EQUATION GEODESIC IN A TWO-DIMENSIONAL FINSLER SPACE WITH SPECIAL (α, β)-METRIC

V. K. CHAUBEY ${ }^{1}$, Arunima MISHRA ${ }^{2}$ and U. P. SINGH ${ }^{3}$

Abstract

In the year 1997 and 1998 Matsumoto And Park obtained the equations of geodesic in a two-dimensional Randers, Kropina and Matsumoto space. In 2011, Chaubey, Prasad and Tripathi obtained the equation of geodesic for a more general (α, β)-metric as compared to Randers, Kropina and Matsumoto mertric. In the continuation of the above paper, here we have found out the equation of geodesic for the well known metric $L=\alpha+\frac{\beta^{2}}{\alpha}, L=\frac{\beta^{2}}{\alpha}$ and special Matsumoto metric $L=L=\frac{\beta^{2}}{(\beta-\alpha)}$. The main results are illustrated in the different figures.

2000 Mathematics Subject Classification: 53B20, 53B40, 53C60.
Key words: (α, β)-metric, geodesic, two-dimensional Finsler space.

1 Indroduction

In 1997 Matsumoto and Park [6] obtained the equation of geodesic in twodimensional Finsler spaces with the Randers metric $(L=\alpha+\beta)$ and the Kropina metric ($L=\frac{\alpha^{2}}{\beta}$) whereas in 1998 they [7] obtained the equation of geodesic in twodimensional Finsler space with the slope metrics, i.e. Matsumoto metric given by $\left(L=\frac{\alpha^{2}}{(\alpha-\beta)}\right)$. In 2011 Chaubey, Prasad and Tripathi [2] obtained the equation of geodesic for a more general (α, β)-metric $\left(L=\frac{k_{1} \alpha^{2}+k_{2} \alpha \beta+k_{3} \beta^{2}}{a_{1} \alpha+a_{2} \beta}\right.$ where $a^{\prime} s$ and $k^{\prime} s$ are constants) by considering β as an infinitesimal of degree one and neglecting infinitesimals of degree more or equal to two they obtained the geodesics of twodimensional Finsler space in the form $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$, where (x, y) are co-ordinate of two-dimensional Finsler space.

[^0]In the present paper we have shown that under the same conditions, the geodesic of the two-dimensional space with following metrics:

$$
\begin{gather*}
L=\alpha+\frac{\beta^{2}}{\alpha} \tag{1}\\
L=\frac{\beta^{2}}{\alpha} \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
L=\frac{\beta^{2}}{(\beta-\alpha)} \tag{3}
\end{equation*}
$$

All the above three metrics are studied in detail by the authors of the papers [1, 3, 4, 5].

2 Preliminaries

We consider a two-dimensional Finsler space $F^{2}=\left(M^{2}, L(x, y)\right)$ with the (α, β)-metric $[6,7]$ where $\alpha=\sqrt{a_{i j}(x) x^{i} x^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is one form on M^{2}. The space $F^{2}=\left(M^{2}, \alpha\right)$ is said to be a Riemannian space associated to F^{2}.

Matsumoto and Park [6, 7] constructed the problem on the following consideration :
(I). The underlying manifold M^{2} is thought of as a surface S of the ordinary 3 -space with an orthonormal co-ordinate system $X^{\alpha}, \alpha=1,2,3$, which by the parametric equation $X^{\alpha}=X^{\alpha}\left(x^{1}, x^{2}\right)$. Then S is equipped with the induced Riemannian metric α. Thus two tangent vector fields $B_{i}, i=1,2$, are given with the components $B_{i}^{\alpha}=\frac{\partial X^{\alpha}}{\partial x^{i}}$ and then $a_{i j}=\sum_{\alpha} B_{i}^{\alpha} B_{j}^{\alpha}$. Let $N=N^{\alpha}$ be the unit normal vector to S.

An isothermal co-ordinate system $x^{i}=(x, y)$ in S may be referred in which α is of the form $\alpha=a E$, where $a=a(x, y)$ is a positive-valued function and $E=\sqrt{\dot{x}^{2}+\dot{y}^{2}}$. Then the Christoffel symbols $\gamma_{j k}^{i}(x, y)$ of S in x^{i} are given by $\left(\gamma_{11}^{1}, \gamma_{12}^{1}, \gamma_{22}^{1} ; \gamma_{11}^{2}, \gamma_{12}^{2}, \gamma_{22}^{2}\right)=\left(\frac{a_{x}}{a}, \frac{a_{y}}{a},-\frac{a_{x}}{a},-\frac{a_{y}}{a}, \frac{a_{x}}{a}, \frac{a_{y}}{a}\right)$. We shall denote by $(;)$ the covariant differentiation with respect to Christoffel symbols in R^{2}.
(II). Let $B=B^{\alpha}$ be a constant vector field in the ambient 3 -space and put

$$
\begin{equation*}
B=b^{i} B_{i}+b^{0} N \tag{4}
\end{equation*}
$$

along S . Then the tangential component of B gives the linear form

$$
\begin{equation*}
\beta=b_{i} \dot{x}^{i}, \quad b_{i}=a_{i j} b^{j} \tag{5}
\end{equation*}
$$

The Gauss-Weingarten derivation formulae lead from (4) to

Equation geodesic in a two-dimensional Finsler space

$$
B_{; j}=\left(b_{; j}^{i} B_{i}+b^{i} H_{i j} N\right)+\left(b_{;}^{0} N-b^{0} H_{j}^{i} B_{i}\right)
$$

where $H_{i j}$ is the second fundamental tensor of S and $H_{i j}=a_{i k} H_{j}^{k}$. From $B_{; j}=0$, we get $b_{; j}^{i}=b^{0} H_{j}^{i}$, that is

$$
\begin{equation*}
b_{i, j}=b^{0} H_{i j} \tag{6}
\end{equation*}
$$

Consequently we have $b_{i, j}=b_{j ; i}$ that is $b_{1 y}=b_{2 x}$ and hence b_{i} is a gradient vector field in S .
(III.) The linear form β was originally to be induced one by the Finslerian surface S due to the earth's gravity [6]. Hence, it is assumed here that the constant vector field B is parallel to the X^{3}-axis, i.e. $B^{a}=(0,0,-G), G=$ const. >0. Therefore (4) gives $G^{2}=a_{i j} b^{i} b^{j}+\left(b^{0}\right)^{2}$. Since $\left(a_{11}, a_{12}, a_{22}\right)=\left(a^{2}, 0, a^{2}\right)$, we have

$$
\left(\frac{G}{a}\right)^{2}=\left(b^{1}\right)^{2}+\left(b^{2}\right)^{2}+\left(\frac{b^{0}}{a}\right)^{2}
$$

We shall regard the quantity $\frac{G}{a}$ as an infinitesimal of degree one, and neglect the infinitesimal of degree more or equal to two. It is natural from the above that b^{1}, b^{2} and $\frac{b^{0}}{a}$ are also those of degree one. Further (6) shows that $\frac{\beta_{; 0}}{a}=\frac{b_{i ; j} \dot{x}^{i} \dot{x}^{j}}{a}$ may be regarded as an infinitesimal of degree one. Consequently

$$
\begin{equation*}
\lambda=\frac{\beta}{a^{2}}, \quad \mu=\frac{\gamma}{a^{2}}, \quad \nu=\frac{\beta_{; 0}}{a} \tag{7}
\end{equation*}
$$

are infinitesimals of degree one where $\gamma=b_{1} \dot{y}-b_{2} \dot{x}$.
Thus we have summarized all the above three conditions as:
I. α is the induced Riemannian metric in a surface S and, in particular $\alpha=a E$.
II. β is the linear form in \dot{x}^{i}, induced from a constant vector field ($0,0,-\mathrm{G}$) by (4) and (5).
III. λ, μ and ν of (7) are regarded as infinitesimals of degree one and infinitesimals of degree more or equal to two are neglected.

3 Geodesics of the special (α, β)-metric

Matsumoto and Park [6] obtained the differential equation of the geodesic in an isothermal co-ordinate system $\left(x^{i}\right)=(x, y)$ for the (α, β)-metric is as follows:

$$
\begin{equation*}
\left(L_{\alpha}+a E w \gamma^{2}\right) R i(C)-\beta_{; 0} a^{2} w \gamma-L_{\beta}\left(b_{1} y-b_{2} x\right)=0 \tag{8}
\end{equation*}
$$

where $w=\frac{L_{\alpha \alpha}}{\beta^{2}}=-\frac{L_{\alpha \beta}}{\alpha \beta}=\frac{L_{\beta \beta}}{\alpha^{2}}$ and

$$
R i(C)=\frac{a(\dot{x} \dot{x}-\dot{y} \ddot{x})}{E^{3}}+\frac{\left(a_{x} \dot{y}-a_{y} \dot{x}\right)}{E}
$$

It is remarked that the equation $\operatorname{Ri}(\mathrm{C})=0$ gives the geodesic of the associated Riemannian space.

Now according to the above contribution, equation (8) may be written for the metric $L=\alpha+\frac{\beta^{2}}{\alpha}$ in the form

$$
\left(1-\frac{a^{2} \lambda^{2}}{E^{2}}+\frac{2 a^{2} \mu^{2}}{E^{2}}\right) R i(C)=\frac{2 a^{2} \mu \nu}{E^{3}}
$$

Let us neglect the infinitesimals of degree more or equal to two. Then we have

$$
\begin{equation*}
\operatorname{Ri}(C)=\frac{2 a^{2} \mu \nu}{E^{3}} \tag{9}
\end{equation*}
$$

Therefore, on our construction, we obtain the approximate equation of geodesics in the form

$$
\begin{equation*}
y^{\prime \prime}=\frac{2 \beta_{; 0}^{*} \gamma^{*}}{a^{2}}-\frac{E^{* 2}\left(a_{x} y^{\prime}-a_{y}\right)}{a} \tag{10}
\end{equation*}
$$

where

$$
\begin{array}{rlr}
y^{\prime} & =\frac{d y}{d x}, \quad E^{*}=\sqrt{1+y^{\prime 2}}, & \gamma^{*}=b_{1} y^{\prime}-b_{2} \tag{11}\\
\beta_{; 0}^{*} & =b_{1 ; 1}+\left(b_{1 ; 2}+b_{2 ; 1}\right) y^{\prime}+b_{2 ; 2}\left(y^{\prime}\right)^{2}
\end{array}
$$

Next, if we take the metric (2) then the differential equation (8) of geodesic is written as

$$
\left(-\frac{a^{2} \lambda^{2}}{E^{2}}+\frac{2 a^{2} \mu^{2}}{E^{2}}\right) R i(C)=\frac{a^{2} \mu \nu}{E^{3}}
$$

Let us neglect the infinitesimals of degree more or equal to two. Then we have

$$
\begin{equation*}
\operatorname{Ri}(C)=\frac{\mu \nu}{E\left(2 \mu^{2}-\lambda^{2}\right)} \tag{12}
\end{equation*}
$$

Therefore on our construction, we obtain the approximate equation of geodesics in the form

$$
\begin{equation*}
y^{\prime \prime}=\frac{\beta_{; 0}^{*} \gamma^{*} E^{* 2}}{\left(2 b_{1}^{2}-b_{2}^{2}\right)\left(y^{\prime}\right)^{2}+\left(2 b_{2}^{2}-b_{1}^{2}\right)-6 b_{1} b_{2} y^{\prime}}-\frac{E^{* 2}\left(a_{x} y^{\prime}-a_{y}\right)}{a} \tag{13}
\end{equation*}
$$

where $\beta_{; 0}^{*}, \gamma^{*}, E^{*}$ and y^{\prime} are given in 11.
Next, if we take the metric (3) then the differential equation (8) of geodesic is written as

$$
\left(\lambda^{2}\left(1-\frac{a \lambda}{E}\right)+2 \mu^{2}\right) R i(C)=\frac{\mu \nu}{E}
$$

Let us neglect the infinitesimals of degree more than two. Then we have

$$
\begin{equation*}
\operatorname{Ri}(C)=\frac{\mu \nu}{E\left(2 \mu^{2}+\lambda^{2}\right)} \tag{14}
\end{equation*}
$$

Therefore on our construction, we obtain the approximate equation of geodesics in the form

$$
\begin{equation*}
y^{\prime \prime}=\frac{\beta_{i 0}^{*} \gamma^{*} E^{* 2}}{\left(2 b_{1}^{2}+b_{2}^{2}\right)\left(y^{\prime}\right)^{2}+\left(2 b_{2}^{2}+b_{1}^{2}\right)-2 b_{1} b_{2} y^{\prime}}-\frac{E^{* 2}\left(a_{x} y^{\prime}-a_{y}\right)}{a} \tag{15}
\end{equation*}
$$

where $\beta_{; 0}^{*}, \gamma^{*}, E^{*}$ and y^{\prime} are given in 11.

4 Some Examples

In the following we shall use the notation as follows:

$$
\left(X^{a}\right)=(X, Y, Z), \quad\left(x^{i}\right)=(x, y)
$$

Example 1: We consider the circular cylinder $S: X^{2}+Z^{2}=1, \quad Y=y$, which is also written as

$$
S: X=\cos x, \quad Y=y, \quad Z=\sin x
$$

Then we get

$$
\begin{array}{cc}
B_{1}=(-\sin x, 0, \cos x), & B_{2}=(0,1,0), \\
\left(a_{11}, a_{12}, a_{22}\right)=(1,0,1), & \left(b^{1}, b^{2}, b^{0}\right)=(G \cos x, 0, G \sin x)
\end{array}
$$

Consequently we have

$$
\alpha^{2}=d x^{2}+d y^{2}, \quad \beta=-G \cos x d x
$$

Therefore (10) gives the approximate differential equation of geodesic for the metric (1) in the given condition of above example as

$$
\begin{equation*}
y^{\prime \prime}+\tan x y^{\prime}=0 \tag{16}
\end{equation*}
$$

which has the solution

$$
\begin{equation*}
y=A \sin x+B \tag{17}
\end{equation*}
$$

where A and B are constants of integration.

Further from (13) the approximate differential equation of geodesic for the metric (2) in the given condition of Example 1 is given by

$$
\begin{equation*}
y^{\prime \prime}+\tan x \frac{\left(1+y^{\prime 2}\right)}{2 y^{\prime 2}-1}=0 \tag{18}
\end{equation*}
$$

solving the above equation with the help of Mathematica software we have

$$
\begin{equation*}
y=\int_{1}^{x}\left[f_{1}^{-1}\{A+\log (\cos u)\}\right] d u+B \tag{19}
\end{equation*}
$$

where $f_{1}(t)=2 t-3 \tan ^{-1} t$.

Again from (15) the approximate differential equation of geodesic for the metric (3) in the given condition of Example 1 is given by

$$
\begin{equation*}
y^{\prime \prime}+\tan x \frac{\left(1+y^{\prime 2}\right)}{2 y^{\prime 2}+1}=0 \tag{20}
\end{equation*}
$$

solving the above equation with the help of Mathematica software we have

$$
\begin{equation*}
y=\int_{1}^{x}\left[f_{2}^{-1}\{A+\log (\sec u)\}\right] d u+B \tag{21}
\end{equation*}
$$

where $f_{2}(t)=2 t-\tan ^{-1} t$.
Next we are interested in revolution surfaces the axis of which is parallel to the constant vector field B. Such a surface S is given by,

$$
X=g(u) \cos y, \quad Y=g(u) \sin y, \quad Z=f(u)
$$

Denoting (u, y) by $\left(x^{i}\right)$, we have

$$
\begin{gathered}
B_{1}=\left(g^{\prime} \cos y, g^{i} \sin y, f^{\prime}\right), \quad B_{2}=(-g \sin y, g \cos y, 0) \\
N=\frac{\left(-f^{\prime} \cos y,-f^{\prime} \sin y, g^{\prime}\right)}{F}, \quad F=\sqrt{f^{\prime 2}+g^{\prime 2}} \\
\left(a_{11}, a_{12}, a_{22}\right)=\left(F^{2}, 0, G^{2}\right), \quad\left(b^{1}, b^{2}, b^{0}\right)=\left(-\frac{G f^{\prime}}{F}, 0,-\frac{G g^{\prime}}{F}\right) \\
\left(b_{1}, b_{2}\right)=\left(G f^{\prime}, 0\right)
\end{gathered}
$$

Consequently we get

$$
\alpha^{2}=F^{2} d u^{2}+g^{2} d y^{2}, \quad \beta=-G f^{\prime} d u
$$

We need an isothermal co-ordinate system, if we take

$$
\begin{equation*}
x=\int \frac{F}{g} d u \tag{22}
\end{equation*}
$$

Then we obtain

$$
\begin{equation*}
\alpha^{2}=g(u)^{2}\left(d x^{2}+d y^{2}\right), \quad \beta=-G \frac{f^{\prime} g}{F} \tag{23}
\end{equation*}
$$

Example 2: We shall deal with the sphere, surface of constant curvature +1 : $g(u)=\cos u$ and $f(u)=\sin u$. Then $\mathrm{F}=1$ and (22) gives

$$
x=\int \frac{1}{\cos u} d u=\frac{1}{2} \log \frac{1+\sin u}{1-\sin u}
$$

Then $\frac{1+\sin u}{1-\sin u}=e^{2 x}$ implies $\frac{1}{\cos u}=\cosh u$, hence $d u=\frac{d x}{\cosh x}$. Consequently (23) leads to

$$
\alpha^{2}=\frac{1}{\cosh ^{2} x}\left(d x^{2}+d y^{2}\right), \quad \beta=-\frac{G}{\cosh ^{2} x} d x
$$

Therefore (1) gives the approximate differential equation of geodesics in the form

$$
\begin{equation*}
y^{\prime \prime}=\tanh x\left(1-\frac{2 G^{2}}{\cosh ^{2} x}\right)\left(y^{\prime}+\left(y^{\prime}\right)^{3}\right) \tag{24}
\end{equation*}
$$

The solution of the above equation with the help of Mathematica software is given by

$$
\begin{equation*}
y=\int_{1}^{x} \frac{e^{\frac{4 e^{2 t}}{\left.1+e^{2 t}\right)^{2}}+A-t}\left(1+e^{2 t}\right)}{\sqrt{1-e^{2\left\{\frac{4 e^{2 t}}{\left(1+e^{2 t}\right)^{2}}+A-t+\log \left(1+e^{2 t}\right)\right\}}}} d t \tag{25}
\end{equation*}
$$

Again (2) gives the approximate differential equation of geodesics in the form

$$
\begin{equation*}
y^{\prime \prime}=\tanh x \frac{\left(y^{\prime}-1\right)\left(2 y^{\prime}+1\right)\left(y^{\prime 2}+1\right)}{2 y^{\prime 2}-1} \tag{26}
\end{equation*}
$$

The solution of the above equation with the help of Mathematica software is given by

$$
\begin{equation*}
y=\int_{1}^{x}\left[f_{4}^{-1}\{A+\log (\cosh t)\}\right] d u+B \tag{27}
\end{equation*}
$$

where $f_{4}(t)=\frac{2 \tan ^{-1} u}{10}+\frac{1}{6}(\log (1-u))+\frac{2}{15} \log (1+2 u)-\frac{3}{20} \log \left(1+u^{2}\right)$.
Again (3) gives the approximate differential equation of geodesics in the form

$$
\begin{equation*}
y^{\prime \prime}=\tanh x \frac{\left(y^{\prime}-1\right)\left(2 y^{\prime}+1\right)\left(y^{\prime 2}+1\right)}{2 y^{\prime 2}+1} \tag{28}
\end{equation*}
$$

The solution of the above equation with the help of Mathematica software is given by

$$
\begin{equation*}
y=\int_{1}^{x}\left[f_{5}^{-1}\{A+\log (\cosh t)\}\right] d u+B \tag{29}
\end{equation*}
$$

where $f_{5}(t)=\frac{3 \tan ^{-1} u}{10}+\frac{1}{2}(\log (1-u))+\frac{2}{5} \log (1+2 u)-\frac{1}{20} \log \left(1+u^{2}\right)$.

5 Results and Discussions

On the basis of the above calculations we have following important propositions:

Proposition 1. The solution of equation of the geodesic for the Finsler metric (1) in a circular cylinder $S: X^{2}+Z^{2}=1, Y=y$ is given by equation (17).

Proposition 2. The solution of equation of the geodesic for the Finsler metric (2) in a circular cylinder $S: X^{2}+Z^{2}=1, Y=y$ is given by equation (19).

Proposition 3. The solution of equation of the geodesic for the Finsler metric (3) in a circular cylinder $S: X^{2}+Z^{2}=1, Y=y$ is given by equation (21).

Proposition 4. The solution of equation of the geodesic for the Finsler metric (1) in a sphere, surface of constant curvature $+1: g(u)=\cos u$ and $f(u)=\sin u$ is given by equation (25).

Proposition 5. The solution of equation of the geodesic for the Finsler metric (2) in a sphere, surface of constant curvature $+1: g(u)=\cos u$ and $f(u)=\sin u$ is given by equation (27).

Proposition 6. The solution of equation of the geodesic for the Finsler metric (3) in a sphere, surface of constant curvature $+1: g(u)=\cos u$ and $f(u)=\sin u$ is given by equation (29).

As it can be observed from all of the above solutions of equation of geodesics in Propositions 5.1 to 5.6 , the nature of the solution is governed a lot by the first constant of integration A, whereas the second constant of integration B is just a shifting parameter. Therefore, the behavior of the curves has been plotted for different values of A and taking $\mathrm{B}=0$ without a loss of generality. As the analytic solutions in Propositions 5.1 to 5.6 are complex in nature, the plots have been drawn using Mathematica 7.0.

Fig. 1 The solution of the equation of geodesic for the Finsler metric (1) in a circular cylinder $S: X^{2}+Z^{2}=1, \quad Y=y$ behaves like sine curve.

Fig. 2 The solution of the equation of geodesic for the Finsler metric (2) in a circular cylinder $S: X^{2}+Z^{2}=1, \quad Y=y$ behaves like the above figure.

Fig. 3 The solution of the equation of geodesic for the Finsler metric (3) in a circular cylinder $S: X^{2}+Z^{2}=1, \quad Y=y$ behaves like the above figure.

Fig. 4 The solution of the equation of geodesic for the Finsler metric (1) in the sphere, surface of constant curvature $+1: g(u)=\cos u$ and $f(u)=\sin u$ and at $\mathrm{G}=1$, behaves like the above figure.

Fig. 5 The solution of the equation of geodesic for the Finsler metric (2) in the sphere, surface of constant curvature $+1: g(u)=\cos u$ and $f(u)=\sin u$ behaves like the above figure.

Fig. 6 The solution of the equation of geodesic for the Finsler metric (3) in the sphere, surface of constant curvature $+1: g(u)=\cos u$ and $f(u)=\sin u$ behaves like the above figure.

References

[1] Antonelli, P. L., Ingarden, R. S. and Matsumoto, M.: The theory of sprays and Finsler spaces with applications in physics and biology, Kluwer Academic Publishers, Dordrecht, Boston, London, 1993.
[2] Chaubey, V. K., Prasad, B. N. and Tripathi, D. D.: Equations of geodesic for a (α, β)-metric in a two-dimensional Finsler space, J. Math. Comput. Sci., 3 (2013), No. 3, 863-872.
[3] Mishra, Padmdeo: A study of inverse problem in special Finsler spaces, Ph. D. thesis, D.D.U. Gorakhpur University, Gorakhpur, India 2007, 90-106.
[4] Matsumoto, M.: A slope of mountain is a Finsler surface with respect to a time measure, J. Math. Kyoto Univ., 29, (1989), 17-25.
[5] Matsumoto, M.: Foundation of Finsler geometry and special Finsler spaces, Kaisesisha Press, Otsu, Japan, 1986.
[6] Matsumoto, M. and Park, H. S.: Equations of geodesics in two-dimensional Finsler spaces with (α, β-metric, Rev. Roum. Pures. Appl., 42, (1997), 787793.
[7] Matsumoto, M. and Park, H. S.: Equations of geodesics in two-dimensional Finsler spaces with (α, β)-metric-II, Tensor, N. S., 60, (1998), 89-93.

[^0]: ${ }^{1}$ Department of Applied Sciences, Ansal Technical Campus, Lucknow (U.P.)-226030, INDIA, e-mail: vkcoct@gmail.com
 ${ }^{2}$ Department of Mathematics and Statistics, $D D U$ Gorakhpur University, Gorakhpur (U.P.)273009, INDIA, e-mail: arunima16oct@hotmail.com
 ${ }^{3}$ Department of Applied Sciences, Ansal Technical Campus, Lucknow (U.P.)-226030, INDIA, e-mail: upsingh@live.in

