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ON THE HOLOMORPHIC CURVATURE OF COMPLEX
FINSLER HYPERSURFACES

Elena POPOVICI!

Abstract

Following the study of real hypersurfaces of Finsler spaces, in this paper
we analyse the holomorphic hypersurfaces associated to a complex Finsler
space (M, F') as holomorphic subspaces of complex codimension one. In this
sense the induced complex Finsler metric, the induced nonlinear connection
and, respectively, the linear connection and the equations of the holomorphic
curvature are investigated. Moreover, based on the Gauss, Codazzi and Ricci
equations we find the link between the holomorphic curvatures of the holo-
morphic hypersurface and the Finsler space (M, F'), and the conditions under
which the holomorphic hypersurface is totally geodesic, c-totally geodesic or
generalized Einstein.
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1 Introduction

Many geometers have investigated subspaces of real or complex manifolds, the
study of hypersurface being regarded as a particular case of them. Thus, a natural
extension represents the study of complex Finsler subspaces. In order to analyze
the geometry of hypersurfaces on a complex Finsler space, we use the basic ideas
from real Finsler case from [8, 9] and we extend the study to the complex Finsler
spaces by considering the complex Finsler hypersurfaces as holomorphic subspaces
of complex codimension one. In this sense results from [10, 11, 12, 13, 15, 16] were
used, particularized and extended.

Firstly, in Section 1, we recall some basic notions about complex Finsler ge-
ometry. By considering a holomorphic hypersurface of a complex Finsler space,
we determine in the second Section the local frame along the hypersurface and
the corresponding metric tensor of the induced Finsler metric. Also, by using the
complex nonlinear connection of a complex Finsler, we determine the conditions
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under which a nonlinear connection of the hypersurface is induced by the Finsler
space connection. In this sense we study the relation between their coefficients
and also between the components of the associated adapted frames. If we take
the induced nonlinear connection, we can consider three derivation rules which
will determine three types of linear connection. Using the induced and the normal
linear connection we can express the Gauss-Weingarten formulae of the holomor-
phic hypersurface, from which we deduce the Gauss, Ricci and Codazzi equations.
Then, we will be able in Section 3 to give a geometric characterization of the holo-
morphic curvature of complex Finsler hypersurfaces and to obtain several of their
properties.

Now, we make a short overview of the concepts and terminology used in
complex Finsler geometry, (for more see [1, 10]). Let M be an n - dimen-
sional complex manifold, with z := (zk), k = 1,..,n, the complex coordinates
on a local chart (U, ). The complexified of the real tangent bundle T M splits
into the sum of holomorphic tangent bundle 7'M and its conjugate T M, i.e.
TecM = T'M & T"M. The holomorphic tangent bundle 7'M is in its turn a
2n-dimensional complex manifold and the local coordinates in a local chart in
u€T'M are u := (2F,0F), k=1,..,n.

Definition 1. A complex Finsler space is a pair (M, F), with F : T'"M —
R, F = F(z,m) a continuous function that satisfies the following conditions:

i. F' is a smooth function on T'M :=T'M \ {0};
ii. F(z,m) >0, the equality holds if and only if n = 0;
iit. F(z,An) = |\F(z,n), YA\ € C;

w. the Hermitian matriz (gﬁ(z, 77)) is positive definile, where g;; = % is the
fundamental metric tensor, with L := F? the complex Lagrangian associated

to the complex Finsler function F'.

The positivity from the fourth condition is equivalent to the convexity of L
and to the strongly pseudoconvex property of the complex indicatrix in a fixed
point I, M = {n | g;5(z, n)n'iy = 1}, for any z € M. Also, it ensures the existence
of the inverse (¢7%), with ¢/ig,; = 5%.

Moreover, condition iii. represents the fact that L is homogeneous with respect
to the complex norm, L(z,An) = A\L(z,n), YA € C, and by applying Euler’s
formula we get that:

aink _ %ﬁk _ 7. 89i3nk _ agi}ﬁk
onk onk T onk onk

=0 and L= gﬁniﬁj. (1)

The geometry of complex Finsler spaces consists of the study of geometric ob-
jects on the complex manifold 77 M endowed with a Hermitian metric structure de-
fined by g,;. A first step represents the analysis of the sections on the complexified

tangent bundle To(T'M) = T'(T'M) & T"(T'M), where T!(T'M) = T!(T'M).
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Let V(T'M) = sp(m{%} C T'(T'M) be the vertical bundle and the complex
non-linear connection, briefly (c.n.c.), is the supplementary complex subbundle
to V(I'M) in T'(T'M), i.e. T'(T'M) = H(T'M) ® V(IT'M). The horizon-
tal distribution H,(T'M) is locally spanned by {2 = a%k - Nga%j}, where
Ng(z,n) are the coefficients of a (c.n.c.). Then, we will call the adapted frame
of the (c.n.c.) the pair {0y := O = 8%,6}, with the dual adapted base
{dz*, onF .= dn¥ + Nfdzj}.

Since g5 is a nondegenerate d—complex tensor, by considering a fixed (c.n.c.)
N we introduce a metric structure G on 7'M, also named its N-Sasaki lift, as

o
ozk

G = gizdz' ® d77 + gizon' @ 07 . (2)
One basic (c.n.c.) of a complex Finsler space is the Chern-Finsler (c.n.c.)

([1],[10]), with Nf =gk 889? n', and determines the Chern-Finsler linear connec-
7

tion, locally given by the next set of coefficients ([10]) L;k = giiék(gj;), Cjk =

giiak(gj[), L%k =0, ngk: = 0, where D;, 0; = L}kéi, D(gkaj = L}kﬁi, Dy 0; =
Ci.0i, Dy b5 = Cjydi and Chap = Cjn® = 0 from (1). Since Ni is (1,0)-
homogengous, i..e. ((%N})nk = N; and (8/,;3]\7})17]’C =0 ([4]), it tak§s plage n’ Ly, =
N} and LYy = 0; N}.. Further we will use the following notation 7/ =: 7’ to denote
a conjugate object.

According to [10], for Chern-Finsler connection we have the following nonzero
curvature coeflicients

i =Lin = Lij i Qo =Chis O =Nj 5 pyz = 0N, (3)
where hT (0, 6;) = Ti6i, WT(Ok,0;) = Qiydi, vT (0, 65) = @;‘,E&, vT (95, 05) =

,0;'.]—661', and the following nonzero curvature coefficients

4

In [1]’s terminology, the complex Finsler space (M, F) is strongly Kdihler iff
T;k = (),4 Kahler iff T;’kn]’ = 0 and weakly Kdhler iff gil*TJ?knjﬁl = 0, where T;k =
L%y, — Ly, but, cf. [7] strongly Kéhler notion coincides with the Kéhler notion.

2 The equations of holomorphic hypersurfaces

Let (M, F) be a complex Finsler space, (2*,7%) k=17 complex coordinates in a

local chart, and a complex immersed hypersurface M of M such that i: M < M
a holomorphic immersion locally given by z* = zF(¢!, ..., ¢" 1), k=1,...,n. The
complexified tangent map i¢ : 7'M — T'M is defined by i(¢,0) = (i(¢), iggﬁ) =
(2(£),m(&,0)) and has the following local representation

07k

K= kel e gk = BR9S where Béi(af):@. (5)
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From now on, the Latin indices i, j, k, ... run from 1 to n and the Greek indices
a,B,7,... run from 1 ton — 1.
The holomorphic immersion assumption implies that B— = (%a = 0, Bk =

gga = 0, and in any point of the complexified tangent space T (T"M) the local

frame {2 56> W} is coupled to {@, a—nk} as follows

0 g O 0 0 g O
6§Q_Baak+BOaa L %:Baank, (6)
where BY = %?g 0°. Tts dual basis satisfies the conditions
dz* = B¥de~, dn* = BE de® + Brage, (7)
and their corresponding conjugates. Further, we use the notations 9, = 6%’
8 —89a,0——(3£—aanda 890"
_O0%L

In view of (5), the complex Finsler function F' with metric tensor g;; = Sy

induces a complex Finsler function F' : 7'M — RT, F (f 0) = F(z(£),n(&,0)) =
F(2F(€),0°BF), of associated complex Lagrangian L = F2. By using (6), we can

021, _
902067

relate g;; to the induced metric tensor g,5 = as

9ap = BLBLgz- (8)

Then, rank(g,z) = n — 1 and it induces a metric structure on M determined by

L. Thus, we obtain an (n — 1)-dimensional complex Finsler space (M, F), also
called the holomorphic hypersurface of the complex Finsler space (M, F').

From (6) it is deduced that V(T'M) = span{d,} is a subdistribution of the
vertical distribution V(7'M ) Thus, in any point (%) of M, we can define a unit
normal vector N = N*(¢, 19) - of TC(T’M)

9i3(8) BuN? =0, gis(@)N'Bg =0, gis(@) N'N7 = 1. 9)

This normal vector generates an orthogonal complement VT’ M+ in any point @,
such that VI'M = VIT'M & VIT'M*.

Let us now consider in any 2(§) € M the moving frame R = {B(&), N¥(&,0)}

along the complex Finsler hypersurface (M, F) and let R~! = (BY Nj)! be the

inverse matrix associated to R = (BY N¥). Obviously, B and Nj, are functions
of z,0 and

BB} =63, BLN;=0, N'B*=0, N'N;=1, B.BY+N'N;=4 (10)

takes place. Moreover, gg;N7 = giN'NINy, = Ni, N7 = ¢g?* N}, occurs and thus
gjk’NkB? = 0. The last relation together with (9) and (10), leads to

g°* = ¢"BYBY. (11)



On the holomorphic curvature of complex Finsler hypersurfaces 113

Therefore, using the inverse matrix (¢%®) of (9ap), We get
BY = ¢P gl]B] Ni. = gi;N7, N7 = g" Ny, (12)
In addition, from (11) and the last relation from (12), it is deduced
= B'B’ gﬂa + NNV, (117)
In a similar manner, using (12), we determine an equivalent form for (8), as
9i7 = Gi7 + N;N;3, unde g;; = B?B}*BQQB- (8")

Further, the next important step in our research is to obtain the induced
complex nonlinear connection. A (c.n.c) N on T"M is said to be induced by the
(cm.c.) N on T'M if 60% = BYon*. This condition implies [10]

N§ = B{(Bgs + NJBY).

Then, the adapted bases are related by

dz* = BFdge, on® =Bkso~ + N*H,de; (13)
1) ok 1) i 0 0 ok 0
(5670‘ B 6 N H 8 k’ @ _Baank7 (14)

and their corresponding conjugates, where H, = N; (Bga + NZBQ).
A notable result, obtained just like in [10], Theorem 5.4.1, asserts that the

induced (c.n.c.) of the Chern-Finsler (c.n.c.) on M is given by N§ = 77 82*25%

and coincides with the intrinsic (c.n.c.) of the M hypersurface.

In order to study the induced linear connection on M, as in [10], we consider
three types of derivative rules. Firstly, we consider the coupling connection DF(N )
of N-complex linear connection D on (M, F'), defined for any tangent vector
X' = BL,X® by DX* = DX', and which for the Chern-Finsler (c.l.c.) case is
given by

The second type of connection is the induced tangent connection DI‘( ) defined
by DX© = B2DX' for any tangent vertical field X* = B! X®. The coefficients of
the Chern-Finsler induced tangent connection coincide with the intrinsic Chern-
Finsler connection of the holomorphic hypersurface M and are given by

Ly, =9"6,(gs5),  CB, =9"0y(9s5),  L§,=C§,=0.  (16)

The last type of connection is the induced normal connection DIT(N) defined
by D+X = N,DX?, for any normal vector field X? = N?X and if it comes from a
Chern-Finsler connection it has the coefficients
Lo = Ni(6a N + NTg™80,gjm), Ls = Ni6sN',

. S . 17
Co = Ni(BaN' + N7g™8ugjn),  Ca = NidalV', o
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Further, by using the induced tangent connection DF(N ) we introduce the
Gauss-Weingarten formulae of the holomorphic hypersurface and with their help
we deduce the Gauss, Ricci and Codazzi equation. Thus, the following decompo-
sition takes place

DxY =DxY + HX,Y), VX e(TcT'M), Y e T(VoT'M),

DxW = —AwX + DxW, VX € T(TcT'M), W € T'(VoT'M*) (18)
known as the Gauss-Weingarten formulae, where H(X,Y) € I'(VoT'M™Y) is the
second fundamental form and Ay X € T'(VeT’ M ) represents the shape operator
(or Weingarten operator) of the holomorphic hypersurface. With respect to the
adapted frame of a (c.n.c.), {0q, O, 0, 3@}, the second fundamental form H and
the shape operator A are well defined by the next set of coefficients

H(63,0a) = HagN, H(65,00) = HygN,
H(93,00) = KagN, H(0g,0a) = KN,
A(dp) = A0a  A(0) = A%0a, A(Dp) =V,  A(0p) = vga‘a,
which are given by
Hop = Ni(Blg+ BhLiy), H,5 = N;ByLi5,
K,3 = N;BLC!_, K,;=N;B,C'_,
aIB « Jﬂi JT aIB « ]Bi JTe (19)
A% = —B2(6sN' + NILiy), A% = =B (65N + NVL),
V= =B (9sN' + NICty), Ve = =B (9N + NICly).

In particular, for the Chern-Finsler connection case, using (15), they are as follows

Heap = Ni(Blz+ BLBELL, + BLHNFCi ),
Kog = N;BABECY,,  H,5=K,5=0,

A% = —B 3N, V§ = —BPozN', A =Vg =0.

Since for any metric connection the second fundamental form and the shape op-
erator verify G(H(X,0,),N) = G(AxX, ), we have the following relations

Haﬁ = ga’VAZa HQB = ga’yAgu (20)
Kaﬁ = gofyv[;’yu Ka,@ = go@Vg-

Then, by considering D and D1 the induced and normal connection on the
holomorphic hypersurface M of a (c.l.c.) connection D and by applying the Gauss-
Weingarten formulae, we can obtain, as in [5, 6, 12], the link between curvatures
R(X,Y)Z of D and R(X,Y)Z of D, known as the Gauss, H-Codazzi, A-Codazzi
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and Ricci equation of the holomorphic hypersurface:

G(R(X,Y)Z,U)
G (R(X,Y)Z,N)

G(R(X,Y)Z,U)+ G (Aux.2)Y — Any.z X, U),
G ((DXH) (K Z) - (DYH) (Xv Z)vN)
GH(T(X,Y), Z),N),

_l’_

+G (H (Y,ANX) — H (X, ANY),N),

for any vector fields X, Y, Z, U tangent to M , where T is the torsion of the induced
tangent connection D and R™ is the curvature form relative to the normal Finsler
connection D+,

If we consider that the induced Chern-Finsler connection coincides with the
intrinsic Chern-Finsler connection, we can calculate its nonzero curvature coeffi-
cients as having the same form as in (3), but in Greek indices, and we obtain

Tg = ByYB4BIT), + B} N*(BLH, — By Hp)Q',,
— J pkyi
Qpy = Bi' By By},
_ | Bk BNL ;
@%@7 = ASHp + BZ»O‘BéB;Y@;/,—C + B?BéN Hﬁp;.];,

p3y = CS Hy+ B BLBEpi..

(21)

In the same manner, using (4) we can obtain the nonzero curvature coefficients of
the induced Chern-Finsler connection as

R; =BVBER + BPN'H3Q' + N™H,B5Ph  + N™N*H,HsS',

By 5 s km?
18y = D7 B Qg + N7 HyBESSy

Ply = BYBEPL  + BYN"HS'y

Sy = BV B5Sim:

(22)
Thus, we can state

Theorem 1. Regarding the induced Chern-Finsler connection tangent to the holo-
morphic hypersurface (M, F') by the Chern-Finsler connection, we have:

i) the Gauss equations

J Rl pi . D H J REOE - M 1L
B?BiRjBW_RaBWJrHMAB, BaBjQs, = @5, + Hay VY,
J gl pi_ _ pk K Jphgi_ _ Gk K.
BLB['Piy =Py + Koy Af, BLB!'S: s =Sl + Koy Vi
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ii) the H-Codazzi equations

BANiRi 5 = —[H,, |5 + Hay NN 5] = O Ko,

2]

BLN; 337 = _[How|5 + HavNiNi‘B] - P%Ka;m
Bg‘NiP;BV = _[KCW|B + KavNiNim]a

BANiSis = ~[Kayls + Koy NiN'|3);

iii) the A-Codazzi equations

J Ro Rt « cr « J RO )L a cr a
NIBfRi; = =A% + L, A3, NIBPQLs = -V + L, Vg,
J Ro R « cr e J Ro QL a ar a

iv) the Ricci equations

IN.R'. = R+ — A¢ IN.OF. =0+ —yo
IN.Pl. = pL — A2 IN.St . — &+ _ o
N NZZDjB'y PB'Y AgKom N NZSJﬂ’V SE'Y Vﬁ Koy,
where

R =6,L — 03L, — 02;Ca + 05, Ca,
Q%, = 0,C5 — 95Ly — p25Ca,

Py = 0,L5 — 650, + p§,Ca,

S5 = 0,05 — 95C,

are the curvature coefficients associated to the normal Chern-Finsler con-
nection (17).

3 Some applications of the fundamental formulas

In this section we will use the fundamental formulas of the holomorphic hyper-
surfaces to prove some of the properties of the holomorphic Finsler hypersurfaces.
A first application is a geometric characterization of the holomorphic curvature
of the complex Finsler hypersurface.

The sectional holomorphic curvature of a complex Finsler space (M, L = F?)
is a subtle notion in this geometry, defined by the horizontal curvature and being
connected with that of c—complex geodesic (cf. [1]). This notion has been ap-
proached and extended for holomorphic subspaces of a complex Finsler space by
(12, 15].

Let n = 7'd; be the vertical radial vector field and y =: "(n) = n's; its
horizontal lift with respect to Chern-Finsler (c.n.c.). Also, let us take the Sasaki
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lift (2) the Hermitian metric structure on M and let R be the curvature form
of the Chern-Finsler linear connection. According to [1], p.108, [10], p.81, the
holomorphic curvature of the (M, F) space in direction 7 is

Kp(2,1) = 23 G(ROG XX X)- (23)

In order to obtain a local expression for the holomorphic curvature, as in [2],
we consider R, = gljRi}—Lk the local form of the Riemann tensor

R(X,)Y;W,Z):=GR(X,Y)Z, W), VX,Y,ZW cT(T'(T'M)), (24)

and take Ry, = Rij-k,;niﬁh the horizontal Ricci tensor of Chern-Finsler connection.
Using the homogeneity condition of the complex Finsler metric and the local

expression of the curvature tensor Ré’ﬁk:’ (23) yields to

2 i _

Kp(zn) = 25 Ryip'n",  where Ry = —giy05 (N})7". (25)
By taking (M L:=F 2) a holomorphic hypersurface of the complex Finsler
space (M, L), we consider the Ricci curvature R@Y and the holomorphic curvature
in direction 6 of a point @ = (£, #) on the hypersurface, with respect to the intrinsic

Chern-Finsler connection, as
2 . _ . -
Kz(€,0) = ERBWG%W, with Rz, = —g,565(NS)0". (26)

Since the induced tangent Chern-Finsler connection coincides with the intrin-
sic Chern-Finsler connection of the hypersurface, the study of the link between
the holomorphic curvature Kp and K 7 will be simplified in the complex Finsler
case in comparison to the real Finsler case [5]. However, we still have to deal with
some inconvenient calculus.

If we consider the holomorphic curvature Kp in direction n(&,0) of a point
u = (2(€),n(€,0)) € T'M, in order to establish a link between Ky and Kz, by
using the first Gauss equation from Theorem 1 and relations (5), (20), we firstly
compute

Ry, = R,5.,,0%0" = g,5R5,,0°0" = g,5(B,B{ R,

afyi iy Jy Hor Ag)ga(gu.

Thus, RB7 = gJBBfaném

0" — Hon Hz,0%0". (27)
By applying this relation into (26) and considering that from (5) and (10) we
have 0° = B}—fnh and Npn" = 0, from (8’), (22) and the homogeneity condition

C}hnj = 0 which implies P;I—Cmnj = S;.]—fmnj = 0, we finally obtain

Kp = g’ "Ry, 070" — Hon Hy,07040°07]
= Zelgan’ MR, + g NV H0M QY — Hory H 00019767

If we use now (25) and K = %giﬁRjEmnjﬁknmﬁh, we can state
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Theorem 2. The holomorphic curvatures of the holomorphic hypersurface (M, I:)
and of the (M, L) space are related by

2 2
Iz L2

It is obvious that Q;;;mgiﬁ = Qjhmi are the components of a complex Riemann

Kp(i) = Kp(u) + 5 Haf" QL gl n'n™ N* — =5 Hoo Hgn6°0"0°07. (28)

tensor. The vanishing of the second fundamental form and of @) ;.7 tensors leads

jhm
to the equality of the holomorphic curvatures K 7 = Kp, in any arbitrary point
of the holomorphic hypersurface.

As we have already pointed out, the notion of holomorphic curvature is related
to that of c-complex geodesic, which is a special notion in characterizing the
Kobayashi metric. However, we will firstly analyze the totally geodesic property
of a hypersurface for the complex geodesic case.

Even if a complex submanifold of a Kéahler manifold is also a Kéhler mani-
fold, we cannot extend this result to complex Finsler case. By considering the
conditions which must be fulfilled for a Finsler space to be Kéhler, according to
[1] terminology, and using the nonzero torsion coefficients (21), we immediately
have

Theorem 3. A holomorphic hypersurface (M,F) of a strongly Kdhler Finsler
manifold (M, F) is in its turn strongly Kdhler if and only if

B N*(BLH. — B]Hg)Q};, = 0. (29)

A holomorphic hypersurface (M, F) of a Kdhler Finsler manifold (M, F) is Kihler
if and only if
BYBIH° N*Q'; = 0. (30)
A holomorphic hypersurface (M, F) of a weakly Kahler Finsler manifold (M, F)
is weakly Kdhler if and only if
n¢B§H595NkQ§k =0, wheren; = gimi". (31)
This theorem has a simplified form when we restrict to the complex geodesics
of a totally geodesic complex Finsler hypersurface (M ,F) of the Finsler space
(M, F), which is defined as a particular case of totally geodesic holomorphic sub-
spaces. Thus, a complex holomorphic hypersurface (M , F) of the complex Finsler
space (M, F) is called totally geodesic if any complex geodesic of (M, F) is also a
complex geodesic of (M, F).
From [1], p.101, we find that a complex geodesic {z%(t)} of (M, F') space sat-
isfies the following equations

d?2i(t) dzP(t)
dt? dt
where 7' (t) = dz;gt) and ©* = gmgj,;(Lgm — L%ﬁ)njﬁp with respect to the Chern-
c.l.c.). Since én' = dn' + N]Z:dzj, we can express (32) as follows

=0% i=1,...,n, (32)

+Nj(2(t),n(t))

Finsler (

a ~ 9
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_ Let us consider now {£%(¢)} a complex geodesic of a holomorphic hypersurface
(M, F) of (M, F). Then, we have

00>
H:@*a, a:1,...,n—1,

where HNO‘( ) = di ( ) and &% = g“ag/gv(LZﬁ — EZ;,)H?@". As 00% = dO* + Ngdfé,
where N is the mduced nonlinear connection on 7”M which fulfills 66% = Bdn",

we have } '
(_)*a — Bia@*l.

Thus, it implies that if (M, F') is weakly Kéhler Finsler along its complex geodesic,
then (M F ) hypersurface is also weakly Kéahler along its complex geodesic. By
the second relation from (13), we have

577 00« age

=B'— + N'H,

© dt dt dt

= BO* 4 N'H,0°.
Theorem 4. Let (M, F) be a holomorphic hypersurface of a weakly Kahler Finsler
manifold (M, F). Then (M, F) is totally geodesic if and only if

N'H0*=0, i=1,...,n,
holds along any complex geodesic {£*(t)} on (M, F).

Since this condition takes place for any i = 1,...,n, we get Ho0% = 0 and
using H, = H 5a9ﬂ, we can rewrite

Corollary 1. Let (M,F) be a holomorphic hypersurface of a weakly Kdihler
Finsler manifold (M, F). Then (M, F) is totally geodesic if and only if the hori-
zontal components of the second fundamental form satisfy

(Hop — Hgo)0%0% =0
along any complex geodesic {€*(t)} of (M, F) hypersurface.

Remark. If L = hj;(2)n'7/ comes from a Kihler metric on M and M is one of
its holomorphic hypersurfaces, then the metric tensor g;; = hi;(z) is independent
of the direction n € T'M and Q;k = C’;k = 0. Then, from (19) we get K3 =0,
and the three relations from Theorem 3 hold identically. In this case, our results
coincide with the classic results of submanifolds, and implicitly holomorphic hy-
persurfaces defined on complex Kéhler manifolds. Theorem 2, 3 and Corollary 1
show the importance of horizontal components of the second fundamental form
H in the investigation of holomorphic hypersurfaces theory of complex Finsler
spaces.

Further, we approach the study of c-complex geodesics and circumstances
under which the holomorphic hypersurface of a complex Finsler space is totally
geodesic. We recall from [1, 10] a characterization of this notion.
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A c-complex geodesic, ¢ € R is a geodesic of the Finsler complex space (M, F')
which is the image via holomorphic maps of a geodesic on unitary disc A with
Poincaré metric. According to [1], Theorem 3.1.10 (ii), through any point (z,7)
there exists a c-complex geodesic ¢ if and only if the complex Finsler space (M, F)
is weakly Kahler and it fulfils along the curve ¢ the following condition

vT (™, ™) = cG (™, ™) (¢'),

where ¢’ represents the tangent application of ¢ and ¢ = "(¢’) the stands for
the horizontal lift of ¢’(0) vector. Locally, on ¢ curve this condition implies

55 (N7 ™ = eLn'. (33)

Definition 2. A holomorphic hypersurface (M, L) is called c—totally geodesic im-
mersed in (M, L) if any of its c—complex geodesic curves is a c—complex geodesic
of the (M, L) complex Finsler space.

This notion is more special to that of totally geodesic from real case. Further
we will characterize the c—complex totally geodesic immersed hypersurfaces, in
brief (c.t.g).

By using (3), the (33) condition becomes @Ljﬁjnk = cLn'. From (21) and (5),
it follows that

08,0707 = ASH0"0) + BRO L 7* + BEHy0 plpf N*.
Considering this relation, if we have the equalities ASH, 595 07+BXH~07 p;];nj NF =

0 or A%H_V = Bf‘p;.]%anE = 0, using (5), we easily obtain that (33) takes place on

(M, L). Then it is automatically fulfilled in the corresponding points of (M, L).
Conversely, if @%:, = cLO%, by applying the above relation it results that

ASH0°07 + BROL i + BEHy0 pl ) N = Lo,
which contracted with B!, and using the last relation from (10), it becomes
Ol = cLn' + N'N;©luf/ " — BL[AS Hp0” + BfH7§7p§.,—can’5}§7.

Thus, the (c.t.g) condition (33) implies the vanishing of the last part from the
previous expression

N'N;©nii* = BLIASH0" + BY Haplyn N¥)6.

By contracting this relation with N; or Bf, we obtain the following equivalent
conditions

N;®Lu/ii" =0 and  ASOTHz0" + B?Hﬁévpzknj]\ﬂ; =0, Va=1,n—1. (34)

Therefore, by taking into account the conditions under which the weakly
Kahler property transmits from Theorem 3, we can state
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Theorem 5. The holomorphic hypersurface (M, L) is (c.t.g) immersed in the
complex Finsler manifold (M, L) if and only if the (34) and (31) conditions are
fulfilled.

Although the complex Finsler geometry is quite important for some applica-
tions, there are not many examples of complex Finsler metrics. Thus, only few
examples which verify this Theorem are known. In order to verify the Theorem
conditions, let us start by recalling the Kobayashi pseudo-metric Fx which is de-
fined by Fi(z,n) = inf 2, where the infimum is taken over all r > 0 such that
Hy(r) ={f: A, = M| f is holomorphic and f(0) = z, f’(z) = n} is non-empty.
This is a pseudo-distance because it may not be positive definite. When it is pos-
itive definite it is said to be Kobayashi hyperbolic [14] or with Kobayashi metric

[1].

Proposition 1. Any holomorphic hypersurface of a Kobayashi hyperbolic space
is also Kobayashi hyperbolic.

The idea of demonstration for holomorphic subspaces, consequently for hyper-
surface as well, is presented in [12]. Thus, if M is a holomorphic hypersurface
of M then Hy(r) C Hpy(r) and so Fx(z,n) < Fy(z,n). In particular, if Fg is
positive definite then Fi is also positive definite.

A characterization of Kobayashi metric is given by Theorem 3.1.15 from [1].
Thus, if ' : T"M — RT is smooth and complete, strongly pseudoconvex (i.e.
det(gs7) > 0) and condition (33) takes place for ¢ = —2, then F is the Kobayashi
metric on M. The above observations do not involve the induced metric and
the situations when the induced Kobayashi metric coincides with the Kobayashi
intrinsic metric of the hypersurface rarely occur. For example, this happens iff we
have the strongly pseudoconvexity g, 3.

Next, from [10] we recall that a complex Finsler space is locally Minkowski if at
any point there exist local charts such that the metric depends only on direction,
i.e. gi;(n), and hence N;f = L;k = 0 in the chosen local charts. Then, it results

that Tj’k =0 and @;k = pé.E = 0. The (c.t.g) hypersurface condition reduces to the
vanishing of A%G_”/Hﬁﬂﬁ = 0 and of (31). For example, Q;kmBz,Nk = A%‘m =0
or H BGB = 0 are sufficient conditions for this requirement. One simple example
of locally Minkowski metric is the complex version of Antonelli-Shimada metric
Las = {3 ()"} /™, m > 2.

Another important notion considered in [1] is the strongly Kéhler Finsler
space, i.e. T]’k = 0, and thus the horizontal part of d® vanishes, where ® =
J?lgjﬁdzj ® dz* is the horizontal Kahler form. The vanishing of the vertical
part of d® implies @;E = 0. Recall that in [10] a complex Finsler space with
the metric depending only on position, g;7(%), is named purely Hermitian. We
know here the classical examples of Bergman, Fubini-Study or euclidean met-
rics which are strongly Kahler. In a purely Hermitian Finsler space we have
Q;k = C;k = gm@'kgjm = 0 and the notion of strongly K&ahler coincides with that
of weakly Kéhler. From (34) and (31) we easily obtain
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Proposition 2. If (M, L) is a purely Hermitian complex Finsler space with con-
stant Kdhler form, then any holomorphic hypersurface (M, L) with the last part
of (34) relation satisfied is (c.t.g).

Next, after these remarks regarding the (c.t.g) conditions for Kobayashi metric,
implicitly related to c—complex geodesic notion, for locally Minkowski and purely
Hermitian metrics, we propose to go back to the (28) link between the holomorphic
curvatures. A first problem is to obtain the conditions under which the (M, L)
hypersurface is of constant holomorphic curvature. Regarding this, we will offer
an answer for a special class of complex Finsler spaces, namely the generalized
Einstein spaces, denoted by (g.E). According to [3], a complex Finsler space
(M, L) is generalized Einstein if the horizontal Ricci tensor Ry is proportional to
the angular metric hy; = Lgi; + n7);, where 0, = gpmf™. The angular metric is
invertible and this class of (g.E) spaces is a bit more general than that of purely
Hermitian metrics; they coincide in the Kéahlerian case.

Theorem 6 ([3]). Let (M, F) be a (9.E) complex Finsler space. Then:

i) Ry, = %Kphk]— and the holomorphic curvature Kr depends only on z;

ii) If (M, F) is connected, weakly Kdahler and of dimension n > 2, then it is of
constant holomorphic curvature (Shur type theorem,).

Conversely, a purely Hermitian complex Finsler metric which is Kahler of
constant holomorphic curvature is (g.E).

Now, we will apply these results to the holomorphic hypersurface case. Firstly,
let us consider 6, = gagéﬁ and using (8) and (5), we easily deduce 0, = B n;.
Thus, the angular metric induced on the hypersurface h,z = f/ga 3 —i—Haég, becomes
hog = BéB%hi]—.

Let us assume that (M, F) is a (g.F) complex Finsler space, i.e. Rj
1Krhy;. By replacing this into (27) formula and using (22), (5), the observa-

i i) — Gt
tion ijmn =95

kanj =0, g,53Bf" = giﬁBg and Rpp, = giﬁR’.’—ﬁmnjﬁm, we get

J

Rz, = BIY”Bngm + gaBBianjé“HﬂBg”‘NkQé.Em — Hon Hpy, 000"
= 1Krhop + gopBin 0" Ha B N*Qlp | — Hon Hg, 00"

Using now Kp from (28) and H,,0% = H, we obtain

- 1 -~
where o i o
Sy = gin Ha0"N*Qip, [Bg BT — 5p21' 0™ oyl

+or2 Ho Hg0"0 h, 5 — Hy Hy, 60,

We notice that if g;; depends only of the position variables z, then g, 5 depends
only on &. Thus,
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Theorem 7. Let (M, L) be a (9.E) complex Finsler space and (M, L) one of its
holomorphic surfaces. Then:

i) (M, L) is (9.E) if and only if Sz, =0.
ii) If Sz, = 0 and M is connected of dimension n —1 > 2, then (M, L) is of
constant holomorphic curvature.

iii) If we assume that (M, L) is purely Hermitian and connected and (M, ?) is
Kadhler, i.e. Tg,yﬁﬂ = 0, with constant holomorphic curvature, then (M, L)

is (9.E).
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