
Bulletin of the Transilvania University of Braşov • Vol 7(56), No. 1 - 2014

Series III: Mathematics, Informatics, Physics, 131-138

SOFTWARE CORRECTNESS VERIFICATION BY CONTRACT

Corina - Ştefania NĂNĂU1

Abstract

Scenarios are ways to reflect the daily activity of a software system. In
the life cycle of such a system, scenarios occur at different levels. One of
their utilities is to facilitate verification of the correctness of the application
functionality. This article presents a method for checking the specifications
in case of component-oriented applications as verification is an important
issue of the life cycle of the software application.

Key words: specification, design by contract, scenario, software compo-
nent, state, action

1 Introduction

Component - oriented software development and verification of software are
two sub-disciplines of software engineering, and even more, the action of checking
the software is part of the life cycle of an application. Component - oriented pro-
gramming is a way to create new applications based on other independent pieces
of existing applications, called components.

To make a correct assessment of the implementation of a software application
- whether based on components, objects or aspects - there are checks of contract’s
methods of application that are called in a scenario at runtime. Moreover, in
aspect oriented programming issues, scenarios (preconditions, postconditions and
invariants) can be injected into the application as aspects.

The next sections will present some general details on what specifications, sce-
narios, states and operations of a system mean, and in the last part of this article
a case study outlining the previous theoretical questions is presented. The case
study will be to achieve a component - based application on the activity at a petrol
pump. It will identify the application components, the connections between these
interfaces, the actions each component performs for carrying out some specific
activity scenarios of the system and it will also identify the states of each compo-
nent, as a result of performing the various operations. Graphical representation
of the components will be made according to UML 2.0 [6] standards.

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-
mail:
cory2512@yahoo.com

132 Corina - Ştefania Nănău

2 What do specifications mean?

A specification generally indicates what a software system does or should do,
but not how to do it. If we are dealing with the specifications in object oriented
programming, these are actually represented by preconditions, postconditions and
invariants. In case of components, we can attach invariants to the interface that
specifies properties of objects that implement the interface. Therefore, the precon-
ditions offer the contractual requirements of the interface client (called ”caller”)
and the postconditions offer the corresponding contractual requirements of the
operation provider, namely the component instance that implements the interface
[1]. The contract based design extends the usual definition of abstract data types
preconditions, postconditions and invariants. These specifications are called con-
tracts according to a conceptual metaphor of the conditions and obligations for
service contracts. The contract summarizes how the specifications cooperate with
elements of a software system based on mutual obligations and benefits.

A specification of a component interface should include a few ways to describe
the interface behavior. There are specified conditions that help in a correct use
and implementation of interface modules.

Design by contract is a methodology that allows the addition of semantic in-
formation to the application interface by specifying monitored assertions about
the status of the program at runtime [4]. These assertions form the contract (or
specification) of an application.

We can say that there are two types of contracts: usage contracts and realiza-
tion contracts [5]. The one implementing a client application using one component
uses a usage contract (a contract between the objects of component interfaces and
the client). The object of each instance of a component is created on the basis of
installed components; it is an object with its own unique identity and data and
provides the behavior implemented. An installed component may have one or
more component objects. A usage contract is a running contract and it is defined
by an interface specification. Interface specifications actually contain operations
or methods provided by the interface and may also contain pre-and post condi-
tions. The realization contract is defined between component specifications and
implementation. This is a contract at design level and it is used by the one con-
structing a component following its specification. Component specifications are
primarily interface groups that may also contain constraints on how their inter-
faces implementation is made and how the implementation will have to interact
with other components. This type of information is not important for the client,
and as long as such information is not part of interface specifications, the customer
has no reason to know about their existence. If the interface specifications contain
an information model and a component can support two or more interfaces, the
elements of this information model of one of the interfaces may correspond mostly
with the information elements of other interfaces supported and they must always
have the same values. It is important to specify constraints between the informa-
tion models of the interfaces as part of component specifications. These, together
with interface specifications supported, represent the realization contract.

Software correctness verification by contract 133

To ensure that an application works according to the specifications, differ-
ent ways of verifying the desired application contract code are available. Correct
execution of a program can only be seen by checking the contract code, but an
automatic check of the contract during program execution would be made.

One way to check the contracts of programs written in Java is to use jCon-
tractor library that allows adding and checking contracts in the form of methods,
as follows [4]: for each method we want to specify we will have to write two
methods - one for preconditions and one for postconditions. These methods will
be written in Java. When checking the contract of such a method, the invariant
method and the precondition method will be called before the method body, and
after the method itself execution, the postcondition method and again the invari-
ant method will be called. jContractor provides support for the specification of
methods rewritten in a specified chain of inheritance or interface implementation
methods.

3 What do scenario mean?

In general, a scenario represents predictable interactions between users of the
system and the system itself. Scenarios include information about expectations,
motivations, actions and reactions of a system [7]. Scenarios attempt to reflect
how the system is used in the context of its current activity. These are frequently
used as part of the system development process and are often written in plain
language with minimal technical details so that those involved in the process
can have a common example on which to focus their discussions. Moreover, sce-
narios are used to describe the behavior we want the system to have, replacing
or complementing the traditional ”functional requirements”. In case of ”agile”
methodologies, scripts are actually represented by the user stories, and for nor-
mal development of software, scenarios are written using structured use cases.

Some ways in which scenarios can be used [7]:

• as viewing parts, providing a clearer picture of the system or product con-
cerned

• shows the advantages offered by the system

Usually when we talk about scenarios, we have to do with model programs.
The model - based development and the use cases - based development have in-
spired the proposal of a variety of software engineering approaches that synthesize
state - based models from scenario - based models. These models describe the
dynamic behavior of reactive systems.

A scenario based model represents the behaviors ”inside the objects”, behav-
iors described on the basis of interactions between multiple objects. In contrast to
this modality, a state - based model is often used to represent the entire behavior
of a reactive system. This behavior can be exemplified by a global state machine
or a set of communicating state machines where each state machine describes the
complete behavior ”inside the object”.

134 Corina - Ştefania Nănău

Scenario - based modelling and state - based modelling offer two different views
on reactive systems. Scenarios are used both to help to achieve the functional re-
quirements and for understanding and validating these requirements. Thus, for
processing the requirements, scenario - based models are much more useful, thus
the participants in a project can communicate more easily with customers. On
the other hand, the code can be generated automatically from state - based mod-
els, because those who design the software application believe that state - based
models are closer to the design and implementation. Actually, scripts can be used
to control the entire lifecycle of the software development process [3]. In other
words, scenarios are useful not only in the requirements analysis phase, but also
in the design and implementation phases.

4 Abstract state machine, actions and states

An abstract state machine is a formal way of describing the algorithm steps.
This offers a mathematical vision of the software state. Using the abstract state
machine the software system model can be achieved.

The abstract state machine is characterized by the fact that it provides a sim-
ple and practical framework where the system engineer can adopt a ”divide et
impera” way of working. This method offers simplicity and flexibility in choosing
the combination of concepts, the appropriate notation and technique for every
problem in part, these being integrated into a framework with an uniform math-
ematical background.

If the system is component - oriented, the abstract state machine describes
the correct usage scenarios. Based on the abstract state machine, a diagram of
the application scenarios can be built. This diagram may represent the starting
point in building the application model.

The state represents the information stored in the program or system at a
certain time. Each program or system begins with an initial state. It is usually
an empty or inactive state. The behavior continues until the system reaches an
acceptance state. An acceptance state is a state in which the program objectives
were achieved, where some work units have been completed. The system may
stop in a state of acceptance. Alternatively it can continue working from a new
work point. A sequence of actions that begins in the initial state and ends in
accepted state is called run or trace. A run should not end in a state that is not
an acceptance state. If the model program does not identify any acceptance state,
the run can end in any state. Runs (executions) of a model program are sequences
of method calls.

The actions are units of the system behavior. According to [2], an action may
be composed of several small activities, the action itself being atomic, ie: once it
starts, it completely runs without being interrupted or replaced by another ac-
tion. For each type of action of implementation there is a method in the model
program. When running the model program, each call method is an action for
implementation. The relations between implementation actions and methods of

Software correctness verification by contract 135

the model program are always one to one.
Scenario diagrams or sequence diagrams describe the interactions that occur

between the objects of the described system (if our system is object - oriented)
or between its components (if the system is component - oriented).

5 Case study

To illustrate how scripts are specified to a component - based application we
have chosen as a case study the supply at a petrol pump.

The first step is the preparation of the application whose scenarios we wish to
specify, more precisely it consists in carrying out the component diagram. This
gives the application designers an easy to understand format on which the solution
modelling can begin. The component diagram is also a very useful communica-
tion tool for different categories of participants in the project: clients, designers,
developers, system administrators.

In UML 2, the notation for representing a component is consistent with Fig.
1. In graphical representation of a component the provided and the re-

Figure 1: Ways of graphical representation of a component

quested component interfaces may appear too, as it shows in Fig. 2.
As we have communicated the basics for achieving the component diagram

Figure 2: Graphical representation of a component with its requestes and provided
interface

using UML 2, we can now create the diagram itself for the application chosen as
case study. Fig. 3 shows the existence of three components: Client, PetrolPump
and PayOffice. The Client component provides interfaces TankInterf and Money-
Interf and has as required interface FuelInterf. The latter, in turn, is the provided
interface for the PetrolPump component, which has as a required interface Refu-
elInterf. CashInterf interface is required by the PayOffice component and provided
by the Client component.

Entire system (gas station) states: open or closed
Client states: waiting, pending supply, pending payment or free
Gas pump states: active - with sub-states available or occupied - or inactive

136 Corina - Ştefania Nănău

Figure 3: Component diagram of the application

Cash register states: available, free or occupied
Operations performed by the Client component: fuel supply, pay
Operations performed by the PetrolPump component: fuel tanks supply
Operations performed by the treasurer (represented by PayOffice component):

collects money
The baseline scenario offered by the system is composed of the following steps:

the customer sits at a pump, supplies successfully, pays successfully and is free.
Of course, there may be several scenarios: the pump may not have petrol; the
client might not have enough money on him, etc.

Find below specifications of operations performed by each component. Ver-
ification of system correctness consists in checking these specifications. For the
supply operation executed by the client to be successful, the preconditions to be
met are the following: the tank must have enough free space, there must be petrol
in the pump, the amount of petrol removed from the pump must have a positive
value. The postcondition in case of success is the fact that the client has success-
fully supplied the tank, meaning that he has extracted from the tank an amount
of gasoline less or equal to the amount of petrol existing in the pump, otherwise,
the client fails to supply (for non - compliance of at least one precondition). The
invariant checked before and after implementation of any method is the system
state check (the gas station should be open). Only in this case can operations
be made. For the payment transactions to run successfully, the precondition is
to verify that the customer has enough money on him, the postcondition means
the client gets to the final state: free. For the supply operation executed by the
component PetrolPump, the verified preconditions are that the pump be active
and contain petrol and the postcondition is that the client can manage to fill the
tank. For money collecting operation, the preconditions are that the customer
must have enough money on him and have successfully achieved the supply op-
eration, and the post-condition transfers the client to the final state - free - or in
an unknown state (in case the prerequisite is not met).

In TankInterf interface provided by Client component we will write a refuel

Software correctness verification by contract 137

method, with its specifications (the application will be written in Java, using
jContractor for the specifications):

procedure Refuel(fuelAmount)
if (thenpump.Available = true)

pump.Content← pump.Content + fuelAmount;
tank.Content← tank.Content + fuelAmount;

end if ;
end procedure;

function Refuel Precondition(fuelAmount)
ok ← true;
if (thenfuelAmount < 0)

ok ← false;
end if ;
if (thentank.Size < tank.Content)

ok ← false;
end if ;
if (thenpump.Content < 0)

ok ← false;
end if ;
return ok;

end function;

function Refuel Precondition(fuelAmount)
//it will be checked if the fuel amount extracted from the pump
//is less or equal with the amount of fuel existent there
ok ← false;
if (thenpump.Content < fuelAmount)

ok ← true;
end if ;
return ok;

end function;

6 Conclusions

One of the most important goals of this article is to highlight how the imple-
mentation of contracts (specifications) of an application and the verification of
requirements that make up these contracts to obtain an application that operates
as required. This highlighting is based on a very short example of an applica-
tion method specification. Application was written in Java and the contract was
written according to jContractor standards.

138 Corina - Ştefania Nănău

References

[1] Brger, E., Strk, R.F., Abstract State Machines. A Method for High-Level
System Design and Analysis, Springer, 2003.

[2] Jacky, J., Veanes, M., Campbell, C., Schulte, W., Model - Based Software
Testing and Analysis with C#,Cambridge University Press, 2008.

[3] Jacobson, I., Ng., P., Aspect - Oriented Software Development with Use
Cases, Addison Wesley, Professional, 1st edition, 2004.

[4] Karaorman, M., Abercrombie, P., emphjContractor: Introducing Design-by-
Contract to Java Using Reflective Bytecode Instrumentation, Formal Meth-
ods in System Design, Springer Science + Business Media, Inc. Manufactured
in The Netherlands, 275-312, 2005.

[5] Nyholm, C., Designing Component-Based System with UML Contract Spec-
ifications, Mlardalen University, The Department for Computer Science and
Engineering, 2002.

[6] Rumbaugh, J., Jacobson, I., Booch, G., The Unified Modeling Language Ref-
erence Manual, Second Edition, Addison-Wesley, 2005.

[7] http://en.wikipedia.org/wiki/Scenario (computing).

