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ON THE GRADIENT METHOD APPLIED TO OPTIMAL
CONTROL PROBLEM

Ernest SCHEIBER1

Abstract

The purpose of this paper is to give direct proofs of some convergence results
for the gradient and gradient projection methods applied to optimal control
problem. The methods are considered in the continuous approach. In the
context of optimal control problem, direct proofs are given to the results from
the point of view of the teaching methods. The gradient projection method
is studied in a modified variant, which is programmed in a simpler way in a
Computer Algebra System (CAS) environment. For simple optimal control
problems it is possible to use symbolic computations. An example is solved in
Mathematica CAS.
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1 Introduction

The purpose of this paper is to give direct proofs of some convergence results for
the gradient and gradient projection methods applied to optimal control problem.
The methods are considered in the continuous approach.

The used framework is similar to that used in [5], to prove a convergence result
for the extragradient method applied to optimal control problem.

The theory of gradient and gradient projection methods are well known in ab-
stract spaces [2], in finite dimensional spaces [3, 7, 8, 9] and even for optimal control
problem [4], but here we are interested to give direct proofs of the results in the
context of optimal control problem from the point of view of the teaching methods.

In [4], an adaptive precision algorithm for the gradient method is developed and
justified. The algorithm is designed to be implemented by numerical methods. The
adaptive precision algorithm supposes the use of low accuracy numerical integration
while the computations are far from the solution and improve the accuracy as the
solution is approached.

The gradient projection method [3, 7, 8, 9] is studied in a modified variant, which
is more adequate to be used in a Computer Algebra System (CAS) environment.

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
scheiber@unitbv.ro
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For simple optimal control problems it is possible to use symbolic computations.
Such an example is solved in Mathematica CAS.

2 The gradient method

We consider the optimal control problem

minimize I(u) = ϕ(x(T )) (1)

subject to the constraints

ẋ(t) = A(t)x(t) +B(t)u(t) (2)

x(0) = x0 (3)

where x(t) ∈ Rn, u(t) ∈ Rq, A(t) ∈ Mn,n(R), B(t) ∈ Mn,q(R) are real matrix with
continuous elements and ϕ is a continuous differentiable function. T is fixed and
the set of admissible controls U is the set of piecewise continuous functions defined
on [0, T ].

Let us denote by ϕx the derivate of ϕ and by M∗ the transpose of a matrix M.
Let X(t) ∈Mn,n(R) be a fundamental solution matrix for the linear differential

system ẋ(t) = A(t)x(t) (i.e. Ẋ(t) = A(t)X(t) andX(t) is not singular) and Φ(t, s) =
X(t)X−1(s).

The solution of the initial value problem (2)-(3) will be

xu(t) = Φ(t, 0)x0 +

∫ t

0
Φ(t, s)B(s)u(s)ds. (4)

The matrix [Φ∗(t)]−1 is the fundamental solution matrix for the adjoin system

ṗ(t) = −A∗(t)p(t). (5)

If
p(T ) = pT (6)

then the solution of the problem (5)-(6), the costate, will be, [6],

p(t) = Φ∗(T, t)pT . (7)

We introduce the controllability Gramian

W =

∫ T

0
Φ(T, t)B(t)B∗(t)Φ∗(T, t)dt. (8)

The following properties are known, [6]:

Theorem 2.1 (i) W is symmetric and non-negative defined matrix;
(ii) If W is invertible and û(t) = B∗(t)Φ∗(T, t)ū with ū = W−1(xT−Φ(T, 0)x0) then
xû(t) defined by (4) verifies the boundary conditions xû(0) = x0 and xû(T ) = xT .
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(iii) Among all controls u ∈ U transferring x0 to xT in time T, the control û(t)

minimizes the functional
∫ T

0 ‖u(t)‖22dt, moreover,∫ T

0
‖û(t)‖22dt =

∫ T

0
‖u(t)‖22dt+

∫ T

0
‖û(t)− u(t)‖22dt.

A simple procedure to solve the optimal control problem (1)-(3) results: Compute
the local minimizer points of ϕ(x) and for any such point xT solves the initial value
problem

ẋ(t) = A(t)x(t) +B(t)B∗(t)Φ∗(T, t)W−1(xT − Φ(T, 0)x0)
x(0) = x0.

Example 2.1
minimize x4

1(T )− 2x3
1(T ) + x2

1(T ) + x2
2(T )

subject to
ẋ1(t) = x2(t) x1(0) = x0

1

ẋ2(t) = u(t) x2(0) = x0
2

For this example

Φ(t, s) =

(
1 t− s
0 1

)
, W =

(
T3

3
T2

2
T2

2
T

)

and the results are

û(t) =

(
12(T − t)

T 3
−

6

T 2

)
(xT1 − x0

1 − Tx0
2) +

(
4

T
−

6(T − t)
T 2

)
(xT2 − x0

2)

x1(t) = x0
1 + tx0

2 +
t3(2x0

1 + Tx0
2 − 2xT1 + TxT2 )

T 3
+
t2
(
−3Tx0

1 − 2T 2x0
2 + 3TxT1 − T 2xT2

)
T 3

x2(t) = x0
2 +

t2(6x0
1 + 3Tx0

2 − 6xT1 + 3TxT2 )

T 3
+
t
(
−6Tx0

1 − 4T 2x0
2 + 6TxT1 − 2T 2xT2

)
T 3

Note that W is a strict posive defined matrix.
The function ϕ(x) = x4

1 − 2x3
1 + x2

1 + x2
2 has two minimum points xT = (0, 0)∗ and

xT = (1, 0)∗. For these endpoints we obtain

Endpoint u(t) x1(t) x2(t)

(0, 0)∗ −16 + 30t 2 + t− 8t2 + 5t3 1− 16t+ 15t2

(1, 0)∗ −10 + 18t 2 + t− 5t2 + 3t3 1− 10t+ 9t2

Especially, for numerical computations the gradient method is a more practical
approach. In order to state the relations to be used, we need the expression of the
gradient of the functional I(u), [1].

Theorem 2.2 The gradient of the functional I(u) is

∇I(u)(t) = −B∗(t)pu(t) = −B∗(t)Φ∗(T, t)pT,u (9)

with
pu(T ) = pT,u = −ϕx(xu(T )). (10)
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Proof. Due to the linearity of (2), for any u, δu ∈ U and λ ∈ R the state corre-
sponding to the control u+ λδu is xu + λxδu with ẋδu(t) = A(t)xδu(t) +B(t)δu(t)
and δx(0) = 0. We compute

lim
λ→0

1

λ
(I(u+λδu)−I(u)) = lim

λ→0

1

λ
(ϕ(xu(T )+λδx(T ))−ϕ(xu(T )) =< ϕx(xu(T )), δx(T ) > .

Using (10) and doing a standard computation, we have

< ϕx(xu(T )), δxu(T ) >= − < pu(T ), δxu(T ) >=

= −
∫ T

0

d

dt
< pu(t), δxu(t) > dt = −

∫ T

0
< B∗(t)pu(t), δu(t) > dt.

Considering (7), we obtain

< ϕx(xu(T )), δxu(T ) >= −
∫ T

0
< B∗(t)Φ∗(T, t)pT,u, δu(t) > dt.

Because the functional δu 7→
∫ T

0 < B∗(t)Φ∗(T, t)pT,u, δu(t) > dt is continuous, the
expression of the gradient of I(u) is given by (9).

We suppose that the gradient of ϕ satisfies the Lipschitz condition

‖ϕx(y)− ϕx(x)‖2 ≤ L‖y − x‖2, ∀x, y ∈ Rn. (11)

The following inequality is the starting point for the gradient method, [8, 9].

Theorem 2.3 For any v, u ∈ U ,

I(v)−I(u) ≤ L

2
‖xv(T )−xu(T )‖22−

∫ T

0
< B∗(t)Φ∗(T, t)pT,u, v(t)−u(t) > dt. (12)

Proof. Using the technique from [8, 9], we have

I(v)− I(u) = ϕ(xv(T ))− ϕ(xu(T )) =

=

∫ 1

0
< ϕx(xu(T ) + s(xv(T )− xu(T )))− ϕx(xu(T )), xv(T )− xu(T ) > ds+

+ < ϕx(xu(T )), xv(T )− xu(T ) > .

After applying the Cauchy inequality and (11) to the first term, the above inequality
becomes

I(v)− I(u) ≤ L

2
‖xv(T )− xu(T )‖22+ < ϕx(xu(T )), xv(T )− xu(T ) > .

As in the proof of the above theorem,

< ϕx(xu(T )), xv(T )− xu(T ) >= −
∫ T

0
< B∗(t)Φ∗(T, t)pT,u, v(t)− u(t) > dt.
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We fix the control function v(t) as

v(t) = u(t)− α∇I(u)(t) = u(t) + αB∗(t)Φ∗(T, t)pT,u, α > 0. (13)

Then, applying (4)

xv(T )− xu(T ) = α

∫ T

0
Φ(T, t)B(t)B∗(t)Φ∗(T, t)pT,udt = αWpT,u,

and ∫ T

0
< B∗(t)Φ∗(T, t)pT,u, v(t)− u(t) > dt = α < WpT,u, pT,u > .

Using the above equalities, the inequality (12) is

I(v)− I(u) ≤ L

2
α2‖WpT,u‖22 − α < WpT,u, pT,u > . (14)

If the matrix W is strictly positive defined then there exists ω > 0 such that
< Wx, x >≥ ω‖x‖22, ∀x ∈ Rq. The inequality (14) becomes

I(v)− I(u) ≤ (
L

2
α2‖W‖22 − αω)‖pT,u‖22.

If 0 < α < 2ω
L‖W‖22

then I(v)− I(u) < 0.

The gradient method consists in the construction of the sequence of control
functions

u(0) ∈ U
u(k+1)(t) = u(k)(t) + αkB

∗(t)p(k)(t), t ∈ [0, T ], (15)

0 < αk <
2ω

L‖W‖22
, ∀ k ∈ N. (16)

To compute u(k+1)(t) two other functions are required: x(k)(t) and p(k)(t), the
solutions of the initial value problems (2)-(3), with u(t) = u(k)(t), and respectively,
(5)-(11), with pT,u = −ϕx(x(k)(T )).

Theorem 2.4 If the gradient of ϕ(x) satisfies the Lipschitz condition (11), the
controllability matrix is strictly positive defined and the sequence (u(k))k∈N is defined
by (15)-(16) then (I(u(k)))k∈N is a decreasing sequence.

Theorem 2.5 If ϕ(x) is bounded below then the sequence (I(u(k)))k∈N is conver-
gent.

Requiring a stronger constraint to the parameters αk it results that:

Theorem 2.6 If 0 < δ < ω
L‖W‖22

and αk ∈ (δ, 2ω
L‖W‖22

−δ), ∀k ∈ N, then the sequence

(pu
(k)

(t))k∈N converges uniformly to 0.



144 Ernest Scheiber

Proof. From (14) it results that

I(u(k+1))− I(u(k)) ≤
(
L

2
δ2‖W‖22 − δω

)
‖pT,u(k)‖22

or

‖pT,u(k)‖22 ≤
I(u(k))− I(u(k+1))

δω − L
2 δ

2‖W‖22
. (17)

The right hand side of (17) converges to 0 and therefore limk→∞ p
T,u(k)

= 0. Using

(7) we deduce that the sequence (pu
(k)

(t))k∈N converges uniformly to 0.
For some simple problems, we may avoid numerical computations in favor of

the symbolic computation. To solver the above example (2.1), using the gradient
method, the Mathematica codes are

1 T = 1 ;
2 eps = 0 . 0 1 ;
3 B = {{0} , {1}} ;
4 u [ t ] := 0
5 F[ p , q ] := pˆ4 − 2 pˆ3 + pˆ2 + qˆ2

7 Step [ u ] :=
8 Module [{ s , cs , x1 , x2 , p1 , p2 , s ta te , X1 , X2 , cos ta te , P1 , P2} ,
9 s t a t e := {x1 ’ [ t ] − x2 [ t ] == 0 , x2 ’ [ t ] − u [ t ] == 0 , x1 [ 0 ] == 2 ,

10 x2 [ 0 ] == 1} ;
11 s = DSolve [ s ta te , {x1 [ t ] , x2 [ t ]} , t ] ;
12 X1 [ x ] := Last [ s [ [ 1 , 1 ] ] ] / . t −> x ;
13 X2 [ x ] := Last [ s [ [ 1 , 2 ] ] ] / . t −> x ;
14 c o s t a t e := {p1 ’ [ t ] == 0 , p2 ’ [ t ] + p1 [ t ] == 0 ,
15 p1 [T] == −D[F [ x , y ] , x ] / . {x −> X1 [T] , y −> X2 [T]} ,
16 p2 [T] == −D[F [ x , y ] , y ] / . {x −> X1 [T] , y −> X2 [T] } } ;
17 cs = DSolve [ cos tate , {p1 [ t ] , p2 [ t ]} , t ] ;
18 P1 [ x ] := Last [ c s [ [ 1 , 1 ] ] ] / . t −> x ;
19 P2 [ x ] := Last [ c s [ [ 1 , 2 ] ] ] / . t −> x ;
20 {u [ t ] + eps Last [ Last [ Transpose [B] . { {P1 [ t ]} , {P2 [ t ] } } ] ] ,
21 N[F [ X1 [T] , X2 [T ] ] ] , X1 [ t ] , X2 [ t ] } ]

23 Grad [ u , n ] :=
24 Module [{uu , i , s } ,
25 For [ i = 0 , i < n , i ++, uu = Step [ u ] ; Clear [ u ] ;
26 u:= Function [ t , uu [ [ 1 ] ] ] ; I f [ IntegerQ [ i /100 ] , Pr int [ uu [ [ 2 ] ] ] ] ] ;
27 Step [ u ] ]

29 gg = Grad [ u , 2 0 0 0 ] ;
30 x1 = Expand [N[ gg [ [ 3 ] ] ] ]
31 2 . + 1 . t − 4.90559 t ˆ2 + 2.93193 t ˆ3
32 x2 = Expand [N[ gg [ [ 4 ] ] ] ]
33 1 . − 9.81118 t + 8.7958 t ˆ2
34 uu = Expand [N[ gg [ [ 1 ] ] ] ]
35 −9.81144 + 17.5922 t

In this case the endpoint is (1, 0)∗ and the cost functional is 0.00128824. The values
for αk are αk := eps = 0.01, ∀k ∈ N. For u[t_]:=20t the endpoint will be (0, 0)∗.

3 The gradient projection method

Let U be a convex and close subset of Rq and the constraint

u(t) ∈ U, ∀ t ∈ [0, T ]. (18)
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In this case, a control function u(t) will be admissible if it is piecewise continuous
and satisfies the constraint (18).

If u ∈ Rq and v ∈ U is the projection of u into U, v = PrU (u), then

‖v − u‖2 = min
w∈U
‖w − u‖2 ⇔ < v − u, v − w >≤ 0, ∀w ∈ U (19)

and consequently

‖PrU (x)− PrU (y)‖22 ≤< x− y,PrU (x)− PrU (y) >, ∀ x, y ∈ Rq. (20)

The simplest form of the gradient projection method is defined by

u(k+1)(t) = PrU (u(k)(t)− αk∇I(u(k))(t), t ∈ [0, T ], k ∈ N.

Our implementation in Mathematica uses the variant

u(0) = ũ(0) ∈ U ,
ũ(k+1)(t) = ũ(k)(t)− αk∇I(u(k))(t), t ∈ [0, T ], k ∈ N, (21)

u(k+1)(t) = PrU (ũ(k)(t)). (22)

In order to apply (12) we must evaluate the two terms of its right side.
Given ũ : [0, T ]→ Rq piecewise continuous and α > 0, let be

u(t) = PrU (ũ(t))

ṽ(t) = ũ(t)− α∇I(u)(t) = ũ(t) + αB∗(t)Φ∗(T, t)pT,u

v(t) = PrU (ṽ(t)), t ∈ [0, T ].

Denoting Ψ(t, s) = B∗(s)Φ∗(T, s)Φ(T, t)B(t) ∈Mq,q(R) and CΨ =

= (
∫ T

0

∫ T
0 ‖Ψ(t, s)‖22dtds)

1
2 , we obtain successively

‖xv(T )− xu(T )‖22 =< xv(T )− xu(T ), xv(T )− xu(T ) >=

=<

∫ T

0
Φ(T, t)B(t)(v(t)− u(t))dt,

∫ T

0
Φ(T, s)B(s)(v(s)− u(s))ds >=

=

∫ T

0

∫ T

0
< Ψ(t, s)(v(t)− u(t), v(s)− u(s) > dtds.

Applying successively the Cauchy’s inequalities, we obtain

‖xv(T )− xu(T )‖22 ≤
∫ T

0

∫ T

0
‖Ψ(t, s)(v(t)− u(t)‖2‖v(s)− u(s)‖2dtds ≤

≤
∫ T

0

∫ T

0
‖Ψ(t, s)‖2‖v(t)− u(t)‖2‖v(s)− u(s)‖2dtds =

=

∫ T

0
‖v(t)− u(t)‖2

(∫ T

0
‖Ψ(t, s)‖2‖v(s)− u(s)‖2ds

)
dt.
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The internal integral is increased by∫ T

0
‖Ψ(t, s)‖2‖v(s)− u(s)‖2ds ≤

(∫ T

0
‖Ψ(t, s)‖22ds

) 1
2
(∫ T

0
‖v(s)− u(s)‖22ds

) 1
2

.

Thus

‖xv(T )− xu(T )‖22 ≤
(∫ T

0
‖v(s)− u(s)‖22ds

) 1
2
(∫ T

0
‖Ψ(t, s)‖22ds

) 1
2

×

×
∫ T

0
‖v(t)− u(t)‖2dt ≤ CΨ

∫ T

0
‖v(t)− u(t)‖22dt. (23)

The second term of (12) is∫ T

0
< B∗(t)Φ∗(T, t)pT,u, v(t)− u(t) > dt =

1

α

∫ T

0
< ṽ(t)− ũ(t), v(t)− u(t) > dt.

Using (20) it follows that∫ T

0
< B∗(t)Φ∗(T, t)pT,u, v(t)− u(t) > dt ≥ 1

α

∫ T

0
‖v(t)− u(t)‖22dt.

Finally, from (12), it results

I(v)− I(u) ≤ (
L

2
Cψ −

1

α
)

∫ T

0
‖v(t)− u(t)‖22dt.

Theorem 3.1 If the gradient of ϕ(x) satisfies the Lipschitz condition (11) and the
sequence (u(k))k∈N is defined by (21)-(22), with (αk ∈ (0, 2

LCΨ
), then (I(u(k)))k∈N

is a decreasing sequence.
Additionally, if ϕ(x) is bounded below then the sequence (I(u(k)))k∈N is conver-

gent.

The Mathematica codes to solve the problem from Example 2.1, with the addi-
tional constraint |u(t)| ≤ 1 are

1 Pr [ u , t ] := I f [ u [ t ] < −1, −1, I f [ u [ t ] > 1 , 1 , u [ t ] ] ]
2 eps = 0 . 0 1 ;
3 T = 1 ;
4 B = {{0} , {1}} ;
5 u [ t ] := 0
6 F[ p , q ] := pˆ4 − 2 pˆ3 + pˆ2 + qˆ2

8 Step [ u ] :=
9 Module [{ s , cs , x1 , x2 , p1 , p2 , s ta te , X1 , X2 , cos ta te , P1 , P2} ,

10 s t a t e := {x1 ’ [ t ] − x2 [ t ] == 0 , x2 ’ [ t ] − Pr [ u , t ] == 0 , x1 [ 0 ] == 2 ,
11 x2 [ 0 ] == 1} ;
12 s = DSolve [ s ta te , {x1 [ t ] , x2 [ t ]} , t ] ;
13 X1 [ x ] := Last [ s [ [ 1 , 1 ] ] ] / . t −> x ;
14 X2 [ x ] := Last [ s [ [ 1 , 2 ] ] ] / . t −> x ;
15 c o s t a t e := {p1 ’ [ t ] == 0 , p2 ’ [ t ] + p1 [ t ] == 0 ,
16 p1 [T] == −D[F [ x , y ] , x ] / . {x −> X1 [T] , y −> X2 [T]} ,
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17 p2 [T] == −D[F [ x , y ] , y ] / . {x −> X1 [T] , y −> X2 [T] } } ;
18 cs = DSolve [ cos tate , {p1 [ t ] , p2 [ t ]} , t ] ;
19 P1 [ x ] := Last [ c s [ [ 1 , 1 ] ] ] / . t −> x ;
20 P2 [ x ] := Last [ c s [ [ 1 , 2 ] ] ] / . t −> x ;
21 {u [ t ] + eps Last [ Last [ Transpose [B] . { {P1 [ t ]} , {P2 [ t ] } } ] ] ,
22 N[F [ X1 [T] , X2 [T ] ] ] , X1 [ t ] , X2 [ t ] } ]

24 GradProj [ u , n ] :=
25 Module [{uu , i , s } ,
26 For [ i = 0 , i < n , i ++, uu = Step [ u ] ; Clear [ u ] ;
27 u:= Function [ t , uu [ [ 1 ] ] ] ; I f [ IntegerQ [ i /100 ] , Pr int [ uu [ [ 2 ] ] ] ] ] ;
28 uu = Step [ u ] ]

After 500 iteration the minimum obtained value is 14.0627 and the control function
is

u[t] :=


−1 t < 0.994488
1 t > 1.00773
−151.153 + 150.985t True

The plot of the state functions and the control function are

The state functions The control function

It may be verified that u(t) = −1 is a solution of this optimal control problem.

The corresponding states are x1(t) = 2 + t− t2

2 , x2(t) = 1− t while the costates are
p1(t) = −30, p2(t) = 30(t− 1).

Any variation δu(t) of the control u(t) = −1 satisfies the constraint δu(t) ∈
(0, 2). As usual, the corresponding state is denoted δx(t) = (δx1(t), δx2(t)).

The following equality holds

I(u+δu) = I(u)+ < ∇I(u), δu > +

∫ 1

0
(1−s) < dϕ2(xu(T )+sδx(T ))δx(T ), δx(T ) > ds =

= I(u)−
∫ T

0
< B∗(t)pu(t), δu(t) > dt+

+

∫ 1

0
(1−s) <

(
∂2ϕ

∂x2
1

(xu(T ) + sδx(T )) ∂2ϕ
∂x2∂x1

(xu(T ) + sδx(T ))

∂2ϕ
∂x1∂x2

(xu(T ) + sδx(T )) ∂2ϕ

∂x2
2

(xu(T ) + sδx(T ))

)(
δx1(T )
δx2(T )

)
,
(

δx1(T )
δx2(T )

)
> ds.

Because xu(T ) = (5
2 , 0), the results of the computations are

I(u) =
225

16
= 14.0625;
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−
∫ T

0
< B∗(t)pu(t), δu(t) > dt = 30

∫ 1

0
(1− t)δu(t)dt ≥ 0

and the last term is∫ 1

0
(1− s)

(
(47 + 48sδx1(T ) + 12s2δx2

1(T ))δx2
1(T ) + δx2

2(T )
)

ds =

=

(
47

2
+ 8δx1(T ) + δx2

1(T )

)
δx2

1(T ) + δx2
2(T ) ≥ 0.

The last two inequalities prove the assertion.
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Acad. R.S.R., Bucureşti, 1980 (Romanian).

[3] Kelley C. T., Iterative Methods for Optimization. SIAM, Philadelphia, 1999.

[4] Klessig R., Polak E., An Adaptive Precision Gradient Method for Optimal Con-
trol. SIAMJ. Control, 11, No. 1,80-93, 1973.

[5] Khoroshilova V.E., Extragradient-type method for optimal control problem with
linear constraints and convex objective function. Optim Lett., 7, 1193-1214,
2013.

[6] Zabczyk J., Mathematical Control Theory: An Introduction. Ed. Birkhäuser,
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