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Abstract

In this article we study parallel submanifolds in generalized Sasakian
space–forms and we find some conditions so that Legendre pseudo–parallel
submanifolds of the generalized Sasakian space–forms be totally geodesic.
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1 Introduction

The study of parallel submanifolds of real space forms of constant sectional
curvature was made by Ferus [12] and Takeuchi [17] and Kon [14], Nakagawa-
Takagi [15] and others for complex space forms. In [16], two theorems concerning
reduction of codimensions of parallel submanifolds in Sasakian space–forms were
proved. We prove that such a theorem holds for parallel submanifolds of gen-
eralized Sasakian space–forms. Pseudo-parallel submanifolds are introduced in
[6] and [7] as a generalization of semi-parallel submanifolds in the sense of [10].
The notion of pseudo–parallelism generalizes the notion of semi–parallelism in the
same way as pseudo–symmetry (in the sense of [10]) generalizes semi–symmetry.
In this article we prove that under certain conditions, Legendre pseudo–parallel
submanifolds of generalized Sasakian space–forms are totally geodesic.

2 Preliminaries

We remember some necessary useful notions and results for our next consid-
erations.
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Let M̃ be a C∞–differentiable, 2n + 1–dimensional almost contact manifold
with the almost contact metric structure (F, ξ, η, g), where F is a (1, 1) tensor

field, η is a 1-form, g is a Riemannian metric on M̃ , ξ is the Reeb vector field,
χ(M̃) is the set of all vector fields on M̃ , all these tensors satisfying the following
conditions :

F 2 = −I + η ⊗ ξ; η(ξ) = 1; g(FX,FY ) = g(X,Y )− η(X)η(Y ) (1)

for all X,Y in χ(M̃).

We consider the Sasaki form Ω on M̃ , given by Ω(X,Y ) = g(X,FY ). An inte-
gral submanifold M of the contact distribution D = ker η is an integral manifold
and such a submanifold is characterized by any of

1. η = 0, dη = 0;

2. FX ∈ χ⊥(M) for all X in χ(M).

Another property valid on these submanifolds and useful for our considerations
is the following

Proposition 2.1. Let M be an integral submanifold of the almost contact metric
manifold M̃ . Then:

i) Aξ = 0;

ii) AFXY = AFYX;

iii) AFYX = −[Fh(X,Y )]T ;

iv) ∇⊥X(FY ) = g(X,Y )ξ + F∇XY + [Fh(X,Y )]⊥;

v) ∇⊥Xξ = −FX

for all X,Y in χ(M).

A maximal integral submanifold M of an almost contact metric manifold M̃ is a
Legendre submanifold.

Denote by

OscxM = TxM ⊕N1
x(M) (2)

the first osculating space of the submanifold M at x, where M is a submanifold
of a Riemannian manifold M̃ , x is a point of M , N1

x(M) is the subspace of Tx(M̃)
generated by h(X,Y ), X,Y ∈ TxM .

If M̃ is a symmetric Riemannian manifold (i.e ∇̃R̃ = 0) and x ∈ M̃ , then a
subspace V of Tx(M) is a Lee triple system if and only if R̃(X,Y )Z ∈ V , for all

X,Y, Z ∈ V . Here R̃ represents the curvature tensor of M̃ . From [13] we have
the following Theorem:

Theorem 2.2. Let M be symmetric Riemannian manifold, x a point of M and
V ⊂ TxM a Lee triple system. Then there exists an unique complete totally
geodesic submanifold M∗ of M with the property that x ∈M∗ and TxM

∗ = V .
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Given an almost contact metric manifold M̃ , we say that M̃ is a generalized
Sasakian space–form [2], if there exit three functions f1, f2, f3 on M̃ such that

R̃(X,Y )Z = f1[g(Y,Z)X − g(X,Z)Y ]

+ f2[g(X,FZ)FY − g(Y, FZ)FX + 2g(X,FY )FZ]

+ f3[η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ] (3)

for any vector fields X,Y, Z on M̃ . In such a case, we will write M̃(f1, f2, f3).

3 Parallel submanifolds of generalized Sasakian space–
forms

A submanifold M of an almost contact metric manifold M̃ is parallel if and
only if

(∇̃Xh)(Y, Z) = 0 (4)

for X,Y, Z vector fields on M , where

(∇̃Xh)(Y,Z) = ∇⊥X(h(Y,Z))− h(∇XY,Z)− h(Y,∇XZ).

Proposition 3.1. Let M be an n–dimensional complete connected orientated par-
allel submanifold of generalized Sasakian space–form M̃(f1, f2, f3), with n ≥ 2,
f2 6= 0, f3 6= 0 and 3f2 + f3 6= 0. Then the Reeb vector field ξ is tangent or
normal to M at any point of M .

Proof. We consider ξ = ξT ⊕ ξ⊥, where ξT and ξ⊥ represent the tangent, respec-
tively, the normal component of ξ. From (3) we have

f2[g(X,FZ)FY − g(Y, FZ)FX + 2g(X,FY )FZ]⊥

+f3[g(X,Z)η(Y )− g(Y,Z)η(X)]ξ⊥ = 0 (5)

for all X,Y, Z in χ(M̃).
Suppose that both ξT 6= 0 and ξ⊥ 6= 0. Then both FξT 6= 0 and Fξ⊥ 6= 0. Taking
Y = Z = ξT in (5), we obtain 3f2g(X, (FξT )T )(FξT )⊥ = 0, for all X in χ(M)
and because f2 6= 0 we have two cases:

Case 1. (FξT )⊥ = 0. Taking X = ξT and Y = Z = FξT in (5) we have
(3f2 + f3)[−g(ξT , ξT ) + η2(ξT )]T η(ξT )ξ⊥ = 0 and then ξ⊥ = 0 (contradictorily
with the fact that ξ⊥ 6= 0).

Case 2. (FξT )T = 0. Taking X = Z = ξT in (5) we obtain g(ξT , ξT )Y =
g(Y, ξT )ξT , that is n ≤ 2 (contradictorily with the fact that n ≥ 2) or ξT = 0
(contradictorily with the fact that ξT 6= 0).

Proposition 3.2. Let M be an n–dimensional connected orientated parallel sub-
manifold of the generalized Sasakian space–form M̃(f1, f2, f3), with f2 6= 0, f3 6= 0
and 3f2 + f3 6= 0. If M is tangent to the Reeb vector field ξ, then M is invariant
or anti-invariant.
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Proof. Taking ξ⊥ = 0 and Y = Z in (5) we have 3f2g(X,FY )(FY )⊥ = 0, for all
X,Y in χ(M). Because f2 6= 0 and M is connected , we obtain that FX ∈ χ⊥(M)
or FY ∈ χ(M), that is M is invariant or anti-invariant.

If {X,FX} is a 2–plane of M̃ orM we denote byK
M̃

(X,FX) andKM (X,FX)

the F–sectional curvatures on M̃ , respectively on M . We have the following
Theorem:

Proposition 3.3. Let M be an invariant submanifold of generalized Sasakian
space–form M̃(f1, f2, f3). Then M is totally geodesic if and only if

K
M̃

(X,FX) = KM (X,FX)

for any {X,FX} 2–plane of M . In this case

K
M̃

(X,FX) = KM (X,FX) = f1 + 3f2[η
2(X)− 1]2 − f3η2(X). (6)

Proof. ” ⇒ ” Because M is totally geodesic, using Gauss equation we have
K
M̃

(X,FX) = KM (X,FX), for any {X,FX} 2–plane on M . Then from (3)
we obtain (6).

”⇐ ” FromK
M̃

(X,FX) = KM (X,FX) and Gauss equation we have ‖h(X,FX)‖2+
‖h(X,X)‖2 = 0, for all X ∈ χ(M). Then h(X,X) = 0 and h(X,Y ) = 0, for all
X,Y ∈ χ(M).

Theorem 3.4. Let M be an n–dimensional orientated connected symmetric par-
allel submanifold of the generalized Sasakian space–form M̃(f1, f2, f3), with n ≥ 2,
f2 6= 0, f3 6= 0 and 3f2 + f3 6= 0. Suppose that M is tangent to the Reeb vector
field.

i) If M is invariant then M is totally geodesic with F -sectional curvature given
by (6)

ii) If M is anti–invariant then there exists an unique complete totally geodesic
submanifold M∗ of M so that

1. x ∈M∗ and TxM
∗ = OscxM , for any x ∈M ;

2. M∗ is invariant;

3. dim(M∗) = 2 dim(M)− 1.

Proof. i) results from Proposition 3.3.
ii) Because M is anti–invariant we have that Fh(X,Y ) ∈ χ(M), for all X,Y ∈
χ(M). Now, from (2) and (3) we obtain that OscxM is a Lee triple system.
Applying Theorem 2.2 we obtain ii) 1.
ii) 2. and ii) 3. result from the fact that, FTxM ⊆ N1

xM , F (ξ) = 0, FN1
xM ⊆

TxM and M∗ has odd dimension.
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4 Pseudo–parallel submanifolds of generalized
Sasakian space–forms

Let M be a submanifold of the Riemannian manifold M̃ . We consider

(∇̃X∇̃Y h)(V,W ) = ∇⊥X((∇̃Y h)(V,W ))− (∇̃Y h)(∇XV,W )

− (∇̃Y h)(V,∇XW ) (7)

and

(R̃ · h)(X,Y, V,W ) = (∇̃X∇̃Y h)(V,W )− (∇̃Y ∇̃Xh)(V,W )

− (∇̃[X,Y ]h)(V,W ) (8)

for all X,Y, Z,W ∈ χ(M).
From (7) and (8) we obtain that

(R̃ · h)(X,Y, V,W ) = R⊥(X,Y )h(V,W )− h(R(X,Y )V,W )

− h(V,R(X,Y )W ) (9)

where R⊥(X,Y )~n = ∇⊥X∇⊥Y ~n − ∇⊥Y∇⊥X~n − ∇⊥[X,Y ]~n, for any X,Y ∈ χ(M) and

~n ∈ χ⊥(M).
The submanifold M is semi-parallel [10] if

(R̃ · h)(X,Y, V,W ) = 0. (10)

and M is pseudo-parallel [6] if

(R̃ · h)(X,Y, V,W ) + Φ ·Q(g, h)(X,Y, V,W ) = 0 (11)

where Φ is a differential function on M̃ and

Q(g, h)(X,Y, V,W ) = h((X ∧ Y )V,W ) + h(V, (X ∧ Y )W ),

(X ∧ Y )V = g(Y, V )X − g(X,V )Y

for all X,Y, V,W in χ(M).
Now, we consider M a Legendre submanifold of 2n + 1–dimensional general-

ized Sasakian space–form M̃(f1, f2, f3). Let
{e1, ..., en, en+1 = e1∗ = Fe1, ..., e2n = en∗ = Fen, e2n+1 = ξ} be a local orthonor-

mal basis on M̃ so that {e1, ..., en} is a local orthonormal basis on M . We consider
i, j, k, l = 1, n and α, β = n+ 1, 2n+ 1 and the following decompositions and no-
tations

h(ei, ej) = hαijeα; ∇eiej = Γlijel; ∇̃ekeα = Γikαei + Γβkαeβ (12)

(∇̃ekh)(ei, ej) = hαijkeα; (∇̃el∇̃ekh)(ei, ej) = hαijkleα (13)

where Γmrp are connection coeficients with m, r, p = 1, 2n+ 1.



40 Maria Ĉırnu

Proposition 4.1. Let M be a minimal pseudo–parallel Legendre submanifold of
the generalized Sasakian space–form M̃(f1, f2, f3). Then:

1

2
∆ ‖h‖2 = Φn ‖h‖2 +

∥∥∥∇̃h∥∥∥2 . (14)

Proof. The second fundamental form h is a tensor field of type (1, 2) and ∇̃h is a
tensor field of type (1, 3). From (12), (13) and the local expresion of the covariant
derivative of a tensor field of type (r, s), we obtain that:

hαijk = g((∇̃ekh)(ei, ej), eα)

= ek(h
α
ij) + hβijΓ

α
kβ − Γlkih

α
lj − Γlkjh

α
il

= ∇̃ekh
α
ij (15)

and

hαijkl = g((∇̃el∇̃ekh)(ei, ej), eα)

= el(h
β
ijk) + Γαlβh

β
ijk − Γrlih

α
rjk

− Γrljh
α
irk − Γrlkh

α
ijr

= ∇̃elh
α
ijk

= ∇̃el∇̃ekh
α
ij . (16)

Moreover,

‖h‖2 =

n∑
i,j=1

2n+1∑
α=n+1

(hαij)
2;

∥∥∥∇̃h∥∥∥2 =

n∑
i,j,k,l

2n+1∑
α=n+1

(hαijkl)
2. (17)

From the properties of the Laplacian of a differential function we have ∆hαij =∑n
k=1 h

α
ijkk and

1

2
∆ ‖h‖2 =

n∑
i,j,k,l

g((∇̃ek∇̃ekh)(ei, ej), h(ei, ej)) +
∥∥∥∇̃h∥∥∥2 . (18)

Because M is a Legendre submanifold, from (3) we have R⊥(X,Y )Z = 0, for
all X,Y, Z ∈ χ(M) and then using Codazzi equation, we have that ∇̃h is totally
symmetric. Now, from the fact that ∇̃h is totally symmetric, we obtain that:

(∇̃ek∇̃ekh)(ei, ej) = (∇̃ek∇̃eih)(ek, ej)

(∇̃ei∇̃ekh)(ek, ej) = (∇̃ei∇̃ekh)(ej , ek).

Taking into account these last relations and the fact that M is pseudo–parallel
we obtain that

g((∇̃ek∇̃ekh)(ei, ej), h(ei, ej)) = g((∇̃ei∇̃ejh)(ek, ek), h(ei, ej))

− Φ[δikg(h(ek, ej), h(ei, ej))

− δkkg(h(ei, ej), h(ei, ej))

+ δijg(h(ek, ek), h(ei, ej)

− δkjg(h(ek, ei), h(ei, ej))], (19)
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where δij are Kronecker symbols. We consider the decompositionH =
∑2n+1

α=n+1H
αeα.

Then ‖H‖2 =
∑2n+1

α=n+1(H
α)2, Hα = 1

n

∑n
k=1 h

α
kk and

n∑
i.j.k=1

g((∇̃ei∇̃ejh)(ek, ek), h(ei, ej)) = n

n∑
i,j=1

2n+1∑
α=n+1

hαij∇̃ei∇̃ejHα. (20)

From (18), (19), (20) we have that

1

2
∆ ‖h‖2 =

n∑
i,j=1

2n+1∑
α=n+1

hαij(∇̃ei∇̃ejHα)

− Φ[n2 ‖H‖2 − n ‖h‖2] +
∥∥∥∇̃h∥∥∥2 (21)

Finally, because M is minimal we obtain (14).

In [9], Chern, do Carmo and Kobayashi obtained a formula for the Laplacian of
the square of the length of the second fundamental form of a minimal immersion
into a locally symmetric space. The same formula also holds for an integral
submanifold of a generalized Sasakian space–form, that is:

1

2
∆ ‖h‖2 =

∥∥∥∇̃h∥∥∥2 +
∑
α,β

tr(AeαAeβ
−AeβAeα)2

−
∑
α,β

(trAeαAeβ )2 − 4
∑

α,β,i,j,k

R̃αβijh
α
jkh

β
ik

+
∑

α,β,i,j,k

R̃αkβkh
α
ijh

β
ij

− 2
∑

α,i,j,k,l

R̃ijkjh
α
ilh

α
kl − 2

∑
α,i,j,k,l

R̃ijklh
α
ilh

α
jk (22)

where R̃ABC = R̃(eC , eB)eA, A,B,C = 1, 2n+ 1 and trA~n represents the trace of
the Weingarten operator A~n.

Proposition 4.2. Let M be a minimal Legendre submanifold of the generalized
Sasakian space–form M̃(f1, f2, f3). Then:

1

2
∆ ‖h‖2 =

∥∥∥∇̃h∥∥∥2 + (f2 + nf1) ‖h‖2

−

∑
α,β

∥∥∥[Aeα , Aeβ
]
∥∥∥2 +

∑
α,β

(trAeαAeβ )2

 . (23)

Proof. From Proposition 2.1 we have hn+ijk = hn+jik .
Because M is Legendre and minimal, taking into account (3) we have∑

α,β,i,j,k

R̃αβijh
α
jkh

β
ik = −f2 ‖h‖2 ;
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∑
α,β,i,j,k

R̃αkβkh
α
ijh

β
ij = (−3f2 − nf1) ‖h‖2 ;

∑
α,i,j,k,l

R̃ijkjh
α
ilh

α
kl = f1(1− n) ‖h‖2 ;

∑
α,i,j,k,l

R̃ijklh
α
ilh

α
jk = −f1 ‖h‖2 .

Moreover, because g(A~nX,Y ) = g(A~nY,X) we obtain that

tr(AeαAeβ −AeβAeα)2 = −
∥∥[Aeα , Aeβ ]

∥∥2 .
From these relations and (22) we obtain (23).

Now, from Proposition 4.1 and Proposition 4.2 it is easy to prove the following
Theorem:

Theorem 4.3. Let M be a minimal pseudo-parallel Legendre submanifold of the
generalized Sasakian space–form M̃(f1, f2, f3) so that

Φn− f2 − nf1 ≥ 0. (24)

Then M is totally geodesic.

We observe that for f1 = c−3
4 , f2 = f3 = c+1

4 , M̃(f1, f2, f3) is a Kenmotsu

space–form and (24) is equivalent with Φ − n(c−3)+c+1
4 ≥ 0 and for f1 = c+3

4 ,

f2 = f3 = c−1
4 , Φ − n(c+3)+c−1

4 ≥ 0 we are in the case of Sasakian space–forms
[18].
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