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Abstract

In this paper, we proved that some special Finsler (a, )-metrics have
bounded Cartan torsion. Further, we find the relation between the norm of
Cartan and the mean Cartan torsion for the class of («, 3)-metrics.
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1 Introduction

Cartan torsion is one of the most fundatmental non-Riemannian quantities.
It was first introduced by P. Finsler[1] and emphasized by E. Cartan|[2], who mea-
sured a departure from a Riemannian manifold. Finsler metrics are Riemannian
metrics on a manifold M without quadratic restriction. They give Minkowski
norms instead of inner products on each tangent space T, M.

More precisely, a Finsler metric is Riemannian if and only if it has vanish-
ing Cartan torsion. Intuitively the norm of Cartan torsion is farther from zero,
than this Finsler manifold. In 1957, J. Nash[3] proved that any n-dimensional
Riemannian manifold can be isometrically imbedded into a higher dimensional
Euclidean space. So the natural question arises here whether in Finsler geometry,
every Finsler manifold can be isometrically imbedded into a Minkowski space?.
However, the answer is affirmative. In 1997[4], Z.Shen proved that Finsler mani-
fold with unbounded Cartan torsioncould not be isometrically imbedded into any
Minkowski space. For Finsler manifolds, the problem under certain circumstances
was considered by Burago-Iranov, Gu and Ingarden([5][6][7][8]). Then the norm
of Cartan torsion plays an important role for the study of immersion theory in
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Finsler geometry. For the Finsler metric F', one can define the norm of the Cartan
torsion C' as follows,

| Cy(o,v0) |
gy (v, v)]3/2
The bound for two dimensional Randers metrics is verified by B. Lackey and

Z. Shen[11] proved that the Cartan torsion of Randers metrics on a manifold
M of dimension n > 3 is uniformly bounded by % Recently A. Teyabi and

1 C ll= Supp(y)=1,020 (1)

H. Sadeghi[12] have studied a relation between the norm of Cartan and mean
Cartan torsion of Finsler metrics defined by a Riemannian metric and 1-form on
am+1

manifold M. They proved that generalized Kropina metrics F' = “zm—(m # 0)
and generalized Randers metric F' = (cia? + 2coa 8 + c3/8%), where ¢y, c2, c3 were
real constants have bounded Cartan torsion. It turns out that every C-reducible
Finsler metric has bounded Cartan torsion.

A natural task for us is to find other Finsler metrics which have bounded
Cartan torsion. In this paper, we find two more subclasses of (a, 3)-metrics which
have bounded Cartan torsion. Then, we give a relation between the norm of
Cartan and the mean Cartan torsion for the class of («, 5)-metrics with related
examples.

2 Preliminaries

A Finsler metric on a manifold M is a C° function on T My having the
following properties:
(i) F(z,y) > 0 for any y € T, M and F(x,y) = 0 if and only if y = 0;
(ii) F(x,\y) = AF(z,y) for any y € T, M and A > 0 ;
(iii) For any tangent vector y € T, M, the following bilinear symmetric form g,
on T, M is positive definite,

1 02
gy(u,v) = 3 Bt [F2(y + su+tv)] |s =0, u, v € Ty M.

Riemannian metric is the special case that at each point x € M the funda-
mental tensor g, is independent of the tangent vector y € T;;My. To measure the
non-Riemannian feature of F, define Cy : T, M @ T, M ® T, M — ¥ by

1
Cy(uavaw) : d

= 5%[gy+tw(u,v)] lt=0, w,v,w € T, M.

This trilinear symmetric form on pullback bundle 7*T' M is called Cartan torsion.
E. Cartan got this quantity when he introduced his metric-compatible connection.
Obviously, F' is Riemannian metric if and only if Cyy = 0.

For y € T,My, define mean Cartan torsion I, by I,(u) = I;(y)u’, where
I; = ¢"Cyjj. In 1953, Deicke[13] proved that F is Riemannian if and only if the
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mean Cartan torsion I, = 0 for any y € T, My. The bound of Cartan torsion C
at a point x € M is defined by

F(z,y)|Cy(u, u, u))|
L9y (u, u)]3/2
and the bound of Cartan torsion on M is defined by :
I C ll= Supeer || C |z -

Let (M, F) be a Finsler manifold. For y € T,, My, define the Matsumoto torsion
M, :T:M T, M & TyM — R by My,(u,v,w) := Mijk(y)uivjwk, where

H C ||ac SUpy u€T, M

1
Mijk = Cz'jk — m{fih]‘k + [jhik + Ikhij},

and h;j == gij — % 9ipy?gjqy? is the angular metric. A Finsler metric F' is said to
be C-reducible, if M, = 0. M. Matsumoto[14] proved that every Randers metric
satisfies M, = 0. Later on, Matsumoto-Hojo proved that the converse is true too.

Lemma 1. A Finsler metric F' on a manifold of dimension n > 3 is a Randers
metric if and only if the Matsumoto torsion vanishes.

Let r(t) : [0,1] — M be a piecewise C*° curve on a Finsler manifold (M, F).
We can define the length of r(t) by

1
= /0 F(r(t),r (t))dt.

The geodesic curves on a smooth manifold M are characterized by the second
order differential equations
d*r
dt?
where the local functions G* = G*(x, %) are called the spray coefficients of F, and
given by in a local coordinate[l?}'

+2G"(r(1),7'(t)) = 0,

; *F? aF2
Gt , — il k
A positive complete Finsler manifold means that every geodesic r(t), where t €

[0, 1] can be extended to (0, c0). For a tangent vector y € T, My, in local coordinate
define a tensor on pullback bundle 7*T'M |, By : T,M @ T, M @ T, M — T, M by

, 0
By(u, v, w) = B‘;kl( )ujvkwl 83717

|z w = w 4 |, and

ox?
3 i

i 0°G"
ikl 8yﬂ<9yk8y
A Finsler metric is called a Berwald metric if B=0. This is equivalent to its spray
coefficients G’ to be quadratic in y at every point € M. Riemannian metric
is Berwaldian because in this case G* = %Fék(m’)y] y*, where 1'%, are Christoffel
symbols.

‘x,vzvi g

__ i 0
where u = u B

oz
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3 Bounded Cartan Torsion Of Special Finsler (o, f)-
metrics

3.1. Bounded Carton Torsion for the metric F = {/c1a23 + co33:

In this section, we consider the special («, 3)-metric F' = /c1a28 + co33 where
a = y/aijy'yl is a Riemannian metric, § = b;(z)y* is an 1-form on manifold M
and c1,co > 0 are real constants and we prove the following theorem:

Theorem 1. Let F = {/c1a?B+ 28 be a special (a, 8)-metric where, o =
Vaijy'yl is a Riemannian metric, B = bi(z)y' is an 1-form on manifold M and
c1,co > 0 are real constants. Then F has bounded Cartan torsion.

Proof. Let us first consider the case of dimM = 2. There exist local orthonormal
coframes wi,ws of Riemannian metric o.. So o? can be written as

o? :w%—i-w%.

If we denote a = \/a;;y'y’, where y = Z?:l y'e; and e; is the dual frame of w;
then a;; = d;; and a” = 6. Adjust coframe wy,ws properly such that

B = kwl.
Then by = k and by = 0 where 5 = 2?21 biy'. Hence

1Blla = 1/ a*bibj = k.
For an arbitrary tangent vector y = ue; + veg € T, M, we can obtain that
a(p,y) = Vu? +v?, B(p,y) = ku,
F(p,y) = ¥/c1(u? + v2).ku + co(ku)3.
Assume that yt satisfies:
9y(v:y") =0, g,(ytyt) = F2(p,y). (2)

Obviously y= is unique because the metric is non-degenerate. The frame {y,y*}
is called the Berwald frame. Let

y = rcos(f)ey + rsin(6)es.
i.e.,
u = rcos(0),v = rsin(0)

plugging the above expression into (2) and computing by Maple program [See
Appendix — I] we obtain,

L r(—+v/2c; sin(6) cos(6), %((201 + 3c2k?) cos(0)? + ¢1))

v V(41 + 3eak?) cos(0)2 — 1)y ' )
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By the definition of the bound of Cartan torsion, it is easy to show that for the
Berwald frame (y,y"),

|| C Hp: SupyETpMof(pa y)v

where,
F(p,y) | Cylyt,ytyh) |
| gy(ytoyh) P2
Again computing by Maple program [See Appendixz — I11(i)] , we obtain

E(p,y) =

| c15in(0)((8¢c1 + 9cak?)cos(0)? + ¢1)
\/> [(4eq + 3egk?)cos(6)? — Cl]%

E(p,y) = | .

Define two functions on [0,1] x [—1, 1] by following,
fk,z) = (4c1 + 3eak?)2® — ¢y,

(k) = iclvl —22((8¢1 + 902k2)x +cl)
RV flz,y)2

Hence
| C Hp: Maxogeg%‘ g(k,cost) | . (4)

For a fixed k = ko (ko € [0, 1]), we have
9 >
%f(ko,x) = 2(4c1 + 3e2kg)x.

So from -2 5zf (ko, ) = 0 gives, x = 0. i.e.,z € [-1,1].
By simple computation, we get,

f(ko,—1) = f(ko,1) = 3(cy + c2kd) >0, ¢1,¢0 >0 and ko € [0,1].

Therefore f(k,z) > 0, then g(k,z) is continuous in [0,1] x [—1,1] and has an
upper bound.

In general for higher dimensions, the definition of the Cartan torsion is bound
at pe M is
Fp,y) | cy(u,u,u) |

3
| gy(u, u) |2

Considering the plane P = span(u,y), from the above conclusion we obtain || C' ||,
is bounded. Furthermore, the bound is independent of the plane P C T,M and

the point p € M. Hence the Cartan torsion is also bounded. This completes the
proof. O

| C sz Supy,uETpM

3.2. Bounded Carton Torsion for the metricF = ¢ + O‘T;

In this section, we consider the special («, §)-metric F' = ¢16 + O‘T; where, a =

Vaijy'yd is a Riemannian metric, § = bi(z)y’ is a 1-form on manifold M and
c1 > 0 be real constant, then we prove the following theorem:
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Theorem 2. Let F = 13+ O‘T? b¢ a special (o, B)-metric where, o = \/a;jyty’ is
a Riemannian metric, B = b;(x)y" is a 1-form on manifold M and c¢; > 0 be real
constant. Then F has bounded Cartan torsion.

Proof. Let us first consider the case of dimM = 2, for an arbitrary tangent vector
y = uei +vey € T, M, we can obtain that

a(p,y) = Vu?+02, B(p,y) = ku,

u? + 02
F(p,y) = ciku + (ku)

By using the Maple program [See Appendixz — I1], we get

L r(—v/2cy sin(6) cos(6), %(201005(9)2 + 2cos(6)? — 1).

Y Veik2eos(0)2 + 1

Again computing by Maple program [See Appendix — 111(ii)], we obtain

sind

Verk2cosh? + 1

Define two functions on [0, 1] x [—1, 1] by following

3
¢p,y) = 75 | -

fk,z) = c1k?z? + 1,

g(k,z) = i | 7&—952

2 f(k,2)? .

Hence
|1 C llp= Mazye,. | g(k, cosh) | . (6)
For a fixed k = ko (ko € [0, 1]), we have,

0
%f(k:o,aj) = 2cizk%

So from a%f(kg,x) =0, gives x = 0. i.e.,x € [—1,1].
By simple computation we get,

f(ko, 1) = f(ko,—1) = c1kf +1 >0, since ¢; >0 and ko € [0, 1]

Therefore f(k,z) > 0, then g(k,z) is continuous in [0,1] x [—1,1] and has an
upper bound. For higher dimensions, it is similar to the above case. ]
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4 Examples

In this section, we will discuss some related examples and link our theorems
to the results in [18] and also we use the following theorem proved by A. Teyabi
and H. Sadeghi[12]:

Theorem 3. Let F' = a¢(s) be a non-Riemannian (o, 3)-metric on a manifold
M of dimension n > 3. Then norm of Cartan and mean Cartan torsion of F
satisfy the following relation

3p? + 6pg + (n — 1)¢?
o=yt 2Dty

(7)

where p = p(z,y) and q = q(x,y) are scalar functions on TM satisfying p+q =1
and given by following

n—+1

p ="l + 00)) — 09, (5)
a=¢(¢ - s¢)), (9)
B - ng)" B ﬂl - (b2 _ 52)¢/// _ 38¢”
A=(n 2)¢_S¢/ (n+1)¢ = T o—sd (10)
The Cartan tensor of an («a, )-metric is given by the following
Cijk = HLn{Ikhij + Iihjk + Ijhki} + ﬁh[j[/ﬁ. (11)

where p = p(z,y) and ¢ = g(x,y) are scalar functions on T'M satisfying p+¢q =1
and p is defined by (8).
Example 4.1: For a Finsler metric F' = /c1a28 + 3% on a manifold M, we

have
&= V15 + casd

2(c18)
Veis + cas3
—2¢1[kb? — 4ncy 5%

Then we get the following

a =

A=
3(015 + 6253)lb2 — 461527
where
k= (n—3)c; —3(n+ 1)cps?, | =c1 — 3eps°.
Thus,
n+ 1)1 — 4¢;s?
p — ( 2)( 21 ), (12)
kb* — 4ncys
where

k= (n—3)c1 —3(n+ 1)cps?, I =c1 — 382,
Then we get the following
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Corollary 1. Let F = {/c1028 + 23 be a special («, B)-metric where o =
Vaiy'yl is a Riemannian metric, 8 = b;(z)y’ is a 1-form on manifold M and
c1,co > 0 are real constants. Then the relation between the norm of Cartan and
the mean Cartan torsion of F satisfies (7), where p is given by (12).

Example 4.2: For a Finsler metric F' = 18 + O‘T? on a manifold M, we have

1
p=c15+ —
s
Then we get the following
2(c18% +1)
-
 2(n+1)
 s(es?2 417
Thus,

Similar to corollary (1) we get the following

Corollary 2. Let FF = c¢18 + O‘T; be a special (o, B)-metric where o = /a;;y'y’ is
a Riemannian metric, = b;(x)y" is a 1-form on manifold M and ¢; > 0 is a real

constant. Then the relation between the norm of Cartan and the mean Cartan
torsion of F satisfies (7), where p is given by (13).

Remark: For the (o, 8)-metric F = ¢15 + %’ if dim n = 2 and p = 1 then,
from (7) we get that the norm of Cartan is the same as the mean Cartan torsion
Le, [ C =N LI

References

[1] Finsler, P., Uber Kurven und Flachen in allgemeinen Raumen, (Dessertation,
Gottingan,1918), Birkhauser Verlag, Basel, 1951.

[2] Cartan, E., Les espaces de Finsler, Actualities 79, Paris, 1934.

[3] Nash, J., The immedding problem for Riemannian manifolds, Ann.Math. 73
(1957), 20-37.

[4] Shen, Z., On Finsler geometry of submanifolds, Math. Ann. 311(3) (1998),
549-576.

[5] Burago D. and Ivanov, S., Isometric embedding of Finsler manifolds, Algebra.
Analiz. 5 (1993), 179-192.

[6] Gu, C. H., Imbedding of a Finsler manifold in a Minkowski space, Acta.
Math, Sinica. 7 (1957), 215-232.



On

[7]

bounded Cartan torsion of special Finsler («, [)-metrics 21

Gu, C. H., Imbedding of a Finsler manifold in a Minkowski space, Acta.
Math, Sinica. 8 (1958), 282-285.

Ingarden, R. S., Uber die FEinbetting eines Finslerschen Rammes in einan
Minkowskischen Raum, Bull. Acad. Polon. Sci. 2 (1954), 305-308.

Asanov, G. S., Finsler cases of GF-space, Aequationes. Math. 49 (1) (1995),
234-251.

Bao, D., Chern, S. S. and Shen, Z., An introduction to Riemann-Finsler
geometry, Springer, 2000.

Shen, Z., On R-quadratic Finsler spaces, Publ. Math. Debrecen. 58 (2001),
263-274.

Tayebi A. and Sadeghi, H., On Cartan torsion of Finsler metrics, Publ. Math.
Debrecen. 82 (2013), accepted.

Deicke, A., Uber die Finsler-Raume mit Ai = 0, Arch. Math. 4 (1953), 45-51.
Matsumoto, M., On C-reducible Finsler spaces, Tensor 24 (1972), 29-37.

Shen, Z., On Finsler geometry of submanifolds, Math. Ann. 311(3) (1998),
549-576.

Matsumoto, M., Theory of Finsler spaces with («,3)-metric, Rep. Math.
Phys. 31 (1992), 43-84.

Shen, Z., Differential geometry of Spray and Finsler Spaces, Kluwer Academic
Publishers, 2001.

Mo X. and Zhou, L., A class of Finsler metrics with bounded Cartan torsion,
Canad. Math. Bull. 53 (2010), 122-132.

Appendix — I

In this section we provide the Maple program which we used to prove Theorem

> restart;

> with(linalg) :

> F 1= sqre3]((c[1] = u? +v?) = (k  u) + ef2]  (k x u)?) :
> g := simplify(1/2 x hessain(F?, [u, v])):

> gr := simplify(subs(u = cos(theta),v = sin(theta),g)) :
>y := vector(2, [r * cos(theta), r  sin(theta)));

y := [u=rcos(0),v = rsin(0)]
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> yp := vector(2) :
> eq := simpli fy(evalm(transpose(y) * gr * yp)) =0 :
> x := solve(eq, yp[1]);

ypasin(6)c[l]cos(0)
2¢[1]cos(0)? + 3c[2]k?cos(0)? + c[1]

r = —

> ny := simpli fy(r?.subs(u = cos(theta),v = sin(theta), F?));
ny = r2(k(c[2]k*cos(0)? + ¢[1])cos(h))*/?

> yp[l] := —2sin(0)cos(0)c[1] :
> yp[2] := 2cos(0)?c[1] + 3c[2]k%cos(0)* + c[1] :
> nyp = simpli fy(evalm(transpose(yp) * gr * yp)) :
> lambda = simpli fy(sqrt(r? x nyp/ny)/r) :
> yp[l] := yp[1]/lambda :
> yp[2] := yp[2]/lambda :
> print(yp);
sin(0)cos(6)c[1]v/2r
V/ (4c[1]cos(0)2 — c[1] + 3c[2]k2cos(0)?)c[1]

(2¢[1]cos(0)? + 3c[2]k2cos(0)? + c[1])V/2r ]
24/ (4c[1]cos(0)2) — c[1] + 3c[2]k2cos(0)2c[1]

[_

I

Appendix — II

Maple program to prove Theorem 2

> restart;
> with(linalg) :
> Fi= 1] # (kv u) + Gt .
(k*u)
> g = simplify(1/2 x hessain(F?, [u, v])):
> gr := simplify(subs(u = cos(theta),v = sin(theta), g)) :
> y := vector(2, [r * cos(theta), r x sin(theta)));

y = [u=rcos(0),v = rsin(0)]

> yp := vector(2) :
> eq := simpli fy(evalm(transpose(y)  gr = yp)) =0 :
> x = solve(eq, yp[1]);

ypasin(f)cos(0)2
c[1]cos(0)2k? + 2cos(0)? — 1

r=—

> ny = simplify(r?.subs(u = cos(theta),v = sin(theta), F?));

r?(k*c[1])%cos(0)* + 2c[1]k*cos(0)? + 1)
cos(0)2k?

ny =
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> yp[l] := —2sin(f)cos(0) :

> yp[2] := cos(0)%c[1]k% + 2cos(0)? — 1 :

> nyp = simpli fy(evalm(transpose(yp) * gr * yp)) :
> lambda := simplify(sqrt(r? x nyp/ny)/r) :

> yp[1] := yp[1]/lambda :

> yp[2] := yp[2]/lambda :

> print(yp);

_ sin( )cos( W2r  (c[l]cos(0)2k? 4 2cos(0)* — 1)v/2r
Vell]cos(0)2k2 + 17 2¢/c[1]cos(0)2k? + 1

]

Appendix — III

The method of computation
Step 1: Solve the equation g,(y,y) = 0.

YpR1YPQ) >
x, = ——,
(z,ypp2) ( W yp[)

and yp = (ypp), yp2)) is a particular solution.
Step 2: Assume that y* /\yp is the satisfied solution. Notice that

gyt yt) =F?(y) = ny

Then we get

which nyp is defined by
nyp := gy(yp, yp)

Step 3: Plug these results into y*, we get the Finsler frame (y,y").

i) Computation of £(p,y) for the metric F' = {/c1a28 + c3/3?

> nyp = simplify(evalm(transpose(yp) * gr x yp));
r2kcos(0)(cak?cos(0)? + 1)
(k(cak2cos(0)2 + c1)cos(0))1/3
> bc = factor(abs(simplify(r?+subs(t = 0,q = 0,p = 0, dif f(subs(u = cos(theta)+
txyp[l]/r +q*yp[1]/r+ pxyp[l]/r,v = sin(theta) + tx yp[2]/r + q = yp[2]/r +p*
yp[2l/r, F?/4),[t, 4, p])))/nyp))
sin(0)c1(8cicos(0)? + c1 + 9cak?cos(0)?)
2¢1 (4crcos(0)2 — ¢1 + 3eak2cos(6)2)3/2

nyp =

be =
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ii) Computation of £(p,y) for the metric F = ¢15 + QT?

> nyp = simpli fy(evalm(transpose(yp) * gr * yp));
r2(c2ktcos(0)* + 2c1k%cos(0)? + 1)
k2cos(6)?
> be = factor(abs(simplify(r?ssubs(t = 0,q = 0,p = 0,dif f(subs(u = cos(theta)+

txyp[l]/r +qxyp[l]/r +pxyp[l]/r,v = sin(theta) +t x yp[2]/r + q* yp[2] /r + p =
ypl2]/r, F2/4),[t,q,p])))/nyp))

nyp =

he — 3 sin(0)
V2 \/c1k2cos(0)? + 1




