamental tensor g,; determines on the manifold 0/?,54 the homoge-
0
neous N-lift G,[8],

0

G= Gab ('1‘7 y) dx? & dl‘b + hab (.%', y) 5ya ® 6yb7 (5)
where
p2
hab (ZZ‘, y) = Wgab (CB, y) ) (6)

lyl* = gan (z,y) vy
This is homogeneous with respect to y, and p is a positive constant required
by applications in order that the physical dimensions of the terms of G be the
same.
Let M be a real, m-dimensional manifold, immersed in M through the immer-
sion i : M — M. Localy, i can be given in the form

ox®
ou®

The indices a, b, c,....tun over the set {1,...,n} and «, 3,7,... run on the set
{1,...,m}. We assume 1 < m < n. We take the immersed submanifold OscM of
the manifold OscM, by the immersion Osci : OscM — OscM. The parametric
equations of the submanifold OscM are

=m.

x® =z (ul,...,um) , mnkH

ox®
ou®

m
) ) ,rang H
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The restriction of the fundamental function F to the submanifold OscM is

F(u,v):F(x(u),y(u,v))

and we call F™ = (M,F) the induced Finsler subspaces of ™ and F the
induced fundame(rlltal function.

Let B2(u) = 8—2 and gop the induced fundamental tensor,
u

9as (u,v) = gap (2 () ,y (u,v)) BLBS. (8)

We obtain a system of d-vectors {B%, B¢} which determines a moving frame
R ={(u,v); B (u), B (u,v)} in OscM along to the submanifold OscM.

Its dual frame will be denoted by R*={B% (u,v), BS (u,v)}. This is also de-
fined on an open set 7=t ((7) C OscM, U being a domain of a local chart on the
submanifold M.

The conditions of duality are given by:

BYBY =05, BSBY =0, BIB3=0, BIBY =45

B2B§ + BLB{ = 6.

The restriction of the nonlinear connection N to OscM uniquely determines

P

an induced nonlinear connection N on OscM

Neg = B2 (Bgﬂ + N%,Bg) . 9)

The cobasis (da:i, 6y“) restricted to OscM is uniquely represented in the mov-
ing frame R in the following form:

da® = Bydu®
(10)
y* = B4ov™ + BLK§du”

where
K§ = Bg (Bjs + MiBL) . Bfs = Bagv"

A linear connection D on the manifold OscM is called metrical N-linear
connection with respect to @, if DG =0 and D preserves by parallelism the
distributions N and V. The coefficients of the N-linear connections DI'(N) will

3 i a V a a a V a
be denoted with <(0I6)bc7 ({%)bc, (Ocl’)bc, (161’)176> )
Theorem 1.1([8]) There exist metrical N-linear connections DI (N) on O/;:]\/L
with respect to the homogeneous prolongation @, which depend only on the metric
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9ab (,y) . One of these connections has
the “horizontal” coefficients

H 1
(Ola)gc = ggad (0b9de + 0cGbd — dagne)

14 1
d
(lLo)gc = §ha (Obhde + 0chpg — 6ahic)
and the "vertical” coefficients:
a a 1 ad | 4 A A
e = 39 (3bgdc + OcGba — 3dgbc>
(12)
v 1, a (s ) )
C g = ht (vl + Buln — Babe)
It is called the Cartan metrical N-linear connection. This linear connection

will be used throughout this paper.

H v
For this N-linear connection, we have the operators D and D which are given
by the following relations

H H
DX%=dX" + wp X" -
VX €T (OSCM) (13)
Vv Vv
DX =dX%+ wiXP.

We call these operators the horizontal and vertical covariant differentials.
The 1-forms which define these operators will be called the horizontal and ver-
tical 1-form, where

(14)

We have
Theorem 1.2[16] The d-tensors of torsion of the Cartan metrical N-linear con-
nection D have the next expresions:

éi'v a Il{ a g a % a R

(OO)bC - (OO)bC - (OO)Cb’ (01)bc - e

P¢ ce P¢ B¢ X @ 15
(10)bc - (Ol)bc’ (11)1)0 - (11)bc - (IO)Cb ( )
Vv 4 14
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Theorem 1.3[16] The Cartan metrical N-linear connection D has, in the adapted

bases {(5a, 31a}, the following d-tensors of curvature

"horizontals”
R 5.1 ¢
(Oo)b ed = 0d ooyt
Pyt = Ol
(1O)b ed = 1d(00)bc

and the "verticals”

R, 5, L@
on’ T Tdgg)be
Py b1a L 0
dyred = 9d e
14 1%

(ﬁ)b d = 81d(€)bc

3 The relative covariant derivatives

111

ooane T
(16)

Cl G

¥ 17’

LI Le

aoante T
(17)

Vv Vv

f a

(g)bdﬁ)fc'

Let DI' (N), the Cartan metrical N-linear connection of the manifold OscM.
A classical method to determine the laws of derivation on a Finsler submanifold

is the type of the coupling.

Theorem 2.1 The coupling of the N-linear connection D to the induced nonli-

near connection N along OscM is locally given by the set of coefficients DT (]\7) =
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q v H v
Lo, Lo C% C%|, wh
(Oo)b&(10)b67(01)b67(11)b6 wnere

H

L {5 = L baB5 + C 1 BYICS

(000  (00) (01)** 0

Vv v Vv _

Lo = LeBly ¢ BIKO

A0 = (b0 + (7ypa 75 o

(18)

gr a gv a Bd

0P (Gybd o

Ca = o pi

a — a B

WAl

—_—~—

Definition 2.2 We call the induced tangent connection on OscM by the
H V

metrical N-linear connection D, the couple of operators D', DT which are defined
by

H H
DTX®=B¢DX",
forX® = BIX7

v 4
DTX*=B¢DX",
where

i H
DTX%=dXxXo + Xﬁwg
V. 174
DTX*=dXxo + Xﬂwg

H, V .
and wg, wg are called the tangent connection 1-forms.
We have

Theorem 2.3 The tangent connections 1-forms are as follows:

H, i a 4 a «a 1
(19)
Va 4 « 1 v a 1
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80
where
i d Iy
ooy = B\ Pos By gyt |
4 d F Y
[0 _ (6%
(ILO)% = By | Bl + BB(ILO)ﬂS :
(20)

H q
C ¢ :Bancd

o TRl
f J4 d

a — gepl ¢rd_
(P Ty

P

Definition 2.4 We call the induced normal connection on OscM by the
H \%4

metrical N-linear connection D, the couple of operators D+, D+ which are defined

by

L a
D+X%=B¢DX"
for X* = B2X7

Vi 14
D+X® = B¢DX",

where
H - -
DEX® =dX® + Xﬁwg

Vo B .
DHX® = dX + XPwg

He V= .

and w%, w% are called the normal connection 1-forms.
We have

Theorem 2.5 The normal connections 1-forms are as follows:

Hy Ho 5 HBaos
wy = ((]Ié)mdu + (061')55(511
(21)
Va_ Va6, “ass
wg = ({é)ﬁédu + (161')3651) ,

where
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g a _pga 6B% f 4 d
(005 = Dy <u5 + Bﬁ(({é)fd) )
(1%)35 =B (55? i Bé(é)%) ’
(22)
é)gé =B <81j§ i Bé(t)gl)%) ’

H \4
Now, we can define the relative (or mixed) covariant derivatives V and V .

Theorem 2.6 The relative covariant (mized) derivatives in the algebra of mized

H V
d-tensor fields are the operators ¥V, V for which the following properties hold:

Vf = df, o
Vfed <OSCM>
V= df,

H H H H H _ H
VX®=DX% VX®=DTX® VX®=DLX"

v 14 |4 \%4 v H
VX®=DXxe VX*=DIX? yvX&=DpLtx®e

_ H V
V% are called the connection 1-forms of V, V.

4 The Gauss-Weingarten formulae

As usual in the theory of the submanifolds we are interesed in finding the
moving equations of the moving frame R along OscM.

These equations, called also Gauss-Weingarten formulae, are obtained when

the relative covariant derivatives of the vector fields from R are expressed again
in the frame R.

Thus we have
Theorem 3.1 The following Gauss- Weingarten formulae hold:
Vi Viz
VB = BT, (23)

Vi Vi
VBE = —BIS, (24)
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where
Vi Vi
1 = H,0pdu’ + H,° o0
“ 0
(25)
v;
Hg—ga"é(sg z,
and the d-tensors
7.9, — (B BfL H.9 B | Bd BL
o = + a — < +
O R WA (T Y R T
(26)
H.3, — Bipl gd H.,—B sB/f C
W P AT e <>°‘5_ 70

are the fundamental d-tensors of the second order of manifold OscM ,
(i=0,1,Vo=H, V1 =V).
Proof From (11) and (12) we have

H
VB = B gsdu’ + B [op 60°

= @JFII{&B”—NB duP +
6P T 00T 00)2P 0

6By 4 i
Bb d B4 B
H
= Blsdu’ + B, badul + C 5600

( 0" (on®°

__pa f B f o B
Bf Bd (Baﬁ—i-B (OO)f’B> du —l—BdB (C’) ov ]

Using (25) we get relation (23) for V) = H.
H
Now, by applying V to both sides of the equations
gabB“Bb =0
one gets
25 b &b
9 B§G, B + gangHBB =0.
Multiplying these relation with BJ we obtain

H b 5 H b H_
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- H
But BnggabVB% = 0. Consequently, we obtain the relations (24) for V) = H.

v
Analogously, for the operator V one gets the other relations.

References

1]

Atanasiu, Gh., The homogeneous prolongation to the second order tangent
bundle T>M of a Finsler metric, Proc. of The Modern Trends in Geometry
and Topology, 5-11 September, 2005, Deva, 63-78.

Atanasiu, Gh. and Oana, A., The Gauss Weingarten formulae of second
order, BSG Proceedings 15, Geometry Balkan Press, Bucharest 2007, 19-33.

Bejancu A. and Faran H.R., The Geometry of Pseudo-Finsler Submanifolds,
Kluwer Acad. Publ., 2000.

Matsumoto, M., The induced and intrinsic Finsler connections of a hyper-
surface and Finslerian projective geometry, Journ.b of Math. of Kyoto Univ.,
25 (1985), 107-144.

Miron R., The geometry of higher order Lagrange spaces. Applications to
Mechanics and Physics, Kluwer Acd. Publ., FTPH 82, 1997.

Miron, R., The geometry of higher order Finsler spaces, Hadronic Press, USA,
1998.

Miron R. and Atanasiu Gh., Differential geometry of the k-osculator bundle,
Rev. Roumaine, Math Pures et Appl., 41, (1996), no. 3-4, 205-236.

Miron R., Shimada, H., Sabau, V.S., New lifts of generalized Lagrange met-
rics, Geom. At Hakodate, 1999.

Miron R. and Anastasiei M., The geometry of Lagrange spaces: Theory and
applications, Kluwer Acd. Publ., FTPH, 59, 1994.

Miron R. and Anastasiei M., Vector bundles. Lagrange spaces. Applications
to relativity, Ed. Academiei Romane, 1987.

Munteanu, Gh., The equations of a holomorphic subspace in a complex
Finsler space, Per. Math. Hungarica, 55 (2007), no. 1, 97-112.

Munteanu, Gh., Totally geodesics holomorphic subspaces, Nonlinear Analysis:
Real World Appl. 8 (2007), 1132-1143.

Oana, A., Submanifolds in the osculator bundle for the homogeneous prolon-
gation, Bull. Transilvania Univ., Bragsov, Ser. III: Math. Info. Phys. 1(50),
(2008), 263-268.



4 Alexandru Oana

[14] Oana, A., The relative covariant derivate and induced connections in the the-
ory of embeddings in the 2-osculator bundle, Bull. Transilvania Univ., Brasov,
Ser. B1 III: Math. Info. Phys. 14(49) (2007), 211-226.

[15] Oana, A., On Ricci identities for submanifolds in the 2-osculator bundle,
Iran. J. of Math. Sci. and Inf., 8, (2013), no. 2, 1-21.

[16] Oana, A., About intrinsic Finsler connections for the homogeneous lift to the
osculator bundle of a Finsler metric, Bull. Transilvania Univ., Bragov, Ser.
III: Math. Info. Phys. 6(55) (2013), no. 1, 37-54.



