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EQUATION GEODESIC IN A TWO-DIMENSIONAL
FINSLER SPACE WITH SPECIAL (α, β)-METRIC

V. K. CHAUBEY1, Arunima MISHRA2 and U. P. SINGH3

Abstract

In the year 1997 and 1998 Matsumoto And Park obtained the equations
of geodesic in a two-dimensional Randers, Kropina and Matsumoto space. In
2011, Chaubey, Prasad and Tripathi obtained the equation of geodesic for a
more general (α, β)-metric as compared to Randers, Kropina and Matsumoto
mertric. In the continuation of the above paper, here we have found out the

equation of geodesic for the well known metric L = α + β2

α , L = β2

α and

special Matsumoto metric L = L = β2

(β−α) . The main results are illustrated

in the different figures.
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1 Indroduction

In 1997 Matsumoto and Park [6] obtained the equation of geodesic in two-
dimensional Finsler spaces with the Randers metric (L = α+β) and the Kropina

metric (L = α2

β ) whereas in 1998 they [7] obtained the equation of geodesic in two-
dimensional Finsler space with the slope metrics, i.e. Matsumoto metric given by
(L = α2

(α−β)). In 2011 Chaubey, Prasad and Tripathi [2] obtained the equation of

geodesic for a more general (α, β)-metric (L = k1α2+k2αβ+k3β2

a1α+a2β
where a′s and k′s

are constants) by considering β as an infinitesimal of degree one and neglecting
infinitesimals of degree more or equal to two they obtained the geodesics of two-
dimensional Finsler space in the form y

′′
= f(x, y, y

′
), where (x, y) are co-ordinate

of two-dimensional Finsler space.

1Department of Applied Sciences, Ansal Technical Campus, Lucknow (U.P.)-226030, INDIA,
e-mail: vkcoct@gmail.com

2Department of Mathematics and Statistics, DDU Gorakhpur University, Gorakhpur (U.P.)-
273009, INDIA, e-mail: arunima16oct@hotmail.com

3Department of Applied Sciences, Ansal Technical Campus, Lucknow (U.P.)-226030, INDIA,
e-mail: upsingh@live.in



2 V. K. Chaubey, Arunima Mishra and U. P. Singh

In the present paper we have shown that under the same conditions, the geodesic
of the two-dimensional space with following metrics:

L = α+
β2

α
(1)

L =
β2

α
(2)

and

L =
β2

(β − α)
(3)

All the above three metrics are studied in detail by the authors of the papers
[1, 3, 4, 5].

2 Preliminaries

We consider a two-dimensional Finsler space F 2 = (M2, L(x, y)) with the
(α, β)-metric [6, 7] where α =

√
aij(x)xixj is a Riemannian metric and β = bi(x)yi

is one form on M2. The space F 2 = (M2, α) is said to be a Riemannian space
associated to F 2.

Matsumoto and Park [6, 7] constructed the problem on the following consid-
eration :

(I). The underlying manifold M2 is thought of as a surface S of the ordinary
3-space with an orthonormal co-ordinate system Xα, α = 1, 2, 3, which by the
parametric equation Xα = Xα(x1, x2). Then S is equipped with the induced
Riemannian metric α. Thus two tangent vector fields Bi, i = 1, 2, are given with
the components Bα

i = ∂Xα

∂xi
and then aij =

∑
αB

α
i B

α
j . Let N = Nα be the unit

normal vector to S.

An isothermal co-ordinate system xi = (x, y) in S may be referred in which
α is of the form α = aE, where a = a(x, y) is a positive-valued function and
E =

√
ẋ2 + ẏ2. Then the Christoffel symbols γijk(x, y) of S in xi are given by

(γ111, γ
1
12, γ

1
22; γ

2
11, γ

2
12, γ

2
22)= (axa ,

ay
a ,−

ax
a ,−

ay
a ,

ax
a ,

ay
a ). We shall denote by (; ) the

covariant differentiation with respect to Christoffel symbols in R2.

(II). Let B = Bα be a constant vector field in the ambient 3-space and put

B = biBi + b0N (4)

along S. Then the tangential component of B gives the linear form

β = biẋ
i, bi = aijb

j (5)

The Gauss-Weingarten derivation formulae lead from (4) to
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B;j = (bi;jBi + biHijN) + (b0;N − b0H i
jBi)

where Hij is the second fundamental tensor of S and Hij = aikH
k
j . From B;j = 0,

we get bi;j = b0H i
j , that is

bi;j = b0Hij (6)

Consequently we have bi;j = bj;i that is b1y = b2x and hence bi is a gradient vector
field in S.

(III.) The linear form β was originally to be induced one by the Finslerian
surface S due to the earth’s gravity [6]. Hence, it is assumed here that the constant
vector field B is parallel to the X3-axis, i.e. Ba = (0, 0,−G), G = const. > 0.
Therefore (4) gives G2 = aijb

ibj + (b0)2. Since (a11, a12, a22) = (a2, 0, a2), we have

(Ga )2 = (b1)2 + (b2)2 + ( b
0

a )2

We shall regard the quantity G
a as an infinitesimal of degree one, and neglect the

infinitesimal of degree more or equal to two. It is natural from the above that

b1, b2 and b0

a are also those of degree one. Further (6) shows that
β;0
a =

bi;j ẋ
iẋj

a
may be regarded as an infinitesimal of degree one. Consequently

λ =
β

a2
, µ =

γ

a2
, ν =

β;0
a

(7)

are infinitesimals of degree one where γ = b1ẏ − b2ẋ.

Thus we have summarized all the above three conditions as:

I. α is the induced Riemannian metric in a surface S and, in particular α = aE.

II. β is the linear form in ẋi, induced from a constant vector field (0, 0, -G)
by (4) and (5).

III. λ, µ and ν of (7) are regarded as infinitesimals of degree one and infinites-
imals of degree more or equal to two are neglected.

3 Geodesics of the special (α, β)-metric

Matsumoto and Park [6] obtained the differential equation of the geodesic in
an isothermal co-ordinate system (xi) = (x, y) for the (α, β)-metric is as follows:

(Lα + aEwγ2)Ri(C)− β;0a2wγ − Lβ(b1y − b2x) = 0 (8)

where w = Lαα
β2 = −Lαβ

αβ =
Lββ
α2 and

Ri(C) = a(ẋÿ−ẏẍ)
E3 +

(axẏ−ayẋ)
E
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It is remarked that the equation Ri(C)=0 gives the geodesic of the associated
Riemannian space.

Now according to the above contribution, equation (8) may be written for the

metric L = α+ β2

α in the form

(1− a2λ2

E2 + 2a2µ2

E2 )Ri(C) = 2a2µν
E3

Let us neglect the infinitesimals of degree more or equal to two. Then we have

Ri(C) =
2a2µν

E3
(9)

Therefore, on our construction, we obtain the approximate equation of geodesics
in the form

y
′′

=
2β∗;0γ

∗

a2
− E∗2(axy

′ − ay)
a

(10)

where

y
′

=
dy

dx
, E∗ =

√
1 + y′2, γ∗ = b1y

′ − b2 (11)

β∗;0 = b1;1 + (b1;2 + b2;1)y
′
+ b2;2(y

′
)2

Next, if we take the metric (2) then the differential equation (8) of geodesic is
written as

(−a2λ2

E2 + 2a2µ2

E2 )Ri(C) = a2µν
E3

Let us neglect the infinitesimals of degree more or equal to two. Then we have

Ri(C) =
µν

E(2µ2 − λ2)
(12)

Therefore on our construction, we obtain the approximate equation of geodesics
in the form

y
′′

=
β∗;0γ

∗E∗2

(2b21 − b22)(y
′)2 + (2b22 − b21)− 6b1b2y

′ −
E∗2(axy

′ − ay)
a

(13)

where β∗;0, γ
∗, E∗ and y

′
are given in 11.

Next, if we take the metric (3) then the differential equation (8) of geodesic is
written as

(λ2(1− aλ
E ) + 2µ2)Ri(C) = µν

E

Let us neglect the infinitesimals of degree more than two. Then we have

Ri(C) =
µν

E(2µ2 + λ2)
(14)

Therefore on our construction, we obtain the approximate equation of geodesics
in the form

y
′′

=
β∗;0γ

∗E∗2

(2b21 + b22)(y
′)2 + (2b22 + b21)− 2b1b2y

′ −
E∗2(axy

′ − ay)
a

(15)

where β∗;0, γ
∗, E∗ and y

′
are given in 11.
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4 Some Examples

In the following we shall use the notation as follows:

(Xa) = (X,Y, Z), (xi) = (x, y)

Example 1: We consider the circular cylinder S : X2 +Z2 = 1, Y = y, which
is also written as

S : X = cosx, Y = y, Z = sinx

Then we get

B1 = (− sinx, 0, cosx), B2 = (0, 1, 0), N = (cosx, 0, sinx)

(a11, a12, a22) = (1, 0, 1), (b1, b2, b0) = (G cosx, 0, G sinx)

Consequently we have

α2 = dx2 + dy2, β = −G cosx dx

Therefore (10) gives the approximate differential equation of geodesic for the met-
ric (1) in the given condition of above example as

y
′′

+ tanx y
′

= 0 (16)

which has the solution

y = A sinx+B (17)

where A and B are constants of integration.

Further from (13) the approximate differential equation of geodesic for the
metric (2) in the given condition of Example 1 is given by

y
′′

+ tanx
(1 + y

′2)

2y′2 − 1
= 0 (18)

solving the above equation with the help of Mathematica software we have

y =

∫ x

1
[f−11 {A+ log(cosu)}]du+B (19)

where f1(t) = 2t− 3 tan−1 t.

Again from (15) the approximate differential equation of geodesic for the met-
ric (3) in the given condition of Example 1 is given by

y
′′

+ tanx
(1 + y

′2)

2y′2 + 1
= 0 (20)
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solving the above equation with the help of Mathematica software we have

y =

∫ x

1
[f−12 {A+ log(secu)}]du+B (21)

where f2(t) = 2t− tan−1 t.

Next we are interested in revolution surfaces the axis of which is parallel to
the constant vector field B. Such a surface S is given by,

X = g(u) cos y, Y = g(u) sin y, Z = f(u)

Denoting (u, y) by (xi), we have

B1 = (g
′
cos y, gi sin y, f

′
), B2 = (−g sin y, g cos y, 0)

N = (−f ′ cos y, −f ′ sin y, g′ )
F , F =

√
f ′2 + g′2

(a11, a12, a22) = (F 2, 0, G2), (b1, b2, b0) = (−Gf
′

F , 0, −Gg
′

F ),

(b1, b2) = (Gf
′
, 0)

Consequently we get

α2 = F 2du2 + g2dy2, β = −Gf ′du

We need an isothermal co-ordinate system, if we take

x =

∫
F

g
du (22)

Then we obtain

α2 = g(u)2(dx2 + dy2), β = −Gf
′
g

F
(23)

Example 2: We shall deal with the sphere, surface of constant curvature +1 :
g(u) = cosu and f(u) = sinu. Then F = 1 and (22) gives

x =
∫

1
cosudu = 1

2 log 1+sinu
1−sinu

Then 1+sinu
1−sinu = e2x implies 1

cosu = coshu, hence du = dx
coshx . Consequently (23)

leads to

α2 = 1
cosh2 x

(dx2 + dy2), β = − G
cosh2 x

dx

Therefore (1) gives the approximate differential equation of geodesics in the form

y
′′

= tanhx(1− 2G2

cosh2 x
)(y
′
+ (y

′
)3) (24)
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The solution of the above equation with the help of Mathematica software is given
by

y =

∫ x

1

e
4e2t

(1+e2t)2
+A−t

(1 + e2t)√
1− e2{

4e2t

(1+e2t)2
+A−t+log(1+e2t)}

dt (25)

Again (2) gives the approximate differential equation of geodesics in the form

y
′′

= tanhx
(y
′ − 1)(2y

′
+ 1)(y

′2 + 1)

2y′2 − 1
(26)

The solution of the above equation with the help of Mathematica software is given
by

y =

∫ x

1
[f−14 {A+ log(cosh t)}]du+B (27)

where f4(t) = 2 tan−1 u
10 + 1

6(log(1− u)) + 2
15 log(1 + 2u)− 3

20 log(1 + u2).

Again (3) gives the approximate differential equation of geodesics in the form

y
′′

= tanhx
(y
′ − 1)(2y

′
+ 1)(y

′2 + 1)

2y′2 + 1
(28)

The solution of the above equation with the help of Mathematica software is given
by

y =

∫ x

1
[f−15 {A+ log(cosh t)}]du+B (29)

where f5(t) = 3 tan−1 u
10 + 1

2(log(1− u)) + 2
5 log(1 + 2u)− 1

20 log(1 + u2).

5 Results and Discussions

On the basis of the above calculations we have following important proposi-
tions:

Proposition 1. The solution of equation of the geodesic for the Finsler metric
(1) in a circular cylinder S : X2 + Z2 = 1, Y = y is given by equation (17).

Proposition 2. The solution of equation of the geodesic for the Finsler metric
(2) in a circular cylinder S : X2 + Z2 = 1, Y = y is given by equation (19).

Proposition 3. The solution of equation of the geodesic for the Finsler metric
(3) in a circular cylinder S : X2 + Z2 = 1, Y = y is given by equation (21).

Proposition 4. The solution of equation of the geodesic for the Finsler metric
(1) in a sphere, surface of constant curvature +1 : g(u) = cosu and f(u) = sinu
is given by equation (25).
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Proposition 5. The solution of equation of the geodesic for the Finsler metric
(2) in a sphere, surface of constant curvature +1 : g(u) = cosu and f(u) = sinu
is given by equation (27).

Proposition 6. The solution of equation of the geodesic for the Finsler metric
(3) in a sphere, surface of constant curvature +1 : g(u) = cosu and f(u) = sinu
is given by equation (29).

As it can be observed from all of the above solutions of equation of geodesics
in Propositions 5.1 to 5.6, the nature of the solution is governed a lot by the first
constant of integration A, whereas the second constant of integration B is just
a shifting parameter. Therefore, the behavior of the curves has been plotted for
different values of A and taking B=0 without a loss of generality. As the analytic
solutions in Propositions 5.1 to 5.6 are complex in nature, the plots have been
drawn using Mathematica 7.0.

Fig. 1 The solution of the equation of geodesic for the Finsler metric (1) in a
circular cylinder S : X2 + Z2 = 1, Y = y behaves like sine curve.
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Fig. 2 The solution of the equation of geodesic for the Finsler metric (2) in a
circular cylinder S : X2 + Z2 = 1, Y = y behaves like the above figure.

Fig. 3 The solution of the equation of geodesic for the Finsler metric (3) in a
circular cylinder S : X2 + Z2 = 1, Y = y behaves like the above figure.
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Fig. 4 The solution of the equation of geodesic for the Finsler metric (1) in the
sphere, surface of constant curvature +1 : g(u) = cosu and f(u) = sinu and at

G=1, behaves like the above figure.

Fig. 5 The solution of the equation of geodesic for the Finsler metric (2) in the
sphere, surface of constant curvature +1 : g(u) = cosu and f(u) = sinu behaves

like the above figure.
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Fig. 6 The solution of the equation of geodesic for the Finsler metric (3) in the
sphere, surface of constant curvature +1 : g(u) = cosu and f(u) = sinu behaves

like the above figure.
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