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SOME DE RHAM COHOMOLOGY GROUPS ASSOCIATED
TO A SUBFOLIATION

Adelina MANEA'!

Abstract

In this paper we consider a (g1, ¢2)-codimensional subfoliation (Fy, F3)
on a Riemannian manifold M. We give a decomposition of the exterior
derivative with respect to this subfoliation. We identify two new de Rham
cohomology groups associated to (Fi, Fy). These groups are topological in-
variants of manifold (M, Fy, Fy).
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1 Preliminares

Foliations arise as integral manifolds of systems of differential equations. They
are closed related to the dynamical systems theory and could play an important
role in other science fields, like physics and biology. In the last decades the study of
geometrical and toplological aspects of foliations was an interest point of research.
The case of subfoliations comes naturally and it is studied by L.A. Cordero, [2].
The cohomologies of foliated manifolds are studied by I. Vaisman, [7], [8], A. El
Kacimi-Alaoui, [3], X. Masa, [4] and many others.

In this paper we consider a subfoliation (F, F») on a paracompact manifold
M and we study in a classical way cohomologies related to it. We follow some
ideas from [8] and obtain for the exterior derivative a decomposition with respect
to subfoliation. One component is satisfying Poincaré type lemma in two cer-
tain situations, and we find two cohomology groups associated to (Fi, F»). For
these groups we prove de Rham theorems, so they are topological invariants of
(M, Fy, F3) (Theorems 4.1, 4.2).

2 Subfoliations

For a manifold M we denote by Q°(M) the ring of differentiable functions on
M and by QP(M) the module of p-forms. For a bundle E, T'(F) is the set of
sections of F.
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In this section, following [2], we briefly recall the notion of a (¢1, g2)-codimensional
subfoliation on a manifold.

DEFINITION 2.1. Let M be a n-dimensional manifold and TM its tangent
bundle. A (q1,q2)-codimensional subfoliation on M is a couple (Fy, Fy) of inte-
grable subbundles Fy, of TM of dimension n — qi, k = 1,2, and F> being at the
same time a subbundle of Fi.

EXAMPLE 2.1. The tangent manifold of a Finsler manifold admits a (n,2n —
1)-subfoliation, where F} is the vertical bundle and Fy is generated by the Liouville
vector field, [1].

Such a subfoliation determines two foliations on M: F; a (n — ¢; )-dimensional
foliation with structural bundle F and JF, a (n — g2)-dimensional foliation with
structural bundle F>. Moreover, every leaf of F1 has a d = g2 — q;-codimensional
foliated structure determined by F5.

We denote by QF), = TM/F}, the transversal bundle of foliation Fj. For a
Riemannian manifold (M, g), QF} is isomorphic with the normal bundle of F.
We have the following decompositions:

TM:FlEBQFl, TM:FQEBQFQ, Fy :FQEBQFgl, (2.1)

where @ F5; is the quotient bundle F/F». We also have the isomorphism QF, =

QI © QF.
So, some exact sequences of vector bundles

0— F2 L> F1 i) QFQl — O, (2.2)
0— F % TM ™ QF — 0, (2.3)
0— F 2 TM ™ QF, — 0, (2.4)

appear in a canonical way.

3 A decomposition of the exterior derivative

Let (M, g) be a Riemannian n-dimensional manifold, and (F1, F2) a (¢1,q2)-
codimensional subfoliation on it. From the classical theory of foliated manifolds,
there is an atlas {(U, ¢)} adapted to (F}, F2), with local adapted coordinates

7 a u
(2", 2% 2" )1<i<q1 <a<go<u<n;

such that in every domain U, leaves of J7 are defined by fixing the first ¢; coor-
dinates and the leaves of F are defined by 2%, = const. and 22 = const. For two
adapted local charts (U, (2%, 2%, z%)), (U, (z%, 2%, %) which domains overlap, in
U N U, there are the following relations:

ox’ oxt ox®

orm  9zw1  oxw

=0.
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The local expression of the metric ¢ is

(gij) (gia) (gzu)
(955)  (9ba)  (9bu) ,
(903)  (9va)  (90u) / 1<icjcqr <asbeqreuzon

(96a)  (9bu)
(g'l)a) (g'U'LL)

For an adapted chart (U, (2% 2% 2%)), the local coordinates on the plaque
UNJF, are (%), so the bundle F; is locally spanned by (9, = 8%)%06"' Let us
denote

and matrices (gpu)u,v ( ) are non-degenerated.
a,b,u,v

)
5pa )

the projection of vector field a%a on the normal bundle QF5, for every a =

5a = 7T2(

q1 +1,¢qo. Since 6, — 8%@ belongs to F5, there are the local differential functions
t € QUU), given by gay — t%guy = 0, such that
0 0

= 2 1
0 Oz t“axu (3.1)

where we use the Einstein convention for summation.
Local coordinates on the plaque UNF; are (2%, z"), so the bundle F} is locally
spanned by (8%,1, %)q1<a§q2<USn- Let us denote

0

52' - Fl(axi)v

the projection of B‘Zi on the normal bundle QF}, for every i =1, q;.

Since §; — % belongs to F1, there are the local differential functions t¢,t}
QO(U) such that

_ 9 w9 w0

ozt 'Ozt ' Qav

The functions t¢,t} are satisfying the orthogonality conditions g(d;, a%k) =0,
Vg <k <n:

di (3.2)

Gia — t?gba - tggua = 0, Giu — t?gbu - t;}gvu =0.

On the intersections of adapted charts (U, (2%, 2%, z%)), (U, (z%,2%,7"1)) the

functions tg, ¢, ¢! change in the following way:

oz oz ox®

U _ u
far oz = pgar e ggar (3:3)
_ Oz ox?® oxt
al _ a
it ggen oz T ogn (34)
Oz oz oz ox’
tgll oo + {Zl o = oo + ErTR (3.5)
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since we have )
- ox? - ox’
6(11 = opal 5(17 51'1 = di.

ozh
We obtained in this way the local basis

{0i,0a,0u}, (3.6)

of TM, adapted to (F1, F»), where the vector fields {0; }; spanned a complementary
distribution to the structural distribution of F7 in T'M, and {6;, 64}« spanned a
complementary distribution to the structural distribution of Fy in T'M.
Let {dz’,w®, 6"} be the adapted cobasis, dual of (3.6). By a straightforward
computation, we obtain:
w® = dz® + tida’, (3.7)

0 = da® + tidx® + (1% + t7t%)da’,

or, equivalent, '

0" = daz" + thw® + tida’. (3.8)
The relations (3.3), (3.4), (3.5) show that on the intersections of adapted charts
(U7 (xiv xav xu)), (Ua (jil ) T ) iﬂ“)v

oz ey OE™
B = Tt g = g,

- Oz ox¥

Ones can see that now, locally, we have

We also obtain the relations:
dw® = §;tddad A da’ + Sptiw® A dat + 0,t80" A dxt, (3.9)

df" = §;tdad A da’ + (Ot} — ditp)w’ A da’ + Spthwd A w® + 0pth0Y A dad+
0,407 A w? 4 tidw?,

A" = (6:t% — tudjtd)da’ N dad + (05t — Gatlt — t}0at?)da’ A w’— (3.10)
— (Ot + L0 dTt A Oy + Sptlw? A w® — Oytiw? A OV, ‘

On the foliated manifold (M, J1), [7], a (p, s)-form is a (p + s)-form w on M
such that w(X7, ... X, s) could be non-zero only if exactly p arguments are sections
of QF and s arguments are vector fields from T'(Fy). We denote by Q°(M) the
module of (p, s)-forms on (M, JF1).

On the foliated manifold (M, F2), [7], a (¢,r)-form is a (¢ + r)-form w on M
such that w(X71, ... Xty ) could be non-zero only if exactly ¢ arguments are sections
of QF; and r arguments are vector fields from I'(F3). We denote by Qg(M ) the
module of (¢, r)-forms on (M, F3).
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DEFINITION 3.1. We call a (p,q,r)-form of (M,%F1,52) a (p+ q + r)-form
w on M such that could be non-zero only if exaclty p of its arguments are from
[(QF1), q of its arguments are from I'(QF>1) and r arguments are from T'(Fy).

We denote by QP27 (M) the module of (p, g, r)-form of the manifold (M, Fy, F5).

REMARK 3.1. A (p, q,r)-form belongs also to Qg’lq'w(M) and to ngq’r(M), at
the same time. Moreover, we have

ng’f(M) = @q—i—r:sgp’q’r(M), Qg’;(M) = @p.t,_q:tQp’q’r(M).

General theory of foliated manifolds, [7], assures that the exterior derivative
d of M admits the following decompositions:

d=di} +dy +dy}, d=dig+dy>, +dg, (3.11)
where
iy QB (M) — QEFVS (M), dyt s QS (M) — Q52T (M),
dot - (M) — QBT (M),
diz QL (M) — QG (M), d? s (M) — Q5P (),
dgz - QL (M) — Qi (M),

Now, let w be a (p, ¢, )-form of (M,F1,Fs). Its local form with respect to local
cobasis (dz*,w?, %), in a local adapted chart with domain V is

w = wIAUda:I Awd A GU,

where wrapy € Q°(V) and we denoted I = (iy,...,ip), A = (a1,...,aq), U =
(U1, ...y Uy ),

1§i1<i2<...<ip§q1<a1<...<aq§q2<u1<...<ur§n,

de’ = da" A ANdz?, WA =W AL A%, U =0M A LAY

We compute

dw = S;wrapdz® A dz! Awd AOY + Sqwragw® A dat A w? AU+
+O0uwrar0™ A dx! Awd A QY+

+ 30 (1P apdal Aw® A LA dw® AL Awe A QY+

+ 30 (—0)PHE Ly pdat AwA A OB A LA O A NG

(3.12)

Using in (3.12) relations (3.9), (3.10), we obtain the decomposition of the exterior
derivative d into eight operators:

d=di00+dz2,-10+d1,—11+do10+d2o-1+di1-1+do2-1+doo1, (3.13)
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with
oyt QPOT(M) = QPFTEBIHY() a4 By =1, a,B,7€{£1,0,2}.

The local form of these operators could be determined by a straightforward com-
putation. For example,

1
_ _ 1\ptqsuu...ur, I A V1 Ur41
d07071w = (q — 1)'( 1) 6v1v2...vr+15uw1Ade AW ANGP NN OTTHL
d 1 101...0p 5 1 d a1...ax—1bag41...0q Snt T
1,0,0wW = (p_ 1)| j1j2-~~jp+l( iWIAU — 1 byby...bg WIAUObL; " —

T k=1
1 < A
- > wravburis e I (Ot A+ ta? Out]))daTt A A daIr AWt A Lwba
| —~

NG A NG

(=1)pta Ji1.dp
(p+Dl(g — D)!(r + 1)1 T2Ipi

uul...urvl

di—1,1w = Ur1WIaby . by UOut]

da? A AdzIett AP A A WP AU A LA QU

Hence, the restrictions to Q79" (M) of operators from (3.11) are:
do?f |QPW(M) =do1,0 + do2,—1+doo, (3.14)

F F.
diglararan = dioo +di—11 +dii—1,  dy'ylararr) = do,—1,0 + d2,0,-1,
32| =d d (3.15)
01 lQrar (M) = A1,-1,1 + d0,0,1, .
472 =d d d d32 =d d d
10|Qmw(M) = d1,0,0+do,1,0+d2-1,0, 2,_1|mw(M) =da11,-1+do2,-1+d2o,—1.

It is well-known, [7] that dgll, dgf are the exterior derivatives on the leaves of
(M, ) and (M, Fs), respectively. They are satisfying

(dgll)Q =0, (d0912)2 =0,

which give us
dgo1 =0. (3.16)

Moreover, for every w € QP27 (M), we have
d?w = dog w(mod dat, ..., dz™), (3.17)

dgl?_lw = dp2,—1w(mod dzt, ..., dz?), dr{gw = dp1,—1w(mod det, ..., dz?),

so in every leaf £ of 1, relation (3.14) is exactly the decomposition of the exterior
derivative dgll of foliated manifold (£, Fa|z).
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4 Two de Rham Cohomology groups associated to
do,01

The relation (3.16) gives the semiexact sequence of shaves

] d d d

0,0,1 0,0,1 0,0,1 _
0 — GPe 2 Qpa0 T2 grat TR TR opan—az o (4.1)

where QP?7 is the sheaf of germs of (p, ¢, r)-forms, ®P? is the sheaf of germs of
(p, ¢,0)-forms w which are satisfying do 1w = 0 and 7 is the canonical inclusion.

In this section we shall prove that operator do o, satisfies a Poincaré type
lemma, in the case p = 0 or ¢ = 0, using the similar property of the leafwise
derivatives dgll, dgf.

PROPOSITION 4.1. For every w € Q%47 (M) such that dpp1w = 0 in a neigh-
borhood U, there is § € Q4" =Y(U) with w = do 16 in U.

Proof. Let w be a (0, ¢,r) form with dp 1w =0 in U. Using Remark 3.1 we have
w € QF (M) and by (3.17) it results

dgfw =0(mod dx',...,dz?™).
Since dj? satisfies a Poincaré type lemma, [7], there is 6 € Qiq;’;_l(U) with

W= dgf@(mod det, ..., dz?),

inU.
By Remark 3.1, there are s, t naturals such that s+t = ¢ and § € Q%" ~1(U).
From relation (3.15) we have

w = dl,—1,19 + do,o,le(mod d.ilfl, . dl’ql). (4.2)

Taking into account that w € QY47 (M), dy 1.0 € QTHL(U), doo.0 €
Q5L (U), if we identify the (0, g, 7)-form from the both members of (4.4), it results
s =0 and, in U,

w = d070719.

O]

We denote by Z%47(M) the space of forms w € Q%¢"(M), with dogiw = 0
and we call the de Rham (0, q,r)-cohomology group of M the quotient group
ZO,q,r(M)
do,0,1Q007 =1 (M)

HY%™ (M) =
Proposition 4.1 says that the sequence

; do,0,1 do,0,1 do,0,1 —
0 — @04 B 000 D81 o1 gt gt Gogn-—g _, o (4.3)

is a fine resolution of the sheaf ®>4. Using now a well-known theorem of algebraic
topology, (see [5] Theorem 3.5, p205), we obtain:
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THEOREM 4.1. The de Rham (0, q,r)-cohomology group of M is isomorphic
with the r-dimenstonal Cech cohomology group of M, with coefficients in the sheaf
(I)O,q‘.

HY" (M) ~ H"(M, ®%9).

REMARK 4.1. 1. By the above theorem, H*%"(M) is a topological invariant
of the manifold M.
2. Ones can see that the restriction of the sequence (4.3) to a leaf L of the

foliation F1 is a fine resolution of the sheaf of germs of basic q-forms in the foliated
manifold (£,F2).

In order to find another topological invariant of (M, JF1,JF3), let ®PY be the
sheaf of germs of (p,0,0)-forms w with dgo 1w = 0.

PROPOSITION 4.2. For every w € QPOT(M) such that dyow = 0 in a neigh-
borhood U, there is 6 € QPO"=YU) with w = do 16 in U.

Proof. Let w be a (p,0,r) form with dygiw = 0 in U. Every w € QP%" belongs
also to Q" (M), (see Remark 3.1). By (3.14) we have

F
dyiw = do,1,0w + do2,—1w + doo,1w,

SO we can see
Fro=0 d q1+1 q2
oiw = 0(mod W™, .., W),

Since dgll satisfies a Poincaré type lemma, [7], there is 6 € Q?I_I(U ) with
W= dgllﬁ(mod Wit W),

inU.
By Remark 3.1, there are s,¢ naturals such that s+t = r—1 and § € QP5!(U).
From relation (3.14) we have

w = d071709 + d0,27_19 + d070,16(m0d w(“H, ...,qu).

Taking into account that w € QPO (M), do 1,00 € QP5THU), dyo,—10 € QPsT2I-L(T)
and dpo10 € QPSTL(U), if we identify the (p,0,r)-components from the both
members, it results s = 0 and, in U,

w =dpp,10(mod wh Tt ey wT?).

We obtain w = dpo,10 + Zgiql L1 Bi A w'. Taking again into account that w is a
(p,0,7)-form and 6§ is a (p,0,r — 1)-form, it results w = dp 16 in U. O

We denote by ZP0"(M) the space of forms w € QP07 (M), with dogiw = 0
and we call the de Rham (p, 0, 1)-cohomology group of M the quotient group

zP0r (M)

HPOT (M) = :
(M) do,0,1 QP01 (M)
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Proposition 4.2 says that the sequence

. do,0,1 do,o,1 do,0,1 —
0 — or0 L P00 280 POl TS TR qpon—a () (4.4)

is a fine resolution of the sheaf ®°. Using now the same well-known theorem of
algebraic topology, (see [5] Theorem 3.5, p205), we obtain:

THEOREM 4.2. The de Rham (p,0,r)-cohomology group of M is isomorphic
with the r-dimensional Cech cohomology group of M, with coefficients in the sheaf
PO
HPOT (M) ~ H" (M, ®P0).

REMARK 4.2. Ones can see that HP*" (M) is a subgroup of the de Rham (p,r)-
cohomology group of (M,F3), since ZPOT (M) C Zg’;(M) and the inclusion map
iy QPO (M) — Qg;(M) satisfies iy o dp o1 = dgf 0 fp_1.

Indeed, for w € ZPO" (M), we have w € Z5' (M) and d3?w = dogaw, since
d1,—11 is not defined on QPOT(M). For any 0 € QPO"1(M),

ir(do0.160) = do .10 = d?6.
The map 1, induces a group morphism
irp t HPOT(M) = HE (M), ir[w] = [in(W)]gy,  VIw] € HPOT(M).

This morphism is injective because for every [w], [\] € HPO" (M) such that i,(w) —
ir(A) = dgf@ for some 6 € QPT=Y(M), it reults

w—A=dyo10+dy, 1.0,
which gives 0 € QPOT=Y(M) and w — X\ = dp0.10.

REMARK 4.3. The cohomology group H®%"(M) is not included in H (M)

because for w € ZO"”(M), we have dglzw = dy,—1,1w, since dy,—1,1 s defined on
Q0@ (M).

5 The case of Finsler manifolds

Let (M, F) be a n-dimensional Finsler manifold and G be the Sasaki-Finsler
metric on its slit tangent manifold TM°. The vertical bundle VI M° of TM?Y is
the tangent (structural) bundle to vertical foliation Fy, determined by the fibers of
7w TM® — M. If (2, yz)l:ﬁ are local coordinates on 7MY, then VT MY is locally
spanned by {8%1}1 A canonical transversal (also called horizontal) distribution
is constructed, [1], using a nonlinear connection G, so there exists on TM? a n

distribution HT MY locally spanned by the vector fields

S _ 0 59
szt Oxt Loy’

(V)i =1, n. (5.5)
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The Riemannian metric G on TMVY is satisfying

o 0 o 0 o 0
-, < ) = ~ A ) — Yig G ~ oy A o :0, V ., .. 56
(55(]7“’(5(17]) (8y27ay‘]) g] (6.'1}7“ ay]) ( )ZJ ( )
The local basis {6%“ 8%1}1 is called adapted to vertical foliation Fy, and we have
the decomposition

TTM® = HTM° @ VT M. (5.7)
Now, let Z be the vertical Liouville vector field on TM?©,

0

Z: ii.
Yo

(5.8)
which is globally defined, and let L be the space of line fields spanned by Z. We
call this space the Liouwville distribution on TM°. The complementary orthogonal
distributions to L in VIT'M® and TTM? are denoted by L’ and L, respectively.
It is proved, [1], that the both distributions L' and L* are integrable and we also

have the decomposition
VIM'=L"o L. (5.9)

Hence we can identify the (n,2n — 1) subfoliation (VT MY, L) of the Rieman-
nian manifold (TM°, G). Here, F| = VI M°, QF, = HTM°, F, = L, QF, = L,
QFy =L

As we already seen, the local basis in TTM? is { chi, 821'

The dual cobasis is {dz?, §y’ =

} =T+ Where the

vertical bundle is locally spanned by { 821.}
dy’ + Gidz’}.
We consider the vertical vector fields X; = 8%2. —t;Z, with G(X;,Z) = 0,Vi =

1,n. Since G(Z,Z) = F?, we have t; = %gﬁ. A local basis adapted to decompo-

sition (5.9) is {04, Z},—777 271, Where {0, },—n7727—1 are (n — 1) independent
vector fields from { X7, X»,..., Xy, }. So, we obtained the local basis {%, 0q, Z} in
TTM?, adapted to subfoliation (VT M?, L). The vertical global 1-form 6y = t;5y°*
satisfies 0p(Z) = 1 and 0y(d,) = 0, so we have the dual cobasis {dz?,w®, 6p}. The

exact sequence (4.3) becomes

i=1,n"

; do,0,1 do,0,1
O — (b07q _Z> Q07Q70 = QO7Q71 — O7 (5.10)

and ®°9 is the sheaf of germs of (0,4, 0)-forms w = Jar.aqw™ AW AL Aw® with
far..ag € QU(TMY) such that Z fa,. .4, = 0.
The sequence (4.4) becomes

; do,0,1 do,g,1
0 s 50 % qro0 1081 gpoa gt (.11)

where ®P0 is the sheaf of germs of (p,0,0)-forms w = filiQ._.ipdmz‘l Adz2 A ... Ndx»
with fiji,..q, € QU(TMP) such that Zf; .., = 0.
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