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Abstract

In this paper we extend the known results on R - complex Hermitian
Finsler spaces from [4], by the study of three special R - complex Hermitian
Finsler spaces with («, 3)-metrics. We characterize the R - complex Hermi-
tian Finsler versions of the Kropina metric, Matsumoto metric and another
special (a, §)-metric. Moreover, we find the conditions for two of these three
R - complex Hermitian Finsler spaces to be Berwald. Based on [4,5,6,7,8],
we write some explicit examples.
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1 Preliminaries

The notion of complex Finsler space appeared for the first time in a paper
written by Rizza in 1963, [21], as a generalization of the similar notion from the
real case, requiring the homogeneity of the fundamental function with respect to
the fibre variables, for any complex scalars A\. The first example comes from the
complex hyperbolic geometry and was given by S. Kobayashi in 1975, [14]. The
Kobayashi metric has given an impulse to the study of complex Finsler geometry.

A complex Finsler geometry, which contains many interesting results, has been
developed in the papers [1, 2, 15, 18, 3, 5, 6, 7, 13, etc.].
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In paper [19], the well-known definition of a complex Finsler space [1, 2,13]
was extended, reducing the scalars to A € R. The outcome was a new class of
Finsler space called the R- complex Finsler spaces [19].

The interest for this class of Finsler spaces was stimulated by the fact that the
Finsler geometry means, first of all, distance and this refers to curves depending
on the real parameter.

In the present paper, following the ideas from real Finsler spaces with («, 3)-
metric [10, 16, 17, 22] we introduce the similar notions on R— complex Finsler
spaces.

In this section we keep the general setting from [4,18,19] and subsequently we
recall only some needed notions (for more details, see [18]).

Let M be an n — dimensional complex manifold and z = (2*) k=Tn be the
complex coordinates in a local chart. The complexified of the real tangent bundle
ToM splits into the sum of holomorphic tangent bundle 7'M and its conjugate
T"M. The bundle 7'M is itself a complex manifold and the local coordinates
in a local chart will be denoted by u = (zk,nk)k:m. These are changed into

(2", %), _ 75 by the rules 2’ = 2'*(2) and ¥ = %Z;nl.

A R— complex Finsler space is a pair (M, F'), where F' is a continuous function
F :T'M — R, satisfying the conditions:

i) L = F? is smooth on T'M = T'M\{0};

ii) F(z,m) > 0 the equality holds if and only if n = 0;

iii) F(z, n,z, n) = |\ F(z,n,2,7),V\A € R.

The fundamental function L of a R— complex Finsler space, induces the fol-
lowing tensors:

I R R o )

gl]—Wagij_Wagij_Wa (1)
which satisfy interesting properties, obtained as consequences of the homogeneity
condition i), [19],

oL oL _ oL
an ZT] + o 877 _2L gljn +ggz77 6 77 (2)

2L = gz-jninj + 292-;772'?7] + 917-?7 7

877.7 aﬁ] 8 J a .7

An R— complex Finsler space with g;z(2) (or gj(z)) will be called purely
Hermitian [4].

Having an R— complex Finsler space, if we suppose that F’ satlsﬁes the regu-

=0.

larity conditions: g;; is nondegenerated, (i.e., det(g;;) # 0, inany u € T'M ), and
it defines a positive definite Levi-form for all z € M, then such a class of spaces
is called R— complex Hermitian Finsler space, [19].

Consider the sections of the complexified tangent bundle of 7M. Let VI'M C
T'(T'M) be the vertical bundle, locally spanned by {%}, and VT"M its conju-

gate. The idea of complex nonlinear connection, briefly (c.n.c.), is an instrument
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in ’linearization’ of the geometry of the manifold 7"M. A (c.n.c.) is a supplemen-
tary complex subbundle to VI'M in T(T"M), i.e. T"(T'M) = HT'M & VI'M.
The horizontal distribution H,7'M is locally spanned by {6%,6 o0 _ N Ig%},

= 0:F
where N} (z,7) are the coefficients of (c.n.c.).
The pair {0 = %, 0 = %} will be called the adapted frame of (c.n.c.) which

6Zk 9
obeys the change rules 6 = %j,i 5;- and 9, = gzz'}z 6; By conjugation everywhere
we have obtained an adapted frame {6z, 9z} on T (T"M). The dual adapted bases
are {dz¥, 6n*} and {dz*, 67*}.
A (c.n.c.) related only to the fundamental function of the R— complex Hermi-
tian Finsler space (M, F'), (called Chern-Finsler (c.n.c.)), has the following local
coefficients

mi 82L mi 891?771 —r 898m s
=g W—g (azknJrazkn)- (3)

Also, in an R— complex Hermitian Finsler space, we have recovered the Chern-
Finsler connection, [19], which is metrical, of (1,0)— type, and it is given by

=9 Oikm) : Che = 9™ (0j9km) 3 L;;; = C;;g =0, (4)

where here and further on §; is the frame corresponding to the Chern-Finsler
(c.n.c.).

Ni

Finally we recall from [4] the definition of an R— complex Hermitian Finsler
space with Berwald property: (M, F') is Berwald if the local coefficients Lék de-
pend only on the position z. In this case, the local coefficients of the Chern-Finsler
(c.n.c.) have the particular form

Ni = Ly ()0’ + (05N (2)77".

2 R— complex Hermitian Kropina spaces

o)

We consider z € M, n € T_M,n=1n"5%.

is called R— complex Kropina space if

An R— complex Finsler space (M, F)

Oé2
B
where
0[2(2, 1, z, 77) = Re{aljnln]} =+ %57727_]]7 (6)

5(’2’ 7, Z, ﬁ) = Re{blnz}

with a;; = aij (2), a;; = a;5(2), and b = b;(z)dz" is a differential (1,0)— form.
The Kropina function (5) produces two tensor fields g;; and g;;.

In order to study the R— complex Hermitian Finsler spaces with Kropina
metric, we suppose that a;; = 0. Thus, only the tensor field g;; is invertible and
it is characterized by the following properties:
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Proposition 1. [20] For the R— complex Hermitian Kropina space, with a;; =0,
we have

i)
2F 2 3F? —2F
9i; = ?azj + @lil 2ﬂ2 72 (b l; + bl ) (8)
or, in the equivalent form
2F 2 F2
9i5 = 3 o Gif — /82 lll 2/82 2”277]? (9)
= = — 5 — 2 g
g]k — %a]k + B( 2‘;@2-SJ-VFw)77]nk + B( ?é?e\?—a )b7bk+
(10)
+5(2‘15E5)bj77k + 6(241@3;[6) bk,
where

N = |e]? — a®w + 3Ffw + 86% — 88Re(e),
o = agn'ny = ', U =aVl; =1, (11)

bk = ajkb3, e =LV, € =bm', w= b

Proposition 2. Let (M,F) be an R— complex Hermitian Kropina space with
a;j = 0. Then we have the following expressions of Chern-Finsler(c.n.c.):

a
; i 2e2—a?w+128%2-10 —2e2-1262+11 Oaym 1=
N} = N o (et =ttt o SBESE) Sty

49 [72527]1\?18/32+9/35ni + F(3¢? +1]3g2 1558 } <(5 B) (12)

F2 mi mi Olm, F2 mi Obm
4 [ﬂ (gmz _ amz)} & — ﬁgmz o

where
4 miaasm s X 1,007 Ob;

k. S
Nj=a i 058 2(8zjr+8zj

b= M i) (13)

Lemma 1. Let (M, F) be an R— complex Hermitian Kropina space with a;; = 0.
If (M, F) is Berwald then

a
2FNf <sz — N%I) l; = (26c%a? — 4402 Be — 20w + 240232 —
—4Fe )‘95;? '™ + 2(—19Fa?e® — 20046 + 18ate + 3F%3+
+160*Be) <5jﬁ> + (—8(145 + 204w + 8a?Be — 52a2) 7"+

+ (=6aBe + a’e + 4aB) b™ (% - g%b;) — —gam%bg

(14)
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a
2FNp (N;I — N}) l; = (286283 — 4e3 — 20a? fw + 24a’we+
+483% — 645% — —4Fc?w) Pnylim 4
2(—26FBe? + 4Fe® — 40F 3% + 56 F 8%¢ + 3F%%w — 160t w—
—15F?Bew) <5jﬂ> + [(—16a2B% + 8F 3% + 4F?w3?—

2F%0Be = —2a%cw)™ + (—6Fwf? + 2atw + 160232
—8F 3% — 4F3? + 2a%¢)] (% - g%bz'?) — —Lgmi %bz?

1.

At this moment we want to emphasize the difference between this class of
spaces and R— complex Hermitian Randers spaces. In our case we have only
rational terms, and for this reason we have the next Corollary

Corollary 1. Let (M, F) be an R— complex Hermitian Kropina space with a;; =
0. If 0;8 =0 and

a
2FNp gNj — N;I) l; = (26c2a? — 4402 Be — 20w + 24023 —

4P Gt
(15)

a
2FNp (N;‘ — Nj) b; = (2828 — 4e3 — 2002 fw + 24a’we+
483 — —648% — 4Fe?w) Syl

a
then (M,F') is a Berwald space and N; = N;

With «, 8 from [4] and using the same technique, as in the Randers case
(exhaustively studied in [4]), we can write a first example of Kropina metric.
Example 1. As in [4], on M = C? we set the metric

a2 = ' +2 ’771’2 + o2 12 ’772’2 + o2 T2 25 +2 ’773’2' (16)

and the (1,0) - differential form

2

e=e" 1’ (17)

Then, 28 = e n% + €% 72 and so, aij = 0,b; =0 =0, (i,j = 1,3), by = €,
b2 =e = and w = 1.
Using (16) and (17), we have

etz ‘771\2 e ‘772‘2 T e ‘773‘2

F= .
3 (202 + i)

which is a Hermitian Kropina metric.
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3 A special class of R— complex Hermitian Finsler
space with («, §)-metric

Following the ideas from real case [22], we shall introduce a new class of R—

complex Finsler metrics.
We consider z € M, n € T'M, n = n*-2;. We define the function F on 7'M,

ozt
F=0o?+ef% e==I, (19)
where ) o o
« (Za m, 27 77) = Re{aijnznj} + ai;nlﬁj; (20)

B(z,m,%,7) = Re{bin'},

with a;; = aij (2), a;; = a;5(2), and b = b;(z)dz" is a differential (1,0)— form.
The function (19) produces two tensor fields g;; and g;;.

In order to study the R— complex Hermitian Finsler space with this metric,
we suppose that a;; = 0. Thus, only tensor field g;; is invertible.

Proposition 3. The fundamental metric tensor of the R— complex Hermitian
Finsler space with the («, B)-metric: F(a, 8) = \/a? +¢f2, e = +1 is given by

9
9 = a5+ Ebibj (21)

Proof. The invariants of an R— complex Finsler space («, 5)-metric for this class
are: 0p,01 = 3,62 = 0_1 = 0,4 = 5,¢ = £1. Using them in Theorem 2.1. [7]
by direct calculation we have the result. O

The next aim is to find the formulas for the determinant and the inverse of
tensor field g;;. The solution is obtained by the followin Lemma from [6], for an
arbitrary non-singular Hermitian matrix (Q;3).

Lemma 2. Suppose: B

® (Q;;) is a non-singular n X n_complex matriz with inverse (Q7);

o C; and (7 = Ci,i=1,..,n, are complex numbers;

o (i = jSCj and its conjugates; C* = C'C; = C'Cy; H;; = Q;; £ CiC5

Then

i) det(H;3) = (1£C?)det(Q;5)

i) Whenever 1 + C? # 0, the matriz (H;;) is invertible and in this case its
inverse is H7' = Q' @CZCJ'.

Proposition 4. For the R— complex Hermitian Finsler space with the metric
F = \/a?2+¢eB%,e = +1 the determinant and the inverse of the fundamental
metric tensor g;; are given by

. = . . 1 ’_C' _.l
i) ¢ =a + 775" ‘a’"biby, (22)

2+
2

i7) det (Qij) = (Ddet(aﬁ), (23)
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where '
w="bb", b, = Vas-, bl = aﬂb-

2]7

Proof. Applying Lemma 2 we set Q;; = a;; and C; = %bi. We obtain Qii = o

Cl = af, Lb:, C? = tw, 1+ C? = H2 #£ 0, We have H; = g;5. HI' =

. V2 R 2 i
alt + 2+w( kz\%bk)( Jl%bl), det(H;3) = (14 C?)det(a;). From here, immediately
results i) and ii). O

Proposition 5. Let (M,F) be an R— complex Hermitian space with F = /a2 + /32
and a;; = 0,6 = x1. Then we have the following expressions of Chern-Finsler

(c.n.c.)

i at 14w fa 1 Oy, i ,mab
Nj —Nj+ T (6 5) +7$b + 28¢g 927 (24)
where . _ o o .
i lm T _p
N} = o7 n' and 5J5 <a Sl + 555" ) (25)

After a direct calculus, we can prove that,

Proposition 6. Let (M, F) be an R— complex Hermitian space with F' = \/a? + ¢/32
and a;; = 0,e = x1. If (M, F) is Berwald then

at

(2+w) (N} - Nj) li=(2+w) < ﬂ) £+e92b™ + 28 (24 w) g™ R,
(2+w) (N} - NJ> bi=(2+w) <5jﬁ> W+ w428 (2 + w) g,
(26)
Theorem 1. Let (M, F) be an R— complex Hermitian Finsler space, with a;j =0
and F = \/Wfsﬁ2 e==1. If (M, F) is a Berwald space and (Nj’ - J(\lf;)bZ =0,

al

thenéﬁ—() cmle*N]
Example 2. We consider « as in [8], given by

24 2o |<zm>
(Z 77) i €(|(1|_;1:|‘ |2|) i )7 (27)

defined over the disk A = {z eC™, |z|<r, r= ,/é} ife<0,onC"ife=0

and on the complex projective space P"(C) if € > 0, where |< 2,7 >\2 =<z,n>

< z,m >. By computation, we obtain a;; = 0 and a; = 71+51|Z‘2 (55 - 67&32‘2)

and so, a*(z,7) = a;3(z)n'i. Thus purely Hermitian metrics which have special
properties are determined. They are Kahler with constant holomorphic curvature
KXo = 4e. Particularly, for e = —1 we obtain the Bergman metric on the unit disk
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A"™ = AT; for ¢ = 0 the Euclidean metric on C”, and for € = 1 the Fubini-Study

. . <zn> o i .
metric on P"(C). Setting 5(z,n) = Re 1+ZE‘77Z|2, where b; = 1+§W77 we obtain some
examples of this class of R - complex Hermitian metrics

_ InPe(l=PmlP—l<zm>]?) <z> \?
e (1+¢l2]2)? = <R€1+5\z|2) : <28)

4 R— complex Hermitian Matsumoto spaces

Following the ideas from the real case [10, 16, 17, 22|, we shall introduce a
new class of R— complex Finsler space with («, 5)-metric.
We consider z € M, n € T'M, n =n' 8‘;. An R— complex Finsler space (M, F)
is called R— complex Matsumoto space if

a2

F(aaﬁ):mv a# B, (29)

where o o
042(27 1,2, 77) = Re{ai]:nlnj} + az‘j77177J§ (30)
/8(27 ,r]? Z’ 77’) = Re{bznz}’
with ai; = aij (2), a5 = a;5 (2), and b = b;(z)dz" is a (1,0)— differential form.
Taking into account the 2—homogeneity condition of L :

L(a (27)\77’27 )\ﬁ) ’6(27)\7772’ AT_])) = )\2L (O[ (27177277_’) 75(2517?27?7)) ’)\ E R+7
(31)
we have,
Proposition 7. In an R—complexr Hermitian Matsumoto space the following
equalities hold

aLa + BLB = 2L7 aLoca + /BLaﬁ = Lon

OéLag + ﬂLﬁﬁ = Lg, a2Laa + 2(15[@5 + ﬁzLﬁﬁ = 2L, (32)
where
oL oL 0L 9%L 9?L
La:77 L = =, La = =5 Laa:77 L =5 . 33
da’ 095 7T 9adp gaz o5 =g (33)

The Matsumoto function (29) produces two tensor fields g;; and g,;.
In order to study the R— complex Hermitian Matsumoto spaces, we suppose
that a;; = 0. Thus, only the tensor field g,; is invertible.

Proposition 8. The fundamental metric tensor field of a R— complex Hermitian
Matsumoto space is given by

3 _ 2 2 _ 4 2 4 2 —4
g = a a Baf aff + 443 Lot 3o bib-+a (v — 4P)
Tooa=pp Y 2=p)t T 20a=B) T 2(a—B)t
or, in the equivalent form
a’ —2a%3 48 — « F a—4p

5 P T e B o B 28T 2F 2 )

(bsli+bil;) (34)
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Proof. The invariants of an R— complex Hermitian Matsumoto space are: py =

a?(a—28) _F _ —B(a—4B) _ F(a—4B) N 3F .
@p)3 » P1L = 5=p P-2= 2 pi P-1 = 22a0p2 MO = 3a_pez: Using
them in Theorem 2.1. [7] by direct calculation we have the result. O

Proposition 9. For an R— complex Hermitian Matsumoto space the determinant
and the inverse of the fundamental metric tensor g;; are given by:

o= )3 = .
i) g7t = a(go(‘agﬁ)Hﬂ, with

= = (a—4B)D , = o®>M . - o*(a—4B)E , -

Jt — Je = (o (2 (2

H a +7MM n'n +—A bb]+7A 'y +
o (a—4B)Me ; 5 (a—B)°(a—4p) (o —4B)Pp

ar o L i T

oMy, o*(a—4B)év aQ(a—4B)M&:ﬁbi

(™

nj =+

e ¥ V
_ . 2 B} 200 _ AR\E, - 20, _ .
+(a 4B)P,unj L Mv a“(a—4B)év L (cv 4B)M5Mb7

M1 1 U 4 AN )

) (@ i+ (36)

where
M =20 — 4028 — ay + 437,
D = M + M[a?|<[2(a — 48),
L = 2a8(a — 28)? + B(a — B)%(a — 48), (37)
n= 77”71; V= blnw
P =M+ Ma3|e|* — 4Ma?|e]?B,

A= (a® —4aB + 45%)(2a* — 4028 — ay + 4537) + o*(2wa? — 4a?Bw—
— ayw + 4Byw + el — 4Be|?,
B = Gﬁ??jnﬂr

G 4P)(20° — 40?5 — aF + 487 + o®|e[*(a — 48)(20° — 40”8 — ay + 48)
(203 — 4028 — ay + 467) (20 — 4028 — oy + 457)

X

2X77177217j;7§+ 4 2 3 4, 2 4
203 —4a2B— w —4B) (203 —4a2f—
La (2 OéAfB ay+ Mblb]nm; 4+ @ (a—48) (2 Aa B—ay+487)

: b s
203 — 4a?B — oy + 457%) 2

+ ° nibjn‘n—- +
203 — 4028 — ay + 48y T

J

it) det (g;;) = <a2(a72 ))ndet(HZ-

@5 ), with

208%(a — 28)% + B(a — B)®(a — 43)
408(a — 2B)"M

det(H,;) = A% det(a;3),

w=bbl, b =Vag, b = al'bs.

19
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Proof. 1. We set: Q5 = aj and C; = 2 2&_7_2%)[2-. By applying Lemma 2
we obtain: Q7 = i | C? = Ww?ﬁ)% ct=1 (aa 42%)77 So the mz}trix
Hj =a;— #‘%lﬂ; is invertible with: Hj; = aj; + 20&3_4;%4_%7%%77@773. I1.

Now, we consider: Q;; = a;5 — %lﬂ; and C; = ﬁbi. By applying Lemma

2 we obtain this time:

2

a (o — 4B)[? )

2 _
"= (v —23)? <w+ 203 — 4028 — ay + 48y

It results that the the inverse of:

- - o — 4ﬂ o?
—ah - T 4 T babs
202(a —28) 15 T (o — 25"

exists and it is:

1 o’[el*(a — 4P) w
H-. = a=: —4 R
ji = aji+ (o —45) <2a3 — 4028 — ay + 4By HprE . 4a28—ay+487) """ i
+a2(2a3 — 40?8 — oy + 467 iy
A
o?(a — 46)(20% — 40?8 — ay + 467) £ iy 4
A 203 —40425—(174—457”

+ d birp
203 — 40283 — o + 435 )
III. Finally we put Q;; = a;; — 2a2(a 25)l i+ = 2B) zbib; and

a—B)2
C; = oz?’((a—ifﬁ))\/f\/(a — B)(a — 45)n;. From here we obtain:

~ 4 ’ — B)’(a— 48
det(Hﬁ) = det (aij a( — o) Lil; + @ 525)217@‘63 + (a2a6(()1 (_042/6)2 )mn]) —

_ 205 (a — 28)2 + B(a — B)?(a — 4) . A ' A - det(a;)
2a8(a — 208)? 202(a —2B8)%  (a—2B8)2M K
But g;; = D‘(O(éa ?5) H;;, with H; from III. Thus, gt = a(;(“a ;6) H'. From here,
immediately results i) and ii). O

Proposition 10. Let (M,F') be an R— complex Hermitian Matsumoto space with
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a;j = 0. Then we have the following expressions of Chern-Finsler (c.n.c.),

; ! — 2(x 2 « .
Ni= N+2a2(a_5)(a_2m{[(a 208 +28%) +a(Q+U + W)
.(a(a—2aﬁ+252)+5) +(S+V)(e (04—2045+2ﬁ2)+wa)+

+aa—B)%(a —48)(a — 208 + 262 + &)y’ + [(a — 208 + 26%) (Re+

+Ta? + Za*) + ala — 208 + 28%)(Rw + T& + Zg)]bl}f?a Dty
1 —
T et la  p)(a—2p) (2~ 2~ 14307 (S+V + U AV +Q)F

+ (a = B)%(a—4B)n" + a*[(Za® + Ta* + R)(2a — 23 — 1 + 3a%8)+

+ 3a%]b }(5j5)+[Q+U+W+( )ai )]aza‘” n'+
O, O, Ol a? -; O,
2™+ (T + Z) 2 =n™b + R 0™ + e
TEEVIGtt T D Ry (@a—25)7 2
where (a—48) 2 (a—48) *(a—4p)
_ (a—4pB)D o M o a—4 a®(a—4pB)Me
Q=" B=%4",5="—"= T="Z%r

+ AN ;
(V + (O‘*]‘\%B)Eﬂ> ,

+ (o= 48) (35 + <5%) .

Also,with v and 8 from [4] we have an example,of Matsumoto metric.
Example 3. As in [4], on M = C? we consider the metric

o2 = #' 7 }n1|2 N }"72|2
and € = ez2772. These imply a;; =0, (4,5 =1,2), 26 = ez2n2 + 622?72, by =bl =0,
by = 622, b2 = ¢ and w = 1. With the above tools we obtain an R— complex

Matsumoto metric
N h },,71|2 N ‘772}2

F =
Ve P 4 e o b 4 )

7 (39)

which is an R— complex Hermitian Matsumoto metric.
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