
Bulletin of the Transilvania University of Braşov • Vol 7(56), No. 1 - 2014

Series III: Mathematics, Informatics, Physics, 103-108

A GENERIC PREFLOW ALGORITHM FOR MAXIMUM
FLOW IN SEMI-BIPARTITE NETWORKS

Laura CIUPALĂ1

Abstract

In this paper, we develop a generic algorithm for determining a maxi-
mum flow in a semi-bipartite network. This algorithm allows only nodes in
N1 to be active. For this reason, it performs pushes on individual arcs hav-
ing both endpoints in N1 or admissible paths of length 2 whose starting and
ending nodes are both contained in N1. The running time of this algorithm
is O(n2

1m).

2000 Mathematics Subject Classification: 90B10, 90C90.
Key words: network flow, maximum flow, bipartite network, semi-bipartite

network.

1 Introduction

Network flow problems are a group of network optimization problems that
are widely and intensively studied because of their widespread and diverse appli-
cations. The research focused on network flow started more than 60 years ago.
Since then researchers have made continuous improvements to algorithms for solv-
ing several classes of problems, including maximum flow problem and minimimum
cost flow problem. From the late 1940s through the 1950s, researchers designed
many of the fundamental algorithms for network flow. In the next decades, there
are many research contributions concerning improving the computational com-
plexity of network flow algorithms by using enhanced data structures, techniques
of scaling the problem data etc.

Researchers were also interested in finding a balance between the generality
and the specificity of their results.

One of the reasons for which the maximum flow problem and that minimum
cost flow problem were studied so intensively is the fact that they arise in a wide
variety of situations and in several forms. Some of these can be modelled and
solved as network flow problems in special networks. Using the particularities of

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
laura ciupala@yahoo.com

104 Laura Ciupală

these networks, one can develop network flow algorithms that are more efficient
than the corresponding algorithms designed for regular networks.

In this paper, we develop a generic preflow algorithm for determining a maxi-
mum flow in a semi-bipartite network. This algorithm is a modified version of the
generic preflow algorithm for regular networks([1]), but it is more efficient than
this one because it uses the particular structure of a semi-bipartite network. The
time complexity of our algorithm is O(n2

1m) time.

2 Notation and definitions

Let G = (N,A) be a directed graph, defined by a set N of n nodes and a set A
of m arcs. Each arc (x, y) ∈ A has a nonnegative capacity c(x, y). In the directed
network G = (N,A, c, s, t), two special nodes are specified: s is the source node
and t is the sink node.

Let X and Y be two subsets of the node set N . We define the set of arcs
(X, Y) = {(x, y)|(x, y) ∈ A, x ∈ X, y ∈ Y }.

For any function g : N ×N → R+ and for any function h : N → R+ we define

g(X, Y) =
∑

(X,Y)

g(x, y)

and
h(X) =

∑
X

h(x).

If X = {x} or Y = {y} then we will use g(x, Y) or g(X, y) instead of g(X, Y).
A flow from the source node s to the sink node t in the directed network

G = (N,A, c, s, t) is a function f : A → R+ which meets the follwing conditions:

f(x,N)− f(N,x) =

v, x = s

0, x 6= s, t
−v, x = t

(1)

0 ≤ f(x, y) ≤ c(x, y), ∀(x, y) ∈ A. (2)

We refer to v as the value of the flow f . A flow whose value is maximum is
called a maximum flow.

A preflow is a function f : A → R+ satisfying relations (2) and the next
conditions:

f(x,N)− f(N,x) ≥ 0, ∀x ∈ N\{s, t}. (3)

Let f be a preflow. We define the excess of a node x ∈ N in the following
manner:

e(x) = f(x, N)− f(N,x)

An algorithm for maximum flow in semi-bipartite networks 105

Thus, for any preflow f , we have e(x) ≥ 0,∀x ∈ N\{s, t}. We say that a node
x ∈ N\{s, t} is active if e(x) > 0 and balanced if e(x) = 0. A preflow f for which
e(x) = 0,∀x ∈ N\{s, t} is a flow. Consequently, a flow is a particular case of
preflow.

Let f be a flow from the source node s to the sink node t in the directed
network G = (N,A, c, s, t). The residual capacity of the arc (x, y) corresponding
to the flow f is defined as r(x, y) = c(x, y)−f(x, y)+f(y, x) and it is the maximum
amount of additional flow that can be sent from x to y using both arcs (x, y) and
(y, x). By convention, if an arbitrary arc (x, y) /∈ A, then we can add (x, y) to A
and we will consider that c(x, y) = 0.

The residual network G(f) = (N,A(f)) corresponding to flow f contains all
those arcs with strictly positive residual capacity.

A network G = (N,A) is called bipartite if its node set N can be partitioned
into two subsets N1 and N2, such that all arcs have one endpoint in N1 and the
other in N2.

A network G = (N,A) is called semi-bipartite if its node set N can be par-
titioned into two subsets N1 and N2, such that no arc has both its endpoints in
N2. Thus, a semi-bipartite network can contain arcs having both their endpoints
in N1. Consequently, the notion of semi-bipartite network is less restrictive than
the notion of bipartite network.

We consider a semi-bipartite capacitated network G = (N,A, c, s, t). We dis-
tinguish two special nodes in the network G: a source node s and a sink node
t. We assume without loss of generality that s ∈ N2. If s ∈ N1, then we could
create a new source node s′ ∈ N2 and add a new arc (s′, s) with sufficiently large
capacity.

Let n = |N |, n1 = |N1|, n2 = |N2|, m = |A| and C =max{c(i, j)|(i, j) ∈ A}.
In the residual network Gf, the distance function d : N → N with respect to

a given preflow f is a function from the set of nodes to the nonnegative integers.
We say that a distance function is valid if it satisfies the following conditions:

d(t) = 0

d(i) ≤ d(j) + 1, for every arc(i, j) ∈ A(f).

We refer to d(i) as the distance label of node i.
We say that the distance labels are exact if, for each node i, d(i) equals the

length of the shortest path from node s to node i in the residual network.
We refer to an arc (i, j) from the residual network as an admissible arc if

d(j) = d(i) + 1; otherwise it is inadmissible.
Let G = (N,A, c, s, t) be a semi-bipartite directed network, N = N1∪N2. Any

path in the network G or in the residual network G(f), that is also a semi-bipartite
network, can have at most 2n1 arcs. Consequently, if we set d(s) = 2n1+1 then the
residual network will never contain an admissible directed path from the source
node s to the sink node t.

106 Laura Ciupală

Lemma 1. [1] In the bipartite directed network G = (N,A, c, s, t), for any node
i ∈ N , d(i) < 4n1 + 1.

A straight consequence of this lemma is the following:

Lemma 2. In the semi-bipartite directed network G = (N,A, c, s, t), for any node
i ∈ N , d(i) < 4n1 + 1.

For determining a maximum flow in regular networks, several algorithms were
developed in the last decades. These algorithms can be divided into two classes:

1. augmenting path algorithms

2. preflow algorithms.

Algorithms from both classes can be modified in order to determine a max-
imum flow in a semi-bipartite network by using the particularities of this type
of network. In the next section we will develop a generic preflow algorithm for
determining a maximum flow in semi-bipartite networks. This algorithm is ob-
tained from the generic preflow algorithm for maximum flow in bipartite networks
(see [1]). Our algorithm allows only the nodes in N1 to become active. In order
to do this, it pushes flow on individual admissible arcs or along paths consist-
ing of two admissible arcs. The generic preflow algorithm for maximum flow in
semi-bipartite networks runs in O(n2

1m) time.

3 The generic preflow algorithm for maximum flow in
semi-bipartite networks

The generic preflow algorithm for maximum flow in semi-bipartite networks
is based on the same idea as the generic preflow algorithm for maximum flow
in regular networks. This means that it creates excesses at intermediate nodes
during its execution. An important feature of this algorithm is that it allows only
nodes in N1 to become active, obtaining in this way a better running time than
the generic preflow algorithm for maximum flow in regular networks.

Because the generic preflow algorithm for maximum flow in semi-bipartite
networks is a generic algorithm, its basic step consists of selecting, without a
specified rule, an active node and trying to eliminate its excess by pushing flow
to its neighbors which are closer to the sink node and which are also contained in
N1. In order to do this it pushes the flow on individual admissible arcs or along
paths consisting of two admissible arcs. Like any preflow algorithm, it ends when
all the intermediate nodes have no excess, which means that a flow was obtained.
Moreover, this is a maximum flow.

The generic preflow algorithm for the maximum flow problem in semi-bipartite
networks is the following:

An algorithm for maximum flow in semi-bipartite networks 107

Generic Preflow Algorithm;
Begin

let f = 0;
determine the residual network G(f);
compute the exact distance labels d in the residual network G(f);
for each arc (s, i) ∈ A do

f(s, i) = c(s, i);
d(s) = 2n1 + 1;
while the residual network G(f) contains an active node do
begin

select an active node i;
push/relabel(i);

end
end.

procedure push/relabel(i);
begin

if there is an admissible arc (i, j) in the residual network then
if j ∈ N1 then

push g =min{e(i), r(i, j)} units of flow on the arc (i, j);
else

if there is an admissible arc (j, k) in the residual network then
push g =min{e(i), r(i, j), r(k, j)} units of flow along the path
i− j − k;
else d(j) =min{d(k)|(j, k) ∈ A(f)}+ 1;

else d(i) =min{d(j)|(i, j) ∈ A(f)}+ 1;
end;

Theorem 1. (
¯
Correctness theorem) The generic preflow algorithm computes cor-

rectly a maximum flow in the semi-bipartite network G = (N, A, c, s, t).

Proof. The correctness of the generic preflow algorithm for maximum flow in
semi-bipartite networks is a straight consequence of the correctness of the generic
preflow algorithm for maximum flow in regular networks, proved in [1].

Theorem 2. The generic preflow algorithm determines a maximum flow in a
semi-bipartite network in O(n2

1m) time.

Proof. The algorithm performs three types of operations: saturating pushes, non-
saturating pushes and node relabelings. As in the generic algorithm for maximum
flow in regular networks, the bottleneck operations are the nonsaturating pushes.
To determine an upper bound of the number of nonsaturating pushes performed
by the algorithm, we will use the potential function Φ =

∑
i∈I d(i), where I is the

set of active nodes. The initial value of Φ is at most 4n2
1, because the algorithm

allows only nodes in N1 to be active and d(i) ≤ 4n1 for all i ∈ N1, from Lemma
2. During the execution of a push/relabel procedure, one of the following 5 cases
might appear:

108 Laura Ciupală

1. The algorithm increases the distance label of node i ∈ N1. In this case Φ
increases, but the total increase in Φ caused by all these relabeling operations
is, considering Lemma 2, O(n2

1).

2. The algorithm increases the distance label of node j ∈ N2. In this case Φ
doesn’t change because the nodes in N2 are never active.

3. The algorithm pushes flow on arc (i, j) saturating this arc. In this case
Φ increases by at most 4n1 because a new node, j, from N1 might become
active. But the total increase in Φ caused by all these operations is O(n2

1m),
considering Lemma 2 and the fact that the total number of saturating pushes
is O(n1m).

4. The algorithm pushes flow along the path i − j − k saturating one of its
arcs. In this case Φ increases by at most 4n1 because a new node, k, from
N1 might become active. Lemma 2 and the fact that the total number of
saturating pushes is O(n1m) imply that the total increase in Φ caused by
all these operations is O(n2

1m).

5. The algorithm performs a nonsaturating push. In this case the value of Φ
decreases by at least 1, because node i becomes inactive, but a new node in
N1 or N2 might become active.

Because at the end of algorithm Φ=0, we have that the algorithm performs
O(n2

1m) nonsaturating pushes. Consequently, it runs in O(n2
1m) time.

References

[1] Ahuja, R., Magnanti, T., Orlin, J., Network Flow. Theory, Algorithms and
Applications, Prentice Hall, New Jersey, 1993.

[2] Bang-Jensen, J., Gutin, G., Digraphs, Theory, Algorithms and Applications,
Springer-Verlag, London, 2001.

[3] Ciupală, L., Wave Algorithm for Maximum Flow in Bipartite Networks, Bul-
letin of the Transilvania University of Braşov 5(54) (2013), 133-138.

