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ON A CLASS OF LP-SASAKIAN MANIFOLDS

Krishnendu DE! and Srimayee SAMUI?

Abstract

The object of the present paper is to study projective curvature tensor in
L P-Sasakian manifolds. L P-Sasakian manifolds satisfying PR =0, R.P =0
and P.S = 0 are also considered. ¢-Ricci symmetric LP-Sasakian mani-
folds have been studied. In all the cases the manifold becomes an Einstein
manifold. Next we study 3-dimensional LP-Sasakian manifold satisfying
divP = 0. Finally, we construct an example of a 3-dimensional L P-Sasakian
manifold which verifies our result.
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1 Introduction

In 1989 Matsumoto [7] introduced the notion of Lorentzian para-Sasakian
manifolds. Then Mihai and Rosca [10] defined the same notion independently
and they obtained several results in this manifold. LP-Sasakian manifolds have
also been studied by Matsumoto and Mihai [8], Matsumoto, Mihai and Rosca [9],
Mihai, Shaikh and De [11], De and Shaikh ([2],[4]), Ozgur [13] and many others.
After the conformal curvature tensor the projective curvature tensor is an impor-
tant tensor from the differential geometric point of view. Let M be an n—dimensional
Riemannian manifold. If there exists a one-to-one correspondence between each
coordinate neighborhood of M and a domain in Euclidian space such that any
geodesic of the Riemannian manifold corresponds to a straight line in the Eu-
clidean space, then M is said to be locally projectively flat. For n > 3, M is
locally projectively flat if and only if the well known projective curvature tensor
P vanishes. Here P is defined by [12]

P(X,Y)Z = R(X,Y)Z — ﬁ{sm 2)X — S(X, Z)Y), (1.1)
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for X,Y, ZeT (M), where R is the curvature tensor and S is the Ricci tensor. In
fact, M is projectively flat (that is, P = 0) if and only if the manifold is of con-
stant curvature (pp. 84-85 of [16]). Thus, the projective curvature tensor is a
measure of the failure of a Riemannian manifold to be of constant curvature.

A Riemannian or a semi-Riemannian manifold is said to be semi-symmetric ([14],[6])
if R(X,Y).R = 0, where R is the Riemannian curvature tensor and R(X,Y) is
considered as a derivation of the tensor algebra at each point of the manifold for
tangent vectors X,Y. If a Riemannian manifold satisfies R(X,Y).P = 0, then
the manifold is said to be projectively semi-symmetric manifold.

Motivated by the above works we study some properties of projective curva-
ture tensor in L P-Sasakian manifolds.

An L P-Sasakian manifold is said to be locally ¢-symmetric if
¢*((VxR)(Y, Z)W) =0, (1.2)

for all vector fields X, Y, Z, W orthogonal to £&. This notion was introduced for
Sasakian manifolds by Takahashi [15]. Later in [1], Blair, Koufogiorgos and
Sharma studied locally ¢-symmetric contact metric manifolds. In (1.2), if XY, Z
and W are not horizontal vectors then we call the manifold globally ¢-symmetric.

An L P-Sasakian manifold is said to be ¢-Ricci symmetric if the Ricci operator
Q) satisfies

P*(VxQ)(Y) =0, (1.3)

for all vector fields X,Y € T'(M) and the Ricci operator @ is defined by S(X,Y) =
9(QX,Y), where S is the Ricci tensor. If X, Y are orthogonal to &, then the man-
ifold is said to be locally ¢-Ricci symmetric. From the definition it follows that
¢-symmetric implies ¢-Ricci symmetric, but the converse, is not, in general true.
¢-Ricci symmetric Sasakian manifolds have been studied by De and Sarkar [3].

Again an LP-Sasakian manifold is called Einstein if the Ricci tensor S is of
the form S = Ag, where X is a constant.

The paper is organized as follows:

In section 2, some preliminary results are recalled. After preliminaries, we study
L P-Sasakian manifolds satisfying P.R = 0 and R.P = 0. Section 4 deals with
L P-Sasakian manifolds satisfying P.S = 0. In the next section, we prove that an
n-dimensional L P-Sasakian manifold is ¢-Ricci symmetric if and only if it is an
FEinstein manifold. Next we study 3-dimensional L P-Sasakian manifold satisfying
divP = 0 and prove that in that case the manifold is a space form. Finally, we
construct some examples of L P-Sasakian manifold which verifies our result.
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2 Preliminaries

Let M™ be an n-dimensional differentiable manifold endowed with a (1,1)
tensor field ¢, a contravariant vector field &, a covariant vector field n and a
Lorentzian metric g of type (0,2) such that for each point p e M, the tensor g,:
T, M xT,M — R is a non-degenerate inner product of signature (—, +, +, ....., +),
where T, M denotes the tangent space of M at p and R is the real number space
which satisfies

¢*(X) = X +n(X)&n(6) = -1, (2.1)

9(X, &) =n(X),9(0X,9Y) = g(X,Y) + n(X)n(Y) (2.2)

for all vector fields X,Y. Then such a structure (¢,&,7n,g) is termed as
Lorentzian almost paracontact structure and the manifold M"™ with the structure

(¢,€,m, g) is called Lorentzian almost paracontact manifold [7]. In the Lorentzian
almost paracontact manifold M™", the following relations hold [7] :

¢§ = 0,n(¢X) =0, (2.3)
QX,Y) =Y, X), (2.4)
where Q(X,Y) = g(X, ¢Y).

Let {e;} be an orthonormal basis such that e; = . Then the Ricci tensor S
and the scalar curvature r are defined by

n

S(X,Y) = eig(R(ei, X)Y, ;)

i=1
and
n
T = Z eiS(ei, 62‘),
i=1
where we put ¢; = g(e;, €;), that is, e, = —l,eg =+ =¢, = 1.

A Lorentzian almost paracontact manifold M™ equipped with the structure
(¢,&,m,g) is called Lorentzian paracontact manifold if

AX.Y) = SUTxm)Y + (Tyn)X).

A Lorentzian almost paracontact manifold M™ equipped with the structure (¢, &, 1, g)
is called an LP-Sasakian manifold [7] if

(Vx®)Y = g(¢X, ¢Y)é +n(Y)4°X.

In an LP-Sasakian manifold the 1- form 7 is closed. Also in [7], it is proved that
if an n- dimensional Lorentzian manifold (M™, g) admits a timelike unit vector
field € such that the 1- form 7 associated to £ is closed and satisfies

(VxVyn)Z = g(X,Y)n(Z) + g(X, Z)n(Y) + 2n(X)n(Y)n(Z),
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then M™ admits an LP-Sasakian structure. Further, on such an LP-Sasakian
manifold M™ (¢,&,n, g), the following relations hold [7]:

n(R(X,Y)Z) = [g(Y, Z)n(X) — g(X, Z)n(Y)], (2.5)
S(X,€) = (n = 1n(X), (2.6)

S(@X,9Y) = S(X,Y) + (n = Dn(X)n(Y), (2.7)
R(X,Y)¢ = [n(Y)X —n(X)Y], (2.8)

R(§, X)Y = g(X,Y)E —n(Y)X, (2.9)
(Vxo)(Y) = [9(X, Y)E + 2n(X)n(Y)E + n(Y)X], (2.10)

for all vector fields X, Y, Z, where R, S denote respectively the curvature tensor
and the Ricci tensor of the manifold. Also since the vector field 7 is closed in an
LP-Sasakian manifold, we have ([8],[7])

(Vxn)Y = Q(X,Y), (2.11)
Q(X,€) =0, (2.12)
Vx§ =o¢X, (2.13)

for any vector field X and Y.
We now give some examples of L P-Sasakian manifolds both in odd and even di-
mensions.

Example 1: [9] Let R% be the 5- dimensional real number space with a coor-
dinate system (z,y, z,t, s). Denoting

n = ds — ydz — tdz, §=§7 g=n&n—(dz)* — (dy)* — (d2)* — (dt)*
S

and 0 0 0 0 0
éf)(%):*%*y%» ¢(07y):787y’
0 0 0 0 0 0

¢(5) =5, i35 ¢(§) =5 ¢(%) =0,

the structure (¢,&,7,g) becomes an L P-Sasakian structure on R®. The metric
tensor g can be expressed by the matrix
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1+y*> 0 ty 0 —y
(O 0 0 0

g= ty 0 -1+t 0 —t
0 0 0 -1 0

—y 0 —t 0 1

Example 2: Let R? be the 4- dimensional real number space with a coordinate
system (z,y, z,t). In R* we define
0

= dt —ydz —dw, €= —
/r] yz x’é- at’

g = de)+ e (dy) + (& +y?)(d2)?
Hydz @ dr 4+ ydr @ dz — ydz @ dt — ydt @ dz —n @,

and

0 0 0 0 0
(b(%)_@ix—i_@’ ¢(87y)_87y’
0 0 0
¢($) =55 ¢(a) =0.
Then it can be seen that the structure (¢, &, 7, g) becomes an LP-Sasakian struc-

ture on R*. The metric g can be expressed by
e*—1 0 0 1
B 0 € 0 0
7= 0 0 et 0
1 0 0 -1

3 LP-Sasakian manifolds satisfying P.R =0

In view of (1.1) the projective curvature tensor of an n-dimensional L P-
Sasakian manifold is given by

P(X,Y)Z = R(X,Y)Z — — LS(Y,2)X — S(X, 2)Y]. (3.1)

" —
Now from the above equation with the help of (2.6) and (2.9) we get

P(§,V)§ =0=P(V,£)¢. (3.2)
In this section first we study L P-Sasakian manifolds satisfying

(P(X,Y).R)(U, V)W = 0. (3.3)
Substituting Y = £ in (3.3) we have

(P(X,&).R)(UVIW = P(X,§)RU V)W — R(P(X, U, V)W
—R(U,P(X, ) V)W — R(U,V)P(X, )W (3.4)
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Putting U = W = ¢ in (3.4), we get

(P(X,8)-R)(EV)E = PX, R V)E - R(P(X,§)E,V)E
—R(& P(X, V)= R(E,V)P(X, 6§ (3.5)

Now,

P(X, R, V) = PX, )V —n(V)E)
= P(X, V. (3.6)

Using (3.6), (3.7), (3.8)and (3.9) in (3.5) we have
P(X,6)V — P(X,€)V + g(X, V)¢ — ﬁS(X, V)E =0, (3.10)

Taking inner product of (3.10) by & we obtain
S(X,V)=(n-1)g9(X,V). (3.11)
Therefore the manifold is an Einstein manifold. Thus we can state the following:

Theorem 3.1. An LP-Sasakian manifold satisfying P.R = 0 is an Einstein man-
ifold.

Next we study LP-Sasakian manifolds satisfying
(R(X,Y).P)(U V)W =0 (3.12)
Now substituting Y = £ in (3.12) we have

(R(X,€).PYUVIW = R(X,&P(U,V)W — P(R(X, U, V)W
—P(U,R(X, V)W — P(U,V)R(X,)W. (3.13)

Putting U = W = ¢ in (3.13) we have

(R(X,§).P)(&,V)E = R(X,§P(E,V)E— P(R(X,£E,V)E
—P(&§ R(X,§V)E = P& V)R(X, )¢, (3.14)
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From (3.2) we obtain

R(X,§)P(E,V)§ =0 = P(§ R(X,§V)E. (3.15)
Again
P(R(X,€)E, V) = Pn(X)§— X, V)¢
= —PX,V)E+n(X)P(E V)¢
= —P(X,V), (3.16)
and

PEVIR(X, ¢ = P& V)n(X)E - X)
— _P(,V)X. (3.17)

Using (3.15), (3.16), (3.17) in (3.14) we have
P(X,V)é+P(E,V)X =0. (3.18)
Taking the inner product of (3.18) by £ we obtain
S(X,V)=(n-1)g(X,V). (3.19)
Therefore the manifold is an Finstein manifold. Thus we can state the following:

Theorem 3.2. An LP-Sasakian manifold satisfying R.P = 0 is an Einstein man-
ifold.

4 [LP-Sasakian manifolds satisfying P.5 = 0
In this section we study L P-Sasakian manifold satisfying P.S = 0. Therefore
(P(X,Y).5)(U,V)=0. (4.1)

This implies
S(P(X,Y)U,V)+ S(U,P(X,Y)V)=0. (4.2)

Putting ¥ = U = ¢ in (4.2) we obtain
S(P(X,€)¢, V) + S(¢, P(X,€)V) = 0. (4.3)
Using (3.2) in (4.3), we have
S(&,P(X,6)V) =0. (4.4)

This implies

(n = Dg(R(X, OV — ——[S(E, V)X ~ S(X, V), =0.  (45)
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It follows that

9(R(X,§)V,¢) -

- Dn(V)n(X) - SV =0, (46)

Therefore
S(X,V)=(n-1)g9(X,V). (4.7)

Hence the manifold is an Einstein manifold.
Conversely, the manifold is an Einstein manifold, that is, S(X,V) = Ag(X, V).

(P(X,Y).8)(U,V) = S(P(X,Y)U,V)+S(U,PX,Y)V)

— ANg(P(X,Y)U,V)+g(U, P(X,Y)V].  (4.8)
Since
g(P(X, YU, V) = —g(P(X,Y)V,U). (4.9)
Using (4.9) in (4.8) we have
(P(X,Y).S)(U,V) =0. (4.10)

Thus we can state the following:

Theorem 4.1. An LP-Sasakian manifold satisfies P.S = 0 if and only if it is an
FEinstein manifold.

5 ¢-Ricci symmetric L P-Sasakian manifolds

Proposition 5.1. An n-dimensional ¢-Ricci symmetric LP-Sasakian manifold
is an Finstein manifold.

Proof. Let us assume that the manifold is ¢-Ricci symmetric. Then we have
¢*(VxQ)(Y) =0.
Using (2.1) in the above, we get
(VxQ)(Y) +n(VxQ)(Y))§ = 0. (5.1)
From (5.1), it follows that
9(VxQ)(Y), Z2) + n(VxQ)(Y))n(Z) =0, (5-2)
which on simplifying gives

9(VxQ(Y), 2) = S(VxY, Z) + n((VxQ)(Y))n(Z) = 0. (5.3)
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Replacing Y by ¢ in (5.3), we get

9(VxQ(8), Z2) = S(Vx¢&, Z2) + n((VxQ)()n(Z) =0. (5.4)
By using (2.6) and (2.13)in (5.4), we obtain

(n—1)g(¢X, Z) = S(¢X, Z) + n((VxQ)(§))n(Z) = 0. (5.5)
Replacing Z by ¢Z in (5.5), we have

5(¢X,92) = (n—1)g9(¢X, $2). (5.6)
In view of (2.2) and (2.7), (5.6) becomes
S(X,2) = (n—1)g(X, 2),

which implies that the manifold is an Einstein manifold.

Now, since a ¢-symmetric manifold is ¢-Ricci symmetric, we have

Corollary 5.1 A ¢-symmetric LP-Sasakian manifold is an Einstein mani-
fold.

Proposition 5.2. If an n-dimensional L P-Sasakian manifold is an Einstein man-
ifold, then it is ¢-Ricci symmetric.

Proof. Let us suppose that the manifold is an Einstein manifold. Then
S(X,Y)=ag9(X,Y),
where S(X,Y) = ¢(QX,Y) and « is a constant. Hence QX = aX. So, we have
P*(VxQ)Y) =0.
This completes the proof. O

In view of Proposition 5.1 and Proposition 5.2, we have

Theorem 5.1. An n-dimensional LP-Sasakian manifold is ¢-Ricci symmetric if
and only if it is an Finstein manifold.
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6 3-dimensional [ P-Sasakian manifolds

Let us consider a 3-dimensional LP-Sasakian manifold. It is known that the
conformal curvature tensor vanishes identically in the 3-dimensional Riemannian
manifold. Thus we find

R(X,)Y)Z = g(Y,2)QX — g(X,2)QY + S(Y,2)X — S(X,2)Y

r
where @ is the Ricci operator, that is, g(QX,Y) = S(X,Y) and r is the scalar

curvature of the manifold.

Putting Z = ¢ in (6.1) and using (2.8) we have

n(Y)QX ~n(X)QY = (5~ Vn(Y)X —n(X)Y]. (6.2)
Putting Y = ¢ in (6.2) and using (2.1) and (2.6), we get
QX = 30— DX +(r — O)n(X)g, (63)
that is, .
S(X.Y) = S[(r = 2)g(X,Y) + (r = 6)n(X)n(Y)]. (6.4)

An LP-Sasakian manifold is said to be a space form if the manifold is a space of
constant curvature.

Lemma 6.1 A 3-dimensional LP-Sasakian manifold is a space form if and only
if the scalar curvature r = 6.

Proof. Using (6.3) in (6.1), we get

REXZ = (50 2)X (X, 2)V]+ (5 ) lov Zn(X)e
—9(X, Zn(Y)E +n(Y)n(2)X —n(X)n(2)Y]. (6.5)
From (6.5), the Lemma is obvious. O]

Let M be a 3-dimensional L P-Sasakian manifold with conservative projective
curvature tensor [5], that is, divP = 0. Then its Ricci tensor is given by

(VxS (Y, Z2) = (Vy ) (X, 2). (6.6)

From this we obtain 7 =constant.
From (6.4) we have

(Vx9(Y,2) = %[dT(X){g(Y, Z) +n(Y)n(2)}-
+(r = 6){Q(Y, X)n(Z) + Q(Z, X)n(Y)}]. (6.7)
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Using (6.7) we get from (6.6)

Ar(X)59(Y, 2) + (Y In(Z)] - dr(¥)[39(X, Z) + n(X)n(Z)]
+(r—6){QZ, X)) -QZ,Y)n(X)}=0. (6.8)

Taking a frame field and contracting over Y and Z, we get

dr(X) = (r — 6)yn(X), (6.9)

where 1) = Z?:1 Qe;, e;) = tracee.
If we assume that ¢ = trace¢ # 0, that is, £ is not harmonic, then » = 6. So in
view of Lemma 6.1 we state the following:

Theorem 6.1. A 3-dimensional LP-Sasakian manifold satisfying divP =0 is a
space form, provided the characteristic vector field & is not harmonic .

7 Examples

Example 7.1: We consider the 3-dimensional manifold M = {(z,y, z) € R$},
where (x,y, z) are standard coordinates of R3.
The vector fields

0 0 0
€3 = —

e1=¢e"—, e :ez(%+a—y), 92

dy

are linearly independent at each point of M.
Let g be the Lorentzian metric defined by

9(61,6’1) = 9(6’2,6’2) = 179(63763) = _1’

g(e1,e2) = g(e1,e3) = g(ea, e3) = 0.

Let n be the 1-form defined by n(Z) = ¢g(Z, e3) for any vector field Zex(M).
Let ¢ be the (1,1) tensor field defined by

ple1) = —e1, ¢(e2) = —e2, ¢(e3) =0.

Then using the linearity of ¢ and g we have

77(63) = _17
$*Z = Z +n(Z)es,

9(dZ, W) = g(Z, W) + n(Z)n(W)

for any vector fields Z, W € x(M).
Then for e3 = & , the structure (¢,&,7,g) defines a Lorentzian paracontact
structure on M.
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Let V be the Levi-Civita connection with respect to the Lorentzian metric g
and R be the curvature tensor of g. Then we have

[617 62] = O ) [617 63] = —€
and
[e2, e3] = —ea.
Taking es = £ and using Koszul’s formula for the Lorentzian metric g, we can

easily calculate

v6161 = —e€s, v6162 - 07 v8163 = —é€1,

vezel = 0) v6262 = —e€s, v62€3 = —€g,

v6361 = 0, V€362 = 0, vegeg = 0.

From the above it can be easily seen that M3(¢,£,n,g) is an LP-Sasakian mani-
fold. With the help of the above results it can be easily verified that

R(ei,ez)es =0, R(eg,e3)es = —ey, R(ey,e3)es = —eq,
R(el’ 62)62 = €1, R(€2a €3>62 = —eas, R(@l, 63)62 = 07
R(e1,e2)er = —e2, R(ez,ez)er =0, Rer,ez)er = —es.

From the above expressions of the curvature tensor we obtain

S(er,e1) = g(R(e1,e2)ea,e1) — g(R(e1,e3)es, e1)
= 2.

Similarly we have
S(ez,e2) =2,5(es, €3) = —2

and
S(ei,ej) = 0(i # 7).
Therefore,
r=S(e1,e1) + S(ez, ea) — S(es, e3) = 6.

Therefore Theorem 6.1. is verified.

Example 7.2: Let us consider the 5-dimensional manifold M = {(z,y, z,u,v) €
R : (z,y, z,u,v) # (0,0,0,0,0)}, where (z,v, 2, u,v) are the standard coordinates
in R%. The vector fields

z—ax O u 0

— o2 0 — — 9 _ 20 — pz—u 0
el—eax,eg—e 6y’e3_6z764_68u’e5_e 90

are linearly independent at each point of M where a is scalar. Let g be the metric
defined by
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§(6i7€j) = 17 fori:j#ga
=0, for i # j,
= -1, fori=j=3.

Here i and j runs from 1 to 5. Let 1 be the 1-form defined by 7n(Z) = §(Z, e3),
for any vector field Z tangent to M. Let ¢ be the (1,1) tensor field defined by

pep = —eq, pes = —eq, pez =0, pey = —ey, pes = —es.
Then using the linearity property of ¢ and g we have
n(es) = =1, 9’ Z = Z +n(Z)es
for any vector field Z tangent to M. Thus for e3 = &, M(np,g,n,g) defines an

almost para-contact metric manifold. Let V be the Levi-Civita connection on M
with respect to the metric g. Then we have

[617 62] — _aeze27 [ela 63} = —é€y, [elv 64] — 07 [ela 65] = Oa
[627 63] = —€2, [627 64] = 07 [627 65] =0, [637 64] = €4,
les,es5] = e5, [es,e5] = —€es.

Taking ez = £ and using Koszul’s formula for g, it can be easily calculated that

velel = €3, v€162 = O) v6163 = —é€1, v6164 = 05 v€165 = 07
Ve,e1 = ac’ea, Ve,e9 = —aeejes, Ve,e3 = —ea, V.
eq =0,

07 66265 - 07
Vese1 =0, Veea=0, Vees=0, V =0,

2€4 =
ve3 €5

ve4el - 07 v64€2 - 07 v6463 = —€4, v6464 - 07 ve4€5 = 07

€3

v z z
Vese1 =0, Veea =0, Vees =—e5, Vees =ees, Veses =e3—e“es.

From the above calculations, we see the manifold under consideration satisfies
n(€) = —1 and Vx& = ¢X. Hence, M is an LP-Sasakian manifold.
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