
Bulletin of the Transilvania University of Braşov • Vol 8(57), No. 2 - 2015

Series III: Mathematics, Informatics, Physics, 125-130

ALGORITHM FOR SOLVING A PUZZLE PROBLEM

Adrian DEACONU1

Abstract

We present an algorithm for solving a puzzle which consists in a set of p
pieces that have to cover an m x n rectangle.

2000 Mathematics Subject Classification: 91A24.
Key words: puzzle game, backtracking.

1 Introduction

In this paper, we present an algorithm for solving the following puzzle problem:

- A rectangle of m x n squares it is given, where m and n are positive integer
numbers.

- The rectangle is divided into p disjoint pieces, each piece is a combination of
si squares (i = 1, 2, ..., p) so that:

p∑
i=1

si = m · n (1)

- The pieces are scrambled.

- Solving the problem consists in placing the pieces on the m x n rectangle so
that the pieces do not overlap and all the squares are covered.

There are applications based on this problem that can be downloaded from
Google Play (Android), Windows Marketplace and App Market (iOS). Sometimes
it is very difficult to solve the problem in the advanced levels and the implemen-
tation of the algorithm we propose can be a very useful tool to those who are not
able to pass these levels.

Lets consider an example with m = 6, n = 5 and p = 5:

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
a.deaconu@unitbv.ro



126 Adrian Deaconu

oo

o

ooo

ooo

o

o

o

o

o

o

ooo

o

o

o

o

o

o

oo

oo

oo

The solution is the following:

55222

45532

45532

41132

41333

41113

2 Preliminaries

The input of the problem can be considered as follows:

- A 0-initialized m x n matrix denoted R (the given empty rectangle)

and

- A vector of 0-1 matrices Pi (i = 1, 2, ..., p), the representation of the given p
pieces (1 where square exists and 0 where square does not exist). On each margin
(the first and the last line, the first and the last column) there must be at least
one 1.



Algorithm for solving a puzzle problem 127

We denote by hi and li the dimensions of the matrix P i.
For instance, in the above example P 1 is:

110
100
111

We denote:

N
(
P i
)

=

hi∑
j=1

li∑
k=1

P i
j,k (2)

We have:

p∑
i=1

N
(
P i
)

= m · n (3)

since the pieces cover the rectangle and they do not overlap.
This is a checksum test for the correctness of the input. If the checksum test

is not passed it means that the input is incorrect, but if it is passed it does not
necessarily mean that the input is correct.

The output is the pairs of coordinates (ai, bi) inside R for each piece Pi, for
each i = 1, 2, ..., p, and:

1 ≤ ai ≤ m (4)

and

1 ≤ bi ≤ n (5)

so that the pieces cover the rectangle and they do not overlap.
For instance, in the above example we have:

a1 = 4, b1 = 2
a2 = 1, b2 = 3
a3 = 2, b3 = 3
a4 = 2, b4 = 1
a5 = 1, b5 = 1

3 The algorithm

We proceed with positioning the pieces inside R only if they pass the checksum
test (see 3).

Well apply a backtracking strategy to solve our problem.
We try to position sequentially the pieces on the rectangle. We try every

possible positioning of each piece till we place all the pieces. The k-th piece is



128 Adrian Deaconu

positioned at the coordinates i and j inside R if it fits inside R and it does not
overlap with the previous k − 1 placed pieces. The number of positioning of the
k-th piece decreases with increasing of k because the number of empty spaces
decreases and because the shape of the k-th piece matches more difficult with the
previous placed ones. It is more efficient to position the pieces P with bigger
N(P ). So, we can start the algorithm by sorting descending by N(·) in order to
obtain a more time efficient implementation.

The pseudo-code of the recursive positioning is as follows:

bool SolveRecursively(k)

if k = p+1 then

return true;

endif;

for i=1 to m do

for j=1 to n do

if PieceCanBePositionedAt(k, i, j) then

a[k] = i;

b[k] = j;

if SolveRecursively(k+1) then

return true;

endif;

endif;

endfor;

endfor;

return false;

The complete algorithm is the following:

Sort (P[i])i=1,2,...,n descending by N(·);
Sol = false;

if ChecksumTest(p, P) then

if SolveRecursively(1) then

Print(p, a, b);

Sol = true;

endif

endif

if not Sol then

Print(”No solution”);

endif;

4 Conclusion and some possible extensions

We presented an algorithm to solve a puzzle which consists in a set of p pieces
that have to cover an m x n rectangle. The pieces cannot be rotated.



Algorithm for solving a puzzle problem 129

A possible extension of the problem can be the situation when the pieces can
be rotated. The implementation of this variant is more time consuming.

The input can be obtained by image processing using OpenCV by reading the
pieces directly from a picture. This is also a possible extension of the application
that makes it easier and interactive to use.

References

[1] D.J. Hoff, P.J. Olver, Automatic Solution of Jigsaw Puzzles,

http : //math.umn.edu/ olver/vi− /puzzles.pdf

[2] P. Norvig, Solving Every Sudoku Puzzle,

http : //norvig.com/sudoku.html

[3] Sholomon, D., David, O. and Netanyahu, N. S., A Genetic algorithm-based
solver for very large Jigsaw puzzles,

http : //www.cvfoundation.org/openaccess/content − cvpr −
2013/papers/Sholomon − A − Genetic − Algorithm − Based − 2013 −
CV PR− paper.pdf

[4] Wong, J., The Fifteen Puzzle - The Algorithm, http :
//jamiewong.com/2011/10/16/fifteen− puzzle− algorithm.



130 Adrian Deaconu


