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ON THE CHEBYSHEV APPROXIMATION OF A FUNCTION
WITH TWO VARIABLES
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Abstract

An approach to find an approximation polynomial of a function with
two variables based on the two dimensional discrete Fourier transform is
presented. The approximation polynomial is expressed through Chebyshev
polynomials. An uniform convergence result is given.
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1 Introduction

The purpose of the paper is to present some aspects about the construction of
an approximation polynomial for a function with two variables. The approxima-
tion polynomial is expressed through Chebyshev polynomials. Throughout this
paper the n-th Chebyshev polynomial is defined as T, (x) = cos (narccosx), x €
[—1,1] and n € N.

Constructing an approximation polynomial of a function with the correspond-
ing applications is the subject of the Chebfun software, presented in details in
[4], [2]. The Chebfun2 part of the software deals with the construction of an
approximation polynomial of a function with two variables. According to [5],
[6], to this end a method based on Gaussian elimination as a low rank function
approximation is used.

In Chebfun the approximation polynomial of a function with one variable is
obtained using one dimensional discrete Fourier transform. The approach of this
paper will use a two dimensional discrete Fourier transform.

In spectral methods the Chebyshev polynomials are often used. The same
form of the approximation polynomial is used in [1], [9], too.

After recalling some formulas on the Fourier series for a function with two vari-
ables and the two dimensional discrete Fourier transform an algorithm to obtain
an approximation polynomial of a function with two variables and a convergence
result are presented. A Lagrange type interpolation problem for a function with
two variables is studied. Two applications are mentioned: a numerical integration
formula on a rectangle and a numerical computation of the partial derivatives.

le-mail: scheiber@unitbv.ro
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2 Two dimensional Fourier series

Let f: R? — R be a continuous periodical function in each variable with the
period 27. The Fourier series attached to the function is [8], t.3

oo
flz,y) ~ Z (@n,m cos nx cos my + by, m, cos na sin my+

n,m=0
+Cp,m sinnx cos my + dy, y, sin na sin my)

with the coefficients given by

aoo = 1z [Jq fz, y)dady anm = 25 [Jq f(z,y) cosnz cos mydzdy
(o = 27T2 fo x,y) cos nxdxdy bpm = ﬂ.2 fo x,y) cos nx sin mydxdy
ag,m = Qﬂg fo x,y) cos mydxdy Cnym = fo x,y) sin nx cos mydxdy

0,m = 27r2 ffﬂ x,y) sin mydxdy dnm = =3 fo x,y) sin nx sin mydxdy

2ﬂ2 fo x,y) sinnxdzdy

where 2 = [0, 27]2.
The complex form of the Fourier series is

§ : Y meina:Jrimy

n.meZ
with
Y0,0 = 0,0
1 . 1 )
Tn,0 = 5(%,0 - lcmO) V—n,0 = 5((1”70 + ZCn,O)
1 , 1 .
Yom = §(a0,m - ZbO,m) Y0,—m = i(ao,m + ZbO,m)
1 1

(an,m - an,m + icn,m + dn,m)

W |

Yn,m = Z(an,m - lbn,m — 1Cnym — dn,m) Y—n,m =

1 ) . 1 . .
Tn,—m = E(Gn,m + an,m — 1Cpm + dn,m) Y—n,—m = Z(an,m + an,m +1Cnm — dn,m)

or
1 ) )
Ymn = 42/ flx,y)e "™ "dedy, Vn,m € Z. (1)
0 Q

If the function is even in any variable then the by, 1, ¢ m, dnm coeflicients are
all zero.

We shall suppose that the convergence conditions of the Fourier series to
f(z,y) are fulfilled (the function has bounded first order partial derivatives in
2 and in a neighborhood of (z,y) there exists %, or %, which is continuous

y yOx
n (x,y), cf. [8], t.3, 697).
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3 Two dimensional discrete Fourier transform

Let be the infinite matrix (2 ;)i jez with the periodicity properties xyyp ;j =
Tk js Tk j+q = Tkj, Vk,j € Z. The discrete Fourier transform construct another
infinite matrix (y, s)r,scz with an analog periodicity properties defined by

1 1

L 27rkr 27rjs

Yr,s = § § xkj Pe 9,
k=0 j=0

forr € {0,1,...,p—1} and s € {0,1,...,q — 1}.

The complexity to compute the pg numbers with the discrete fast Fourier
transform algorithm is pqlog, pg.

As an application, if the Fourier series coefficients (1) are computed using the
trapezoidal rule for each of the iterated integrals then:

1 —inTr—imy 1 n —inT o —imy
) Qf(a:,y)e dedy = — e ; f(z,y)e”"™dy | dz

1 [ T e 2 2
~ o /0 o Z 2y im 5| g —
=0

p—1lqg—1

1 lm%m/ 27rj _ 27Tk: 27‘(‘] 2k o2
f L P P e ral
quZ

2Wq k=0 j=0

Thus the Fourier coefficients (7, ) may be computed applying the discrete Fourier

transform to (f(m, 2Lj)) .
P97/ kef0,,...,p—1},j€{0,1,....q—1}

If the function f is even in any variable then there is an alternative to compute
the coefficients a, s, introduced in the previous section, based on the discrete cosine

transform
p—1lq—1

1
ZZxk]cos k + )—cos(j—i—i)%,

k=0 j5=0
forr € {0,1,...,p—1}and s € {0,1,...,q— 1} and the Gauss quadrature formula

1

k 1

where zj = cos (k + %)%, k € {0,1,...,n — 1} are the roots of the Chebyshev
polynomial T, (x).
Applying this formula to compute the coefficients a, s it results

e 1.7 1.rm 1. sm
= 33 1 (os e )T cos G+ 5)T ) cos (1 5) 7 cos (G-+ ) T
7 =0 =0 2°q 2" p 2" q

namely the discrete cosine transform applied to ( f(cos (k + )f cos (j + )%))

ke{0,1,....p—1},5€{0,1,...,¢g—1}-
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4 The Chebyshev series

Considering a continuous two real variables function f(z,y), z,y € [—1,1],
the attached Chebyshev series is

2y) ~ Y anmTu(@) T (y) (2)
n,m=0
where
f S () - dxdy Qno = f SenTh@) dxdy
-1 1\/lxy/ly -1 1\/1x\/1y
om = 7r2 f lf 1 7y ety dxdy On,m = 7r2 f 1 1 e T"(x)Tm( )dxdy

\/1 —x24/1

Changing x = cost,y = cos s, the coefficient oy, ,, will be

\/1 —x24/1

4 s ™
Qnm = —5 / / f(cost, cos s) cos nt cos msdtds = (3)
™ Jo Jo

1
=5 // f(cost, cos s) cos nt cos msdtds.
m Q

Analogous formulas may be obtained for g, ano and ag p, too. Thus the co-
efficients of the Chebyshev series are the coefficients of the Fourier series of the
function (¢, s) = f(cost,coss).

If function f has second order derivatives then the Fourier series attached to
 converges to ¢ and consequently

T,y) = Z nmTn () Tin(y), z,y € [-1,1]. (4)

n,m=0

The polynomial

fnmxy Zzaijk )

k=0 j=0

is called the Chebyshev approximation polynomial of function f(x,y) in the square
[—1,1)2.

The parameters n,m are determined adaptively to satisfy the inequalities
| ;| < tol(= 107, machine precision), for ¥ > n and j > m. This is the
goal of the algorithm 1. The coefficients whose absolute value are less then tol
are eliminated and the remained coefficients are stored as a sparse matrix.

The fn m(z,y) polynomial may be obtained with the least square method as
the solution of the optimization problem

2

) 1 rl 1 n.-m
rg?/l/l Niww= Ny f(w,y)—zzkk,ka(xﬂ}(y) dady.

k=0 5=0
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Due to the Parseval equality

2(
a00+ Zan0+ Za0m+ Z a2 // f acy) d:vdy

nml y

the quality of the approximation polynomial may be evaluated by

2.’13
/ / \/%\/yl)—i ago+ 5 Zo‘k0+ ZO‘OJJF ZZO"W

k‘l]l

()

Algorithm 1 Algorithm to compute the Chebyshev approximation polynomial

1: procedure CHEBFUN2(f)

2 n < 8

3 tol + 10715

4 sw < true

5: while sw do > The approximation polynomial is determined adaptively
6 m < 2n

7 acy%coszk—7r k=0:m-—1

8 z < f(z,y)

9: g« FFT(2)/m?
10: a<+4Rg(1l:n,1:n)
11: a(l,1) < a(1,1))/4
12: a(l,2:n) «a(l,2:n)/2
13: a(2:n,1) «a(2:n,1)/2
14: if la(i —1:4,1:n)| <tol & |a(l:n,i—1:14)| < tol then
15: sw <+ false

16: else

17: n < 2n

18: end if

19: end while
20: fori=1:ndo > Removal of negligible coefficients
21: for j=1:ndo
22: if |a(i, j)| < tol then
23: a(i,j) <0
24: end if
25: end for
26: end for
27: return a

28: end procedure

The value of the polynomial f,, ,, in a point (z,y) may be computed adapting
the Clenshaw algorithm, [9], but we find that the evaluation of the expression
fam(@,y) = Vi(2)ApmVim(y), where V,(s) = (To(s), Ti(s), ..., T,(s)) and A =
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(ak ) k=0:n,j=0:m is more efficient within a matrix oriented software. V' denotes
the transpose of vector V. The complexity order of both algorithms is O(nm).
This evaluation does not take into account the computation of coefficients ay ;.

5 The Chebyshev series of partial derivatives

We assume that function f(z,y) has first order continuous partial derivatives
and series (4), there is required to find the coefficients (by, m )n,men such that

n,m=0
Using the equalities
Ti(z) =To(z),  Ty(z) =A4Ti(x)

and

1 1541 (x) _ T, 1 (x)
2 n+1 n—1

(6) may be written as

3 (bomT{ (@) ¢ B BE) | 5= b T () T;_lm)) Toly)

2 2 2 & k+1 k-1
R b2m sy 1 )
= Z (bo,m — T)Tl(x) + Z %(bk—Lm = bp1,m) T3 () | T (y) =
m=0 k=2

b2,m
{ e _ e (7)
ﬂ(bk;—l,m - bk+1,m) = Ofm, k>2, m € N.

Summing the above equalities for k=n+ 1,n+3,n + 5, ... it results
bom =2((n+ 1)ant1m + (n+3)ant3m + (N +5)antsm +...) VvV n,m € N.

In the same way it is deduced that the coefficients of the series

(e e}

of(x,y)
Ty = Z Cn,an(m)Tm(y)

n,m=0
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verifies the relations

C{l 0 — CRT2 = an,l ) (8)
25 (Cn,j—l Cn,j—i—l) = Qngj, J =2, n € N.
Let ) 2
Of*(x,y) _ 0f*(z,y)
= dp T ( 9
0xdy oyox H;O Tn(y). (9)
Because %&’f/) = 8@(810 (ﬁ y)) applying (8) it results

1

?j(dk,j—l —dgj1) = bi

and consequently, for k,j > 1,

1 1
Ej(qu,jq —dp—1,j+1 — dit1,j-1 T dky1,+1) = ﬁ(bkq,j —bry1,5) = a,j- (10)

Denoting Akd = dkfl’jfl — dk,LjJrl - korl,jfl + dk+1,j+17 it results Ai,j <
Zl(di_w_1 + d%—lJ'i‘l + diH,j_l + d%+1,j+1)' From the Parseval equality corre-
sponding to (9) it results

7Zdnm—d00+ Zd 0+ ZdOm—i—iZdnm—Mll?

n,m=1 n,m=1

2
where My > max{]aawgy(:c,yﬂ s x,y € [—1,1]}.
Consequently

ZZA <16 Z 2, < 64M7,.

k=2 j=2 n,m=1

6 The convergence of the Chebyshev series

Using the techniques presented in [7] and [4], in some hypotheses it may be
proven that the convergence in (4) is uniform in [—1, 1]?, for n, m — occ. First we
state

Theorem 1. If function f has second order continuous derivatives then

2Ms 8Ms

\an,0| < m and < m, n > 1, (11)
2Mo 8 My 2

lag,m| < m and ’al,m| < m, m > 1, (12)

2 2
where Moo > max{]%(w,yﬂ s x,y € [—1,1]}, My > max{|g—y§(x,y)] D ox,y €
[—1,1]}.
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Proof. The coefficient a,, o0 may be written as

2 ™ ™
apo = 2/ </ f(cost, cos s) cos ntdt> ds.
™ Jo 0

Two partial integrations are performed in the internal integral

s
/ f(cost, cos s) cosntdt =
0

T 92 i — 1)t i 1)t
=5 N J;(cost cos §) sint <sm7(Ln_ 1 )t _ smén_:—l ) )dt.
It results that
n T 1 1 7TM270
|/0 f(cost, cos s) cosntdt| < %Mg,o (n 3 + . 1> < (n—1)? (13)

and consequently |, o| < 2M21)°2

Using (13) in a1 = =5 fo (fy f(cost, cos s) cosntdt) cos sds it results

| < 4 Mo /’T| d 8Ma o
ap1| < —— 7 cos slds = ——————.
U=7m-12), m(n—1)2

The proof of (12) is similar. ]

Theorem 2. If function f has second order continuous partial derivatives then
limy, im0 frm = f uniformly in [—1,1]2.

Proof. From

Z an,an(m)Tm<y) and fnm x y Zzak,ka )

n,m=0 k=0 5=0
it results
f(z,y) = fam(z,y) = Z Z ay,; Tk (z Z ZakJTk (y)-
k=0 j=m+1 k=n+1 j5=0
Then
n oo o (o]
|f(z,y) — fnm z,y)| Z Z |ak,j| + Z Z‘ak,j = (14)
k=0 j=m+1 k=n+1 j=0
o0 o0 n oo
= D aogl+ Y lengl D0 D lewl+
j=m+1 j=m+1 k=2 j=m+1

o o (o] (o)
+ > anol+ D ewal+ DD lowyl

k=n+1 k=n+1 k=n+1j5=2
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and using the Cauchy-Buniakowsky-Schwarz inequality it follows

(f(a?,y) - fmm(x’y))Z

2 2 2

o0 o0 n o0
<6 Doodaogl ]+ D0 Jaagl ] + 1D DD gl ] +
j=m+1 j=m-+1 k=2 j=m+1
+( 5 |ak,o|) +( 5 \am) NS
k=n-+1 k=n+1 k=n+1j=2
codr _ 1

The following inequality holds »° ., 12 < [T%% =1

Using the results of Theorem 1, the first, second, fourth and fifth expression
are increased by

[e.e]

0o
1 2M02
> laogl < Z <
j=m+1 m
0o 0o
1 8M02 4 My 2
. < J— < )
Z |a173‘ = ZJZ 7(m — 1) m—1
Jj=m+1 j=m
00
2M20
Z lagol < QMQOZ PN
k=n-+1
00
8M20 8M20 4M2,0
Z ’akvl‘ < ZkQ _)<n_1'
k=n-+1

For the third and sixth expression we use (10) and then the Cauchy-Buniakowsky-
Schwarz’ inequality

2
Do oyl ( > W; <

k=2 j=m+1 =2 j=m+1
1 n ) 0 1 2 n 1 0 1 27T2M121
<[> A, sz LD m D S g
k=2 j=m+1 k=2 j=m+1 k=2 Jj=m+
and respectively
2 2
> Sl ] <[ 3 e
k=n+1 j=2 k=n+1 j=2
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Consequently

1
20M3,  20M3, 2m*ME, N 27T2M1271> 2 0

|f(x,y> - fn,m(wvy” < \/6 ((m — 1)2 (n — 1)2 + 3m 3n

when m,n — oco. m

7 The Lagrange interpolation polynomial

For any grids -1 <zg<z1 < ... <z, <1, -1 <yo<n <...<yn <1
and any f : [~1,1]> — R the expression of the Lagrange interpolation polynomial
is

Lym(2,y) ZZ]‘" i, yj)lai(z)ly; (y)

=0 5=0

where
m

lxi(x) = ﬁ x_—a;:Z’ and ly;(x H

k=0,k#1

—yl

This polynomial satisfies the interpolation restrictions
Ly m(zk,yi) = f(zg,u), Vke{0,1,...,n}, and Vi € {0,1,...,m}.

In the set of (n,m) degree polynomials there exists a unique interpolation poly-
nomial. A

If 2 = cos T, i € {0,1,...,n} and y; = cos 2%, j € {0,1,...,m} then using
the discrete orthogonality relations, [9],

n 0 if p#gq
Z'ykTp(wk)Tq(xk): 5 if p=qe{l,2,...,n =1} =nayd,g,,
k=0 n if p=gqe€{0,n}
where
1 . 1 . .
~J 5 if ke{0,n} 5 if ie{1,2,...,n -1}
7"1’“_{ 1 if ke{l,2,....n—1} and ani =3 1 g i€ {0,n}

the Lagrange interpolation polynomial may be written as

nmxy chz,j

=0 5=0

where ¢; ; = %'Yngi')/m,j ZZ:O Zﬁo Yk Yo f @, y0) Ti (1) Ty (1)
This polynomial will be called the Lagrange-Chebyshev interpolating polynomial.
As in [4], the following statements occur:
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Theorem 3. (Aliasing of Chebyshev polynomials, [4]) For any n > 1 and 0 <

m < n the polynomials Ty, Tontm, Lintm, - - - take the same values on the grid

(COS }ﬂ)0<k<n

Let n,m € N* be fixed. In N x N there is introduced the equivalence

i14+142:2n or i;—iy:2n
(i1,71) ~ (i2,j2) iff and
jl+]22m or ]1—]22m

Denoting by Gj\) the equivalence class, for fixed k& € {0,1,...,n} and [ €
{0,1,...,m}, the product Ty (zx)T,(y;) has the same value for any (p,q) € (4, j).

Theorem 4. (Aliasing formula of Chebyshev coefficients) Let

z,y) = Z ZOZUTz(l‘)TJ(?J)

i=0 j=0

and let Lnm(v,y) = D70 > ito i Ti(2)Tj(y) be its Lagrange-Chebyshev inter-
polant. Then

Cij = Z Ap.q- (15)

(P.a)€(rj)

Proof. Supposing that (¢; ;)o<i<m,0<j<m are given by (15) and ¢(z,y) =
> im0 2ieo € Ti(2)Ty(y). For any (k,1) € {0,1,...,n} x {0,1,...,m}

o(zk, 1) ZZC Ti(w ZZ Z apqTi(ze) Tj(y1)-

=0j=0 =0 720 (p.q)e(irj)

It is observed that when the indexes i, 7, p, ¢ go through their values then (2pn +
i,2gm + j) go through N x N any two pairs are distinct. Thus, with Theorem 3,

[ee] [e.e]
o) =Y o Tu(z)Ti(y) = f@rm)-

s=0 t=0

The unicity of the interpolating polynomial in the set of (n, m) degree polynomials
implies Ly, = ¢. m
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The explicit formulas corresponding to (15) are

o0
€0 = E Q2np.2mq
p,q=0
(o) o0 o0 o0
o = E § Q2np+i,2mg + § E A2np—i,2mq> XS {1a <. 7n}
p=0 ¢=0 p=1 ¢=0
[o@) oo oo o
G = DY Compamgri+ D> Wnpomg—j, JE{L...,m}
p=0¢=0 p=0¢=1
(o) o o0 [ee)
Cij = E § Q2np+i,2mg+j T E E Q2np+i,2mg—j T
p=0¢=0 p=0¢=1
oo oo o0 oo
+ E g Q2np—i2mq+j E § Q2np—i 2mqg—j»
p=1¢=0 p=1q¢=1

ie{l,...,n}, je{l,...,m}.

A consequence of (15) is a relation between Ly, ,,(x,y) and the approximation
polynomial frm(2,y) = 3o > jtg @i To(2)T;(y) :

nmxy chz,] )

=0 j5=0

n

m e} (o) o0
=3 ) i+ ) iggmei T > opntig + Y Qopnetizgme | Ti(@)T(y).

=0 j=0 q=1 p=1 p,q=1

Resetting i := 2pn + 4 when p = 1,2, ... the value of i varies from n + 1 to oo and
T; becomes T,,. T),; is introduced analogously.

Lpm(z,y) = fam(z,y) "‘Z Z 1 (y) + Z Zai,ij(m)Tj@)'i‘

i=0 j=m-+1 i=n+1 j=0
[o.¢] oo
+ Z Z o 5T, (2) Ty, (y).
i=n+1j=m+1
Then we find
oo (o]
[ Lym(z,y) = frm(z,y)| < Z Z |ai;| + Z Z!am‘\- (16)

=0 j=m+1 i=n+1 j=0

Now we can prove the uniform convergence of the Lagrange-Chebyshev inter-
polation polynomials:

Theorem 5. If function f has second order continuous partial derivatives then
limy, ;00 Lnm = f uniformly in [—1,1]%
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Proof. Using (14) and (16) we obtain

|f($,y) - Ln,m(xvy” S |f($ay) - fn,m(may” + |fn,m($ay) - Ln,m(fﬂ,y)‘ S

n (@) o0 oo
DD e+ DY laigl

=0 j=m+1 i=n+1 j=0

The rest of the proof follows the proof of Theorem 2. m

8 Applications

1. Integrating fy, m(z,y) on €2 there is obtained

//fxydmdyN//fnmxydxdy—4 Z Z (1_k‘j)’“(ﬂi_j2).

k=0, even j=0, even
(17)

2. Computation of the first order partial derivatives. Practically, knowing the
Chebyshev approximation polynomial fym(z,y) = > p_g Z;”:O a ;i T ()T (y),
and with the assumption that oy ; = 0 for kK > n > 4, and for any j € {0,1,...,m}
the first n equations of the system (7) will be

b .
bO’-] - % = Oél’j
i(lbkfl,j —bit1j) = ouy, ke{2,3,....,n—2}
5(n—T) On—2.j = On-1j
%bn*ld = Oé’n,j
with the solution
bnfl,j = 2nan’j
boy = 2n-Dan 1
Ok, j = 2(k+ Dagyr; +beroy, ke{n—-3,n—4,...,2,1} °
boj = it 5

Then 5%~ S0 S™ by ()T ().

The partlal derlvatlve %ﬁ;‘;’y) may be computed similarly.

Due to the truncation of the Chebyshev series the numerical result is influenced
by the truncation error as well as by rounding errors. The automatic differentia-
tion [3] is a method which eliminates the truncation error but it requires a specific
computational environment related to the definition of the elementary functions
(e.g. apache commons-math3 v. 3.4).

9 Examples

Using a Scilab implementation the following results are obtained
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1. f(z,y) = coszy [2], Ch. 11, p. 2. The matrix of the coefficients is

0.880725579 0 - 0.117388011 0. 0.001873213
0. 0. 0. 0. 0.

-0.117388011 0. -0.114883808 0. 0.002484444
0. 0 0. 0. 0.

0.001873213 0 0.002484444 0. 0.000603385

The value of the indicator given by (5) is 3.97247 - 10710,

On an equidistant grid of size 50 x 50 in [0, 1] the maximum absolute error
is 0.000082141.

The integral given by (17) is 3.784330902, while Mathematica gives
4SinIntegral[l] ~ 3.78433228147.

2. g(z) = cos 10zy? + e~ [2], Ch. 12, p. 6. The size of matrix of coefficients

10

is 33 x 43.
The value of the indicator given by (5) is 0.

On an equidistant grid of size 50 x 50 in [0, 1]? the maximum absolute error
is 2.98594 - 10713

The integral given by (17) is 4.590369905, which is equal to that given by
Mathematica.

Conclusions

An alternative to the Gaussian elimination method used in Chebfun software

in order to construct an approximation polynomial of a function with two variables
is presented.

Because the discrete Fourier transform is a common tool for the usual mathe-

matical softwares, this approach has a simple implementation, but as a drawback,
if the tolerance is the machine precision then it may require a large amount of
memory.
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