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Abstract

In this paper, we proved that some special Finsler (α, β)-metrics have
bounded Cartan torsion. Further, we find the relation between the norm of
Cartan and the mean Cartan torsion for the class of (α, β)-metrics.
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1 Introduction

Cartan torsion is one of the most fundatmental non-Riemannian quantities.
It was first introduced by P. Finsler[1] and emphasized by E. Cartan[2], who mea-
sured a departure from a Riemannian manifold. Finsler metrics are Riemannian
metrics on a manifold M without quadratic restriction. They give Minkowski
norms instead of inner products on each tangent space TxM .

More precisely, a Finsler metric is Riemannian if and only if it has vanish-
ing Cartan torsion. Intuitively the norm of Cartan torsion is farther from zero,
than this Finsler manifold. In 1957, J. Nash[3] proved that any n-dimensional
Riemannian manifold can be isometrically imbedded into a higher dimensional
Euclidean space. So the natural question arises here whether in Finsler geometry,
every Finsler manifold can be isometrically imbedded into a Minkowski space?.
However, the answer is affirmative. In 1997[4], Z.Shen proved that Finsler mani-
fold with unbounded Cartan torsioncould not be isometrically imbedded into any
Minkowski space. For Finsler manifolds, the problem under certain circumstances
was considered by Burago-Iranov, Gu and Ingarden([5][6][7][8]). Then the norm
of Cartan torsion plays an important role for the study of immersion theory in
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Finsler geometry. For the Finsler metric F , one can define the norm of the Cartan
torsion C as follows,

|| C ||= SupF (y)=1,v 6=0
| Cy(v, v, v) |
[gy(v, v)]3/2

. (1)

The bound for two dimensional Randers metrics is verified by B. Lackey and
Z. Shen[11] proved that the Cartan torsion of Randers metrics on a manifold
M of dimension n ≥ 3 is uniformly bounded by 3√

2
. Recently A. Teyabi and

H. Sadeghi[12] have studied a relation between the norm of Cartan and mean
Cartan torsion of Finsler metrics defined by a Riemannian metric and 1-form on
manifold M . They proved that generalized Kropina metrics F = αm+1

βm (m 6= 0)

and generalized Randers metric F = (c1α
2 + 2c2αβ + c3β

2), where c1, c2, c3 were
real constants have bounded Cartan torsion. It turns out that every C-reducible
Finsler metric has bounded Cartan torsion.

A natural task for us is to find other Finsler metrics which have bounded
Cartan torsion. In this paper, we find two more subclasses of (α, β)-metrics which
have bounded Cartan torsion. Then, we give a relation between the norm of
Cartan and the mean Cartan torsion for the class of (α, β)-metrics with related
examples.

2 Preliminaries

A Finsler metric on a manifold M is a C∞ function on TM0 having the
following properties:
(i) F (x, y) ≥ 0 for any y ∈ TxM and F (x, y) = 0 if and only if y = 0;
(ii) F (x, λy) = λF (x, y) for any y ∈ TxM and λ > 0 ;
(iii) For any tangent vector y ∈ TxM , the following bilinear symmetric form gy
on TxM is positive definite,

gy(u, v) =
1

2

∂2

∂s∂t
[F 2(y + su+ tv)] |s,t=0, u, v ∈ TxM.

Riemannian metric is the special case that at each point x ∈ M the funda-
mental tensor gy is independent of the tangent vector y ∈ TxM0. To measure the
non-Riemannian feature of F , define Cy : TxM ⊗ TxM ⊗ TxM → < by

Cy(u, v, w) :=
1

2

d

dt
[gy+tw(u, v)] |t=0, u, v, w ∈ TxM.

This trilinear symmetric form on pullback bundle π∗TM is called Cartan torsion.
E. Cartan got this quantity when he introduced his metric-compatible connection.
Obviously, F is Riemannian metric if and only if Cy = 0.

For y ∈ TxM0, define mean Cartan torsion Iy by Iy(u) = Ii(y)ui, where
Ii = gijCijk. In 1953, Deicke[13] proved that F is Riemannian if and only if the
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mean Cartan torsion Iy = 0 for any y ∈ TxM0. The bound of Cartan torsion C
at a point x ∈M is defined by

‖ C ‖x= Supy,u∈TxM
F (x, y)|Cy(u, u, u)|

[gy(u, u)]3/2

and the bound of Cartan torsion on M is defined by :

‖ C ‖= Supx∈M ‖ C ‖x .

Let (M,F ) be a Finsler manifold. For y ∈ TxM0, define the Matsumoto torsion
My : TxM ⊗ TxM ⊗ TxM → < by My(u, v, w) := Mijk(y)uivjwk, where

Mijk := Cijk −
1

n+ 1
{Iihjk + Ijhik + Ikhij},

and hij := gij − 1
F 2 gipy

pgjqy
q is the angular metric. A Finsler metric F is said to

be C-reducible, if My = 0. M. Matsumoto[14] proved that every Randers metric
satisfies My = 0. Later on, Matsumoto-Hojo proved that the converse is true too.

Lemma 1. A Finsler metric F on a manifold of dimension n ≥ 3 is a Randers
metric if and only if the Matsumoto torsion vanishes.

Let r(t) : [0, 1] −→M be a piecewise C∞ curve on a Finsler manifold (M,F ).
We can define the length of r(t) by

L(r) :=

∫ 1

0
F (r(t), r′(t))dt.

The geodesic curves on a smooth manifold M are characterized by the second
order differential equations

d2r

dt2
+ 2Gi(r(t), r′(t)) = 0,

where the local functions Gi = Gi(x, y) are called the spray coefficients of F , and
given by in a local coordinate[17]:

Gi(x, y) :=
1

4
gil{ ∂

2F 2

∂xk∂yl
yk − ∂F 2

∂xl
}.

A positive complete Finsler manifold means that every geodesic r(t), where t ∈
[0, 1] can be extended to (0,∞). For a tangent vector y ∈ TxM0, in local coordinate
define a tensor on pullback bundle π∗TM , By : TxM ⊗ TxM ⊗ TxM → TxM by

By(u, v, w) := Bi
jkl(y)ujvkwl

∂

∂xi
,

where u = ui ∂
∂xi
|x, v = vi ∂

∂xi
|x, w = wi ∂

∂xi
|x, and

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
.

A Finsler metric is called a Berwald metric if B=0. This is equivalent to its spray
coefficients Gi to be quadratic in y at every point x ∈ M . Riemannian metric
is Berwaldian because in this case Gi = 1

2Γijk(x)yjyk, where Γijk are Christoffel
symbols.
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3 Bounded Cartan Torsion Of Special Finsler (α, β)-
metrics

3.1. Bounded Carton Torsion for the metric F = 3
√
c1α2β + c2β3:

In this section, we consider the special (α, β)-metric F = 3
√
c1α2β + c2β3 where

α =
√
aijyiyj is a Riemannian metric, β = bi(x)yi is an 1-form on manifold M

and c1, c2 > 0 are real constants and we prove the following theorem:

Theorem 1. Let F = 3
√
c1α2β + c2β3 be a special (α, β)-metric where, α =√

aijyiyj is a Riemannian metric, β = bi(x)yi is an 1-form on manifold M and
c1, c2 > 0 are real constants. Then F has bounded Cartan torsion.

Proof. Let us first consider the case of dimM = 2. There exist local orthonormal
coframes ω1, ω2 of Riemannian metric α. So α2 can be written as

α2 = ω2
1 + ω2

2.

If we denote α =
√
aijyiyj , where y =

∑2
i=1 y

iei and ei is the dual frame of ωi
then aij = δij and aij = δij . Adjust coframe ω1, ω2 properly such that

β = kω1.

Then b1 = k and b2 = 0 where β =
∑2

i=1 biy
i. Hence

‖β‖α =
√
aijbibj = k.

For an arbitrary tangent vector y = ue1 + ve2 ∈ TpM, we can obtain that

α(p, y) =
√
u2 + v2, β(p, y) = ku,

F (p, y) = 3
√
c1(u2 + v2).ku+ c2(ku)3.

Assume that y⊥ satisfies:

gy(y, y
⊥) = 0, gy(y

⊥, y⊥) = F 2(p, y). (2)

Obviously y⊥ is unique because the metric is non-degenerate. The frame {y, y⊥}
is called the Berwald frame. Let

y = rcos(θ)e1 + rsin(θ)e2.

i.e.,
u = rcos(θ), v = rsin(θ)

plugging the above expression into (2) and computing by Maple program [See
Appendix− I] we obtain,

y⊥ =
r(−
√

2c1 sin(θ) cos(θ), 1√
2
((2c1 + 3c2k

2) cos(θ)2 + c1))√
((4c1 + 3c2k2) cos(θ)2 − c1)c1

. (3)
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By the definition of the bound of Cartan torsion, it is easy to show that for the
Berwald frame (y, y⊥),

|| C ||p= Supy∈TpM0ξ(p, y),

where,

ξ(p, y) =
F (p, y) | Cy(y⊥, y⊥, y⊥) |
| gy(y⊥, y⊥) |3/2

.

Again computing by Maple program [See Appendix− III(i)] , we obtain

ξ(p, y) =
1√
2
| c1sin(θ)((8c1 + 9c2k

2)cos(θ)2 + c1)

[(4c1 + 3c2k2)cos(θ)2 − c1]
3
2

| .

Define two functions on [0, 1]× [−1, 1] by following,

f(k, x) = (4c1 + 3c2k
2)x2 − c1,

g(k, x) =
1√
2

c1
√

1− x2((8c1 + 9c2k
2)x2 + c1)

f(x, y)
3
2

.

Hence
|| C ||p= Max

0≤θ≤2π
| g(k, cosθ) | . (4)

For a fixed k = k0 (k0 ∈ [0, 1]), we have

∂

∂x
f(k0, x) = 2(4c1 + 3c2k

2
0)x.

So from ∂
∂xf(k0, x) = 0 gives, x = 0. i.e., x ∈ [−1, 1].

By simple computation, we get,

f(k0,−1) = f(k0, 1) = 3(c1 + c2k
2
0) > 0, c1, c2 > 0 and k0 ∈ [0, 1].

Therefore f(k, x) > 0, then g(k, x) is continuous in [0, 1] × [−1, 1] and has an
upper bound.

In general for higher dimensions, the definition of the Cartan torsion is bound
at p ∈M is

|| C ||p= Supy,u∈TpM
F (p, y) | cy(u, u, u) |
| gy(u, u) |

3
2

.

Considering the plane P = span(u, y), from the above conclusion we obtain || C ||p
is bounded. Furthermore, the bound is independent of the plane P ⊂ TpM and
the point p ∈ M . Hence the Cartan torsion is also bounded. This completes the
proof.

3.2. Bounded Carton Torsion for the metricF = c1β + α2

β :

In this section, we consider the special (α, β)-metric F = c1β + α2

β where, α =√
aijyiyj is a Riemannian metric, β = bi(x)yi is a 1-form on manifold M and

c1 > 0 be real constant, then we prove the following theorem:
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Theorem 2. Let F = c1β+ α2

β be a special (α, β)-metric where, α =
√
aijyiyj is

a Riemannian metric, β = bi(x)yi is a 1-form on manifold M and c1 > 0 be real
constant. Then F has bounded Cartan torsion.

Proof. Let us first consider the case of dimM = 2, for an arbitrary tangent vector
y = ue1 + ve2 ∈ TpM, we can obtain that

α(p, y) =
√
u2 + v2, β(p, y) = ku,

F (p, y) = c1ku+
(u2 + v2)

ku
.

By using the Maple program [See Appendix− II], we get

y⊥ =
r(−
√

2c1 sin(θ) cos(θ), 1√
2
(2c1cos(θ)

2 + 2cos(θ)2 − 1)√
c1k2cos(θ)2 + 1

. (5)

Again computing by Maple program [See Appendix− III(ii)], we obtain

ξ(p, y) =
3√
2
| sinθ√

c1k2cosθ2 + 1
| .

Define two functions on [0, 1]× [−1, 1] by following

f(k, x) = c1k
2x2 + 1,

g(k, x) =
3√
2
|
√

1− x2

f(k, x)
1
2

| .

Hence

|| C ||p= Max
0≤θ≤2π

| g(k, cosθ) | . (6)

For a fixed k = k0 (k0 ∈ [0, 1]), we have,

∂

∂x
f(k0, x) = 2c1xk

2.

So from ∂
∂xf(k0, x) = 0, gives x = 0. i.e., x ∈ [−1, 1].

By simple computation we get,

f(k0, 1) = f(k0,−1) = c1k
2
0 + 1 > 0, since c1 > 0 and k0 ∈ [0, 1]

Therefore f(k, x) > 0, then g(k, x) is continuous in [0, 1] × [−1, 1] and has an
upper bound. For higher dimensions, it is similar to the above case.
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4 Examples

In this section, we will discuss some related examples and link our theorems
to the results in [18] and also we use the following theorem proved by A. Teyabi
and H. Sadeghi[12]:

Theorem 3. Let F = αφ(s) be a non-Riemannian (α, β)-metric on a manifold
M of dimension n ≥ 3. Then norm of Cartan and mean Cartan torsion of F
satisfy the following relation

‖ C ‖=
√

3p2 + 6pq + (n− 1)q2

n+ 1
‖ I ‖ . (7)

where p = p(x, y) and q = q(x, y) are scalar functions on TM satisfying p+ q = 1
and given by following

p =
n+ 1

aA
[s(φφ′′ + φ′φ′)− φφ′], (8)

a = φ(φ− sφ′), (9)

A = (n− 2)
sφ′′

φ− sφ′
− (n+ 1)

φ′

φ
− (b2 − s2)φ′′′ − 3sφ′′

(b2 − s2)φ′′ + φ− sφ′
. (10)

The Cartan tensor of an (α, β)-metric is given by the following

Cijk :=
p

1 + n
{Ikhij + Iihjk + Ijhki}+

q

‖ I ‖2
IiIjIk. (11)

where p = p(x, y) and q = q(x, y) are scalar functions on TM satisfying p+ q = 1
and p is defined by (8).
Example 4.1: For a Finsler metric F = 3

√
c1α2β + c2β3 on a manifold M , we

have
φ =

3
√
c1s+ c2s3

Then we get the following

a =
2(c1s)

3
√
c1s+ c2s3

,

A =
−2c1[kb

2 − 4nc1s
2]

3(c1s+ c2s3)lb2 − 4c1s2
,

where
k = (n− 3)c1 − 3(n+ 1)c2s

2, l = c1 − 3c2s
2.

Thus,

p =
(n+ 1)(lb2 − 4c1s

2)

kb2 − 4nc1s2
, (12)

where
k = (n− 3)c1 − 3(n+ 1)c2s

2, l = c1 − 3c2s
2.

Then we get the following
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Corollary 1. Let F = 3
√
c1α2β + c2β3 be a special (α, β)-metric where α =√

aijyiyj is a Riemannian metric, β = bi(x)yi is a 1-form on manifold M and
c1, c2 > 0 are real constants. Then the relation between the norm of Cartan and
the mean Cartan torsion of F satisfies (7), where p is given by (12).

Example 4.2: For a Finsler metric F = c1β + α2

β on a manifold M , we have

φ = c1s+
1

s

Then we get the following

a =
2(c1s

2 + 1)

s2
,

A =
2(n+ 1)

s(c1s2 + 1
,

Thus,
p = 1. (13)

Similar to corollary (1) we get the following

Corollary 2. Let F = c1β + α2

β be a special (α, β)-metric where α =
√
aijyiyj is

a Riemannian metric, β = bi(x)yi is a 1-form on manifold M and c1 > 0 is a real
constant. Then the relation between the norm of Cartan and the mean Cartan
torsion of F satisfies (7), where p is given by (13).

Remark: For the (α, β)-metric F = c1β + α2

β , if dim n = 2 and p = 1 then,
from (7) we get that the norm of Cartan is the same as the mean Cartan torsion
i.e., ‖ C ‖=‖ I ‖.
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Appendix− I

In this section we provide the Maple program which we used to prove Theorem
1

> restart;
> with(linalg) :
> F := sqrt[3]((c[1] ∗ u2 + v2) ∗ (k ∗ u) + c[2] ∗ (k ∗ u)3) :
> g := simplify(1/2 ∗ hessain(F 2, [u, v])):
> gr := simplify(subs(u = cos(theta), v = sin(theta), g)) :
> y := vector(2, [r ∗ cos(theta), r ∗ sin(theta)]);

y := [u = rcos(θ), v = rsin(θ)]
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> yp := vector(2) :
> eq := simplify(evalm(transpose(y) ∗ gr ∗ yp)) = 0 :
> x := solve(eq, yp[1]);

x = − yp2sin(θ)c[1]cos(θ)

2c[1]cos(θ)2 + 3c[2]k2cos(θ)2 + c[1]

> ny := simplify(r2.subs(u = cos(theta), v = sin(theta), F 2));

ny := r2(k(c[2]k2cos(θ)2 + c[1])cos(θ))2/3

> yp[1] := −2sin(θ)cos(θ)c[1] :
> yp[2] := 2cos(θ)2c[1] + 3c[2]k2cos(θ)2 + c[1] :
> nyp := simplify(evalm(transpose(yp) ∗ gr ∗ yp)) :
> lambda := simplify(sqrt(r2 ∗ nyp/ny)/r) :
> yp[1] := yp[1]/lambda :
> yp[2] := yp[2]/lambda :
> print(yp);

[− sin(θ)cos(θ)c[1]
√

2r√
(4c[1]cos(θ)2 − c[1] + 3c[2]k2cos(θ)2)c[1]

,

(2c[1]cos(θ)2 + 3c[2]k2cos(θ)2 + c[1])
√

2r

2
√

(4c[1]cos(θ)2)− c[1] + 3c[2]k2cos(θ)2c[1]
]

Appendix− II

Maple program to prove Theorem 2

> restart;
> with(linalg) :

> F := c[1] ∗ (k ∗ u) + (u2+v2)
(k∗u) :

> g := simplify(1/2 ∗ hessain(F 2, [u, v])):
> gr := simplify(subs(u = cos(theta), v = sin(theta), g)) :
> y := vector(2, [r ∗ cos(theta), r ∗ sin(theta)]);

y := [u = rcos(θ), v = rsin(θ)]

> yp := vector(2) :
> eq := simplify(evalm(transpose(y) ∗ gr ∗ yp)) = 0 :
> x := solve(eq, yp[1]);

x = − yp2sin(θ)cos(θ)2

c[1]cos(θ)2k2 + 2cos(θ)2 − 1

> ny := simplify(r2.subs(u = cos(theta), v = sin(theta), F 2));

ny :=
r2(k4c[1]2cos(θ)4 + 2c[1]k2cos(θ)2 + 1)

cos(θ)2k2
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> yp[1] := −2sin(θ)cos(θ) :
> yp[2] := cos(θ)2c[1]k2 + 2cos(θ)2 − 1 :
> nyp := simplify(evalm(transpose(yp) ∗ gr ∗ yp)) :
> lambda := simplify(sqrt(r2 ∗ nyp/ny)/r) :
> yp[1] := yp[1]/lambda :
> yp[2] := yp[2]/lambda :
> print(yp);

[− sin(θ)cos(θ)
√

2r√
c[1]cos(θ)2k2 + 1

,
(c[1]cos(θ)2k2 + 2cos(θ)2 − 1)

√
2r

2
√
c[1]cos(θ)2k2 + 1

]

Appendix− III

The method of computation
Step 1: Solve the equation gy(y, y

⊥) = 0.

(x, yp[2]) =

(
yp[2]yp[1]

yp[2]
, yp[2]

)
and yp = (yp[1], yp[2]) is a particular solution.

Step 2: Assume that y⊥ = 1
λyp is the satisfied solution. Notice that

gy(y
⊥, y⊥) = F 2(y) = ny

Then we get

λ =

√
nyp

ny

which nyp is defined by

nyp := gy(yp, yp)

Step 3: Plug these results into y⊥, we get the Finsler frame (y, y⊥).

i) Computation of ξ(p, y) for the metric F = 3
√
c1α2β + c2β3

> nyp = simplify(evalm(transpose(yp) ∗ gr ∗ yp));

nyp =
r2kcos(θ)(c2k

2cos(θ)2 + c1)

(k(c2k2cos(θ)2 + c1)cos(θ))1/3

> bc = factor(abs(simplify(r2∗subs(t = 0, q = 0, p = 0, diff(subs(u = cos(theta)+
t ∗ yp[1]/r+ q ∗ yp[1]/r+ p ∗ yp[1]/r, v = sin(theta) + t ∗ yp[2]/r+ q ∗ yp[2]/r+ p ∗
yp[2]/r, F 2/4), [t, q, p])))/nyp))

bc =
sin(θ)c1(8c1cos(θ)

2 + c1 + 9c2k
2cos(θ)2)√

2c1(4c1cos(θ)2 − c1 + 3c2k2cos(θ)2)3/2

.
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ii) Computation of ξ(p, y) for the metric F = c1β + α2

β

> nyp = simplify(evalm(transpose(yp) ∗ gr ∗ yp));

nyp =
r2(c21k

4cos(θ)4 + 2c1k
2cos(θ)2 + 1)

k2cos(θ)2

> bc = factor(abs(simplify(r2∗subs(t = 0, q = 0, p = 0, diff(subs(u = cos(theta)+
t ∗ yp[1]/r+ q ∗ yp[1]/r+ p ∗ yp[1]/r, v = sin(theta) + t ∗ yp[2]/r+ q ∗ yp[2]/r+ p ∗
yp[2]/r, F 2/4), [t, q, p])))/nyp))

bc =
3√
2

sin(θ)√
c1k2cos(θ)2 + 1

.


