
Bulletin of the Transilvania University of Braşov • Vol 7(56), No. 2 - 2014
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Abstract

The authors of [1] suggest that the space velocities of the particles is a
four nonholonomic distribution on the manifold of higher dimension. This
distribution is given 4-potential of the electromagnetic field. The equation
of admissible (horizontal) geodesic for this distribution coincides with the
equations of motion of a charged particle of the general theory of relativity.
The metric tensor of the Lorentzian signature (+,−,−,−) is defined on the
distribution, which allows us to determine causality, as in the general theory
of relativity. The authors introduced the covariant derivative (linear connec-
tion) and the curvature tensor for distribution. In [2], for any distribution
of intrinsic connection, we construct its extension - extended connection. To
ask continuation connectivity means to identify some vector field on corre-
sponding distribution. Using convenient coordinate system this field has the
form: ~u = ∂n + Ga

n∂n+a. The purpose of this paper is to find an explicit
expression vector field ~u for which the curvature tensor of extended connec-
tivity coincides with the tensor obtained in [1].
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1 Interior and extended connections

Let X be a smooth manifold with contact structure [2]. A coordinate chart
K(xα) (α, β, γ = 1, ..., n; a, b, c = 1, ..., n− 1) on the manifold X is called adapted
to distribution D if D⊥ = span

(
∂
∂xn

)
.
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Let P : TX → D be the projection map defined by the decomposition TX =
D ⊕D⊥ and let K(xα) be an adapted coordinate map. Vector fields

P (∂a) = ~ea = ∂a − Γna∂n

are linearly independent, and linearly generate the system D over the domain of
the definition of the coordinate map:

D = span(~ea).

Thus we have on X the non-holonomic field of bases (~ea, ∂n) and the corresponding
field of cobases

(dxa, θn = dxn + Γnadx
a).

It can be checked directly that

[~ea, ~eb] = Mn
ab∂n,

where the components Mn
ab form the so-called tensor of non-holonomicity [2].

Under the assumption that for all adapted coordinate systems it holds ~ξ = ∂n,
the following equality takes place

[~ea, ~eb] = 2ωba∂n,

where ω = dη. We say also that the basis ~ea = ∂a−Γna∂n is adapted, as the basis
defined by an adapted coordinate map. Note that ∂nΓna = 0.

We call a tensor field defined on an almost contact metric manifold admissible
(to the distribution D) if the coordinate form of an admissible tensor field of type
(p, q) in an adapted coordinate map looks like

t = t
a1,...,ap
b1,...,bq

~ea1 ⊗ ...⊗ ~eap ⊗ dxb1 ⊗ ...⊗ dxbq .

An intrinsic linear connection on a non-holonomic manifold D is defined in [2]
as a map

∇ : ΓD × ΓD → ΓD

that satisfies the following conditions:

1) ∇f1~u1+f2~u2 = f1∇~u1 + f2∇~u2 ;

2) ∇~uf~v = f∇~u~v + (~uf)~v,

where ΓD is the module of admissible vector fields. The Christoffel symbols are
defined by the relation

∇~ea~eb = Γcab~ec.

The torsion S of the intrinsic linear connection is defined by the formula

S(~x, ~y) = ∇~x~y −∇~y~x− p[~x, ~y].
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Thus with respect to an adapted coordinate system it holds Scab = Γcab − Γcba.
The action of an intrinsic linear connection can be extended in a natural way

to admissible tensor fields. An important example of an intrinsic linear con-
nection is the intrinsic metric connection that is uniquely defined by the condi-
tions ∇g = 0 and S = 0, [2]. With respect to the adapted coordinates it holds
Γabc = 1

2g
ad(~ebgcd − ~ecgbd − ~edgbc).

In the same way as a linear connection on a smooth manifold, an intrinsic
connection can be defined by giving a horizontal distribution over the total space of
some vector bundle. The role of such a bundle is played by the distribution D. The
notion of a connection over a distribution was applied to non-holonomic manifolds
with admissible Finsler metrics in [2]. It could be said that over a distribution D
a connection is given if the distribution D̃ = π−1∗ (D), where π : D → X is the
natural projection, could be decomposed into a direct some of the form

D̃ = HD ⊕ V D,

where V D is the vertical distribution on the total space D.
Let us introduce a structure of a smooth manifold on D. This structure is

defined in the following way. To each adapted coordinate map K(xα) on the
manifold X we put in correspondence the coordinate map K̃(xα, xn+α) on the
manifold D, where xn+α are the coordinates of an admissible vector with respect
to the basis

~ea = ∂a − Γna∂n.

The constructed over-coordinate map will be called adapted. Thus the assignment
of a connection over a distribution is equivalent to the assignment of the object
Gab (X

a, Xn+a) such that
HD = span(~εa),

where ~εa = ∂a − Γna∂n −Gba∂n+b. If it holds

Gab (x
a, xn+a) = Γabc(x

a)xn+c,

then the connection over the distribution D is defined by the intrinsic linear
connection. In [2] the notion of the prolonged connection was introduced. The
prolonged connection can be obtained from an intrinsic connection by the equality

TD = H̃D ⊕ V D,

where HD ⊂ H̃D. Essentially, the prolonged connection is a connection in a
vector bundle. As it follows from the definition of the extended connection, for its
assignment (under the condition that a connection on the distribution is already
defined) it is enough to define a vector field on the manifold D that has the
following coordinate form: ~u = ∂n + Gan∂n+a. The components of the object Gan
are transformed as the components of a vector on the base. Setting Gan = 0, we
get an extended connection denoted by ∇1. The admissible tensor field

R(~u,~v)~w = ∇~u∇~v ~w −∇~v∇~u ~w −∇p[~u,~v] ~w − p[q[~u,~v], ~w]
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is called by Wagner the first Schouten curvature tensor. With respect to the
adapted coordinates it holds

Rabcd = 2~e[aΓ
d
b]c + 2Γd[a||e||Γ

e
b]c.

If distribution D does not contain any integrable subdistribution of dimension
n−2, then the Schouten curvature tensor is zero if and only if the parallel transport
of admissible vectors does not depend on the curve. We consider the case where
the object Gan is not equal to zero. On the basis of physical considerations the
connection is constructed in [1], its curvature tensor in adapted coordinates takes
the form Rabcl = ∂cΓ

a
lb − ∂lΓacb + (ΓslbΓ

a
cs − ΓscsΓ

a
ls) + ε0k

2c2
F ab Fcl. To calculate the

object Gan we use the curvature tensor Rabcd [1] which can be obtained from the
decomposition [εa, εb] = ωba~u+Rcabdx

n+d∂n+c where ~εa = ∂a − Γna∂n −Gba∂n+b.
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