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Abstract

We obtain results for weighted approximation on interval [0,∞) by gen-
eral positive linear operators. Special attention is given to the weights 1 and
1/(1+x2), x ≥ 0. We give applications for the Szász-Mirakjan operators and
for the Baskakov operators.
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1 Introduction

Fix a weight function ρ on interval [0,∞), that is a function which is continuous
and strictly positive on this interval. We define the space Cρ,∞[0,∞) as

Cρ,∞[0,∞) =
{
f ∈ C[0,∞)|(∃) lim

x→∞
ρ(x)f(x) ∈ R

}
. (1)

On the space Cρ,∞[0,∞) we consider the norm

‖f‖ρ = sup
x∈[0,∞)

|f(x)|ρ(x).

The estimation of the degree of approximation of a function from Cρ,∞[0,∞),
by a sequence of positive linear operators can be made with the aid of differ-
ent weighted moduli, see for instance [6] [3], [8], [5], [7], [12] and many oth-
ers. This method is possible, generally, for the larger space Cρ[0,∞) = {f ∈
C[0,∞)|(∃)M > 0 : |f(x)|ρ(x) ≤ M, ∀x ≥ 0}. In this paper we do not use this
method.
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In the case of the special space Cρ,∞[0,∞), we point out that it is possible to
use, in two variants, the usual moduli of first and second order. A first variant is
to use estimates for operators acting on arbitrary intervals. The second variant
consists in reducing the problem of approximation in the space Cρ,∞[0,∞) to the
problem of approximation in the space C[0, 1] via a transformation. This last
method of compactification was used by Bustamante [1], [2], for the problem of
convergence. In this paper we are interested in obtaining quantitative results of
the degree of approximation by using this transformation and to compare them
with certain estimates which can be obtained directly.

To this purpose, let us denote

ψ(y) =
y

1− y
, y ∈ [0, 1). (2)

The function ψ : [0, 1)→ [0,∞) is a homeomorphism with inverse function

ψ−1(x) =
x

1 + x
, x ∈ [0,∞). (3)

Consider the linear continuous operator Φ : Cρ,∞[0,∞)→ C[0, 1] defined by

Φ(f, y) =

{
ρ(ψ(y))f(ψ(y)), if y ∈ [0, 1)

limx→∞ ρ(x)f(x), if y = 1
f ∈ Cρ,∞[0,∞), (4)

where the space C[0, 1] is endowed by the sup norm, ‖ · ‖. Operator Φ admits the
inverse operator Φ−1 : C[0, 1]→ Cρ,∞[0,∞) given by

Φ−1(g, x) =
g(ψ−1(x))

ρ(x)
, g ∈ C[0, 1], x ∈ [0,∞). (5)

Let L : Cρ,∞[0,∞) → Cρ,∞[0,∞) be a positive linear operator. Consider the
linear operator LΦ : C[0, 1]→ C[0, 1], given by:

LΦ(g) = (Φ ◦ L ◦ Φ−1)(g), g ∈ C[0, 1], (6)

which evidently is also a positive operator and satisfies the condition ‖f−L(f)‖ρ =
‖Φf − LΦ(Φf)‖, for any f ∈ Cρ,∞[0,∞). Using this transformation the study of
the weighted approximation by a sequence of operators (Ln)n, Ln : Cρ,∞[0,∞)→
Cρ,∞[0,∞) is reduced to the uniform approximation by the sequence of operators
(LΦ

n )n, on the more simple space C[0, 1].

In order to recall some general notions consider an arbitrary interval I. Denote
by F(I) the space of real functions on I. Denote by ej , j = 0, 1, 2, . . ., the functions
ej(t) = tj , (t ∈ I). For a function g ∈ F(I), and a real number h > 0, consider
the first and the second order moduli of continuity:

ω1(g, h) = sup{|g(u)− g(v)|, u, v ∈ I, |u− v| ≤ h},
ω2(g, h) = sup{|g(u)− 2g((u+ v)/2) + g(v)|, u, v ∈ I, |u− v| ≤ 2h}.
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In these definitions we admit the possibility that these moduli are +∞. In the
particular case where g belongs to B(I), the space of bounded functions on I,
then these moduli are sure finite.

There exist different estimates with moments and moduli of the first and the
second order. See for instance [11]. In what follows we shall use only two general
estimates.

First consider the estimate of Mond [9] which is a variant of the Shisha and
Mond estimate [13]. Originally it was given on the interval I = [a, b], but it is
true for arbitrary intervals I, see [11], (Remark 1.2.5, pg. 18).

Theorem A Let L : V → F(I) be a linear positive operator, where V is a
linear subspace of F(I) such that e0, e1, e2 ∈ V and g ∈ V . For all y ∈ I and
h > 0 one has

|L(g, y)− g(y)| ≤ |g(y)||L(e0, y)− 1|

+

(
L(e0, y) +

1

h2
L
(
(e1 − ye0)2, y

))
· ω1(g, h). (7)

The second one is an optimal estimate with the usual first and second or-
der moduli of the first author. See [10] or [11], where this estimate is given for
functionals, and in more general conditions.

Theorem B Let L : V → F(I) be a linear positive operator, where V is linear
subspace of C(I) such that e0, e1, e2 ∈ V and g ∈ V . Let y ∈ I and h > 0, such
that h ≤ (1/2)length(I). Then

|L(g, y)− g(y)| ≤ |g(y)||L(e0, y)− 1|+ 1

h
· |L(e1 − ye0, y)| · ω1(g, h)

+

(
L(e0, y) +

1

2h2
L
(
(e1 − ye0)2, y)

))
· ω2(g, h). (8)

2 Main results

Theorem 1. Let ρ be a continuous strictly positive weight on interval [0,∞). Let
L : Cρ,∞[0,∞) → Cρ,∞[0,∞) be a linear positive operator and f ∈ Cρ,∞[0,∞).
For all x ∈ [0,∞) and h > 0 one has

|L(f, x)− f(x)| ≤ |f(x)|
∣∣∣ρ(x)L

(e0

ρ
, x
)
− 1
∣∣∣

+

[
L
(e0

ρ
, x
)

+
1

h2
Ln

((ψ−1 − ψ−1(x)e0)2

ρ
, x
)]
ω1(Φf, h), (9)

|L(f, x)− f(x)| ≤ |f(x)|
∣∣∣ρ(x)L

(e0

ρ
, x
)
− 1
∣∣∣

+
1

h

∣∣∣L(ψ−1 − ψ−1(x)e0

ρ
, x
)∣∣∣ω1(Φf, h)

+

[
L
(e0

ρ
, x
)

+
1

2h2
L
((ψ−1 − ψ−1(x)e0)2

ρ
, x
)]
ω2(Φf, h). (10)



96 Radu Păltănea and Mihaela Smuc

Proof. Let f ∈ Cρ,∞[0,∞) and x ∈ [0,∞). First of all let us show that the
expressions given in relations (9) and (10) make sense, namely we have e0

ρ ∈
Cρ,∞[0,∞) and (ψ−1−ψ−1(x))2

ρ ∈ Cρ,∞[0,∞). Indeed, the first one follows from the
limit limt→∞ ρ(t) · e0ρ (y) = 1. The second one follows from the limit

lim
t→∞

ρ(t) ·
((ψ−1 − ψ−1(x))2

ρ

)
(t) = lim

t→∞

( t

1 + t
− x

1 + x

)2
=

1

(1 + x)2
.

Let us denote g = Φf and y = ψ−1(x). Note that y ∈ [0, 1). Let us consider
the operator LΦ, defined in relation (6). Using relations (4), (5), (6) and the fact
that y < 1 we obtain

LΦ(g, y) = Φ(L(Φ−1g), y) = Φ(L(f), y) = ρ(ψ(y))L(f, ψ(y)) = ρ(x)L(f, x).

g(y) = Φ(f, y) = ρ(ψ(y))f(ψ(y)) = ρ(x)f(x).

So that we have
|LΦ(g, y)− g(y)| = ρ(x)|L(f, x)− f(x)| (11)

Also we have

LΦ(e0, y) = Φ(L(Φ−1e0), y) = ρ(ψ(y))L
(e0

ρ
, ψ(y)

)
= ρ(x)L

(e0

ρ
, x
)
, (12)

LΦ((e1 − ye0)j , y) = Φ(L(Φ−1(e1 − ye0)j), y)

= ρ(ψ(y))L(Φ−1(e1 − ye0)j , y)

= ρ(x)L
((e1 − ye0)j ◦ ψ−1

ρ
, x
)

= ρ(x)L
((ψ−1 − ψ−1(x)e0)j

ρ
, x
)
. (13)

where j=1,2.
If we apply estimates (7), (8) for L = LΦ and take into account relations (11),

(12), (13) and devide by ρ(x) > 0 we obtain (9) and (10).

In what follows we consider two important weights ρ(x) = 1 and ρ(x) =
1/(1 + x2), x ≥ 0. The approximation with regard to weight ρ = e0 is equivalent
to uniform approximation.

Theorem 2. Let ρ = e0. Let L : Cρ,∞[0,∞) → Cρ,∞[0,∞) be a linear positive
operator and f ∈ Cρ,∞[0,∞). For all x ∈ [0,∞)

|L(f, x)− f(x)| ≤ |f(x)| · |L(e0, x)− 1|

+(L(e0, x) + 1)ω1

(
f ◦ ψ,

√
L((e1 − xe0)2, x)

1 + x

)
(14)
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|L(f, x)− f(x)| ≤ |f(x)| · |L(e0, x)− 1|

+
√
L(e0, x)ω1

(
f ◦ ψ,

√
L((e1 − xe0)2, x)

1 + x

)

+
(
L(e0, x) +

1

2

)
ω2

(
f ◦ ψ,

√
L((e1 − xe0)2, x)

1 + x

)
. (15)

Proof. Since, for t ∈ [0,∞) we have(
t

1 + t
− x

1 + x

)2

≤ (t− x)2

(1 + x)2
,

we obtain

L((ψ−1 − ψ−1e0)2, x) ≤ L((e1 − xe0)2, x)

(1 + x)2
.

Next, using the Cauchy-Schwarz inequality we have

|L(ψ−1 − ψ−1e0, x)| ≤
√
L((ψ−1 − ψ−1e0)2, x)

√
L(e0, x)

≤
√
L(e1 − xe0)2, x)

1 + x

√
L(e0, x).

Applying relations (9) and (10) for h =
√
L((e1 − xe0)2, x)/(1 + x) and taking

into account the relations above we obtain (14) and (15).

Remark 1. If we apply directly Theorem A and Theorem B for I = [0,∞), g = f ,
y = x and h =

√
L((e1 − xe0)2, x) we obtain

|L(f, x)− f(x)| ≤ |f(x)| · |L(e0, x)− 1|

+(L(e0, x) + 1)ω1

(
f,
√
L(e1 − xe0)2, x)

)
, (16)

|L(f, x)− f(x)| ≤ |f(x)| · |L(e0, x)− 1|

+|L(e1 − xe0, x)|ω1

(
f,
√
L(e1 − xe0)2, x)

)
+
(
L(e0, x) +

1

2

)
ω2

(
f,
√
L(e1 − xe0)2, x)

)
. (17)

For h =
√
L((e1 − xe0)2, x) if we compare the moduli:

ω1

(
f ◦ ψ, h

1 + x

)
= sup

{
|f(u)− f(v)|, u, v ≥ 0,

|u− v|
(1 + u)(1 + v)

≤ h

1 + x

}
ω1(f, h) = sup{|f(u)− f(v)|, u, v ≥ 0, |u− v| ≤ h},

it follows that there is not a general inequality between them. It is similar for
the corresponding moduli of second order. Then the same conclusion is about the
estimates (14) and (15) compared with the estimates (16) and (17), respectively.
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Theorem 3. Let ρ = e0/(e0 + e2). Let L : Cρ,∞[0,∞) → Cρ,∞[0,∞) be a linear
positive operator and f ∈ Cρ,∞[0,∞). For all x ∈ [0,∞) one has

ρ(x)|L(f, x)− f(x)| ≤ ρ(x)|f(x)| ·
∣∣∣∣L(e0 + e2, x)

1 + x2
− 1

∣∣∣∣
+

[
L(e0 + e2, x)

1 + x2
+ 1

]
ω1

(
Φf,

√
L(e1 − xe0)2, x)

(1 + x2)(1 + x)2

)
, (18)

ρ(x)|L(f, x)− f(x)| ≤ ρ(x)|f(x)| ·
∣∣∣∣L(e0 + e2, x)

1 + x2
− 1

∣∣∣∣
+

√
L(e0 + e2, x)

1 + x2
ω1

(
Φf,

√
L((e1 − xe0)2, x)

(1 + x2)(1 + x)2

)

+
[L(e0 + e2, x)

1 + x2
+

1

2

]
ω2

(
Φf,

√
L((e1 − xe0)2, x)

(1 + x2)(1 + x)2

)
. (19)

Proof. We apply relations (9) and (10) multiplied by ρ(x). First note that ρ(x)L
(
e0
ρ , x

)
=

L(e0+e2,x)
1+x2

and

(ψ−1 − ψ−1(x)e0)2

ρ
(t) = (1 + t2)

( t

1 + t
− x

1 + x

)2
≤
( t− x

1 + x

)2
. (20)

Take h =
√

L(e1−xe0)2,x)
(1+x2)(1+x)2

. Then

ρ(x)

[
L
(e0

ρ
, x
)

+
1

h2
Ln

((ψ−1 − ψ−1(x)e0)2

ρ
, x
)]
ω1(Φf, h)

=

[
L(e0 + e2, x)

1 + x2
+ 1

]
ω1

(
Φf,

√
L((e1 − xe0)2, x)

(1 + x2)(1 + x)2

)
.

In a similar way we can treat the third term for (10), multiplied by ρ(x). Finally,
in order to estimate the coefficient of the second term (10), multiplied by ρ(x),
by using the Cauchy-Schwarz inequality and inequality (20) we obtain

ρ(x)

h

∣∣∣L(ψ−1 − ψ−1(x)e0

ρ
, x
)∣∣∣ ≤ ρ(x)

h
L
(∣∣∣ψ−1 − ψ−1(x)e0

ρ

∣∣∣, x)
≤ ρ(x)

h

√
L
( |ψ−1 − ψ−1(x)e0|2

ρ
, x
)√

L
(e0

ρ
, x
)

≤ ρ(x)

h

√
L((e1 − xe0)2, x)

(1 + x)2

√
L(e0 + e2, x)

=

√
L(e0 + e2, x)

1 + x2
.
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Remark 2. Similar estimates can be obtained from Theorem A and Theorem B
for I = [0,∞), g = f , y = x and h =

√
L((e1 − xe0)2, x) if we multiply relations

(16) and (17) by ρ(x). The obtained relations are better in certain cases than
relations (18) and (19), while in other cases the latter are better.

3 Applications to Szász-Mirakjan operators

The Szász-Mirakjan operators are defined as

Sn(f, x) =

∞∑
k=0

(nx)k

k!
e−nxf

(
k

n

)
, x ≥ 0

where f : [0,∞) → R is such that the series are convergent. Denote sn,k(x) =

e−nx (nx)k

k! . The following lemma is well known.

Lemma 1. For x ≥ 0 and n ≥ 1 one has

Sn(e0, x) = 1,

Sn(e1, x) = x,

Sn(e2, x) = x2 +
x

n
.

In order to apply the results from the previous sections to the Szász-Mirakjan
operators for the weights ρ = e0 and ρ0 = e0

e0+e2
we must prove the following

theorem.

Theorem 4. For ρ = e0 or ρ = e0
e0+e2

we have

Sn(Cρ,∞[0,∞)) ⊂ Cρ,∞[0,∞), n ∈ N. (21)

Proof. Fix n ∈ N. Let f ∈ Cρ,∞[0,∞) and denote ` = limx→∞ ρ(x)f(x). Let
ε > 0. We write

ρ(x)Sn(f, x) = `ρ(x)Sn

(
e0

ρ
, x

)
+ ρ(x)Sn

(
fρ− `e0

ρ
, x

)
=: T 1

n(x) + T 2
n(x). (22)

If ρ = e0, then ρ(x)Sn( e0ρ , x) = 1. If ρ = e0
e0+e2

, then from Lemma 1 we obtain
ρ(x)Sn( e0ρ , x) = 1 + x

n(x2+1)
. Therefore in both cases we have

lim
x→∞

ρ(x)Sn

(
e0

ρ
, x

)
= 1. (23)

Then there is x1 > 0, such that

|T 1
n(x)− `| < ε, x ≥ x1. (24)

Since ` = limx→∞ ρ(x)f(x), there is δ > 0, and M > 0, such that

|ρ(x)f(x)− `| < ε, for x ≥ δ, and |ρ(x)f(x)| ≤M, for x ≥ 0.
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Denote bn,k(x) = (ρ
(
k
n

)
f
(
k
n

)
− `)/(ρ

(
k
n

)
)sn,k(x). Choose an integer m > δn.

We have

|T 2
n(x)| ≤ ρ(x)

m∑
k=0

|bn,k(x)|+ ρ(x)
∞∑

k=m+1

|bn,k(x)|

< 2Mρ(x)

m∑
k=0

1

ρ
(
k
n

)sn,k(x) + ερ(x)

∞∑
k=m+1

1

ρ
(
k
n

)sn,k(x)

= : V 1
n (x) + V 2

n (x).

Then V 2
n (x) ≤ ερ(x)Sn

(
e0
ρ , x

)
. From relation (23) it follows that there is x2 > 0,

such that

V 2
n (x) < 2ε for x ≥ x1. (25)

Finally let us estimate V 1
n (x). If ρ = e0 then we have V 1

n (x) = 2M
∑m

k=0 sn,k(x).

If ρ = e0
e0+e2

, then using the equality
(
k
n

)2
+ 1 = k(k−1)

n2 + k
n2 + 1 we obtain

V 1
n (x) = 2Mρ(x)

[
x2

m∑
k=2

sn,k−2(x) +
x

n

m∑
k=1

sn,k−1(x) +
m∑
k=0

sn,k(x)

]

≤ 8M
m∑
k=0

sn,k(x).

Then in both cases we obtain

V 1
n (x) ≤ 8M

m∑
k=0

sn,k(x).

Since limy→∞
∑m

k=0 e
−y yk

k! = 0, there is y0, such that
∑m

k=0 e
−y yk

k! < ε, for all
y ≥ y0. Denote x3 = y0/n. Then

V 1
n (x) < 8Mε, for x ≥ x3. (26)

From relations (22), (24), (25), (25), (26) we obtain

|ρ(x)Sn(f, x)− `| ≤ ε(8M + 3), x ≥ max{x1, x2, x3}.

Hence limx→∞ ρ(x)Sn(f, x) = `. Then Sn(f) ∈ Cρ,∞[0,∞). Since f ∈ Cρ,∞[0,∞)
was chosen arbitrarily the theorem follows.

We move on to construct estimates of the degree of weighted approximation.
First consider the weight ρ(x) = 1, x ≥ 0.



General estimates of the weighted approximation 101

Theorem 5. For ρ = e0, f ∈ Cρ,∞[0,∞), x ∈ [0,∞), n ∈ N it holds:

|Sn(f, x)− f(x)| ≤ 2ω1

(
f ◦ ψ,

√
x

n(1 + x)2

)
, (27)

|Sn(f, x)− f(x)| ≤ ω1

(
f ◦ ψ,

√
x

n(1 + x)2

)
+

3

2
ω2

(
f ◦ ψ,

√
x

n(1 + x)2

)
,(28)

‖Snf − f‖ ≤ 2ω1

(
f ◦ ψ, 1

2
√
n

)
, (29)

‖Snf − f‖ ≤ ω1

(
f ◦ ψ, 1

2
√
n

)
+

3

2
ω2

(
f ◦ ψ, 1

2
√
n

)
. (30)

Proof. By taking into account Lemma 1 we have Sn((e1−xe0)2, x) = x
n . We apply

relations (14) and (15).

Corollary 1. If f ∈ Ce0,∞[0,∞) then

lim
n→∞

‖Snf − f‖ = 0.

Proof. We take into account that f ◦ ψ ∈ C[0, 1].

Theorem 6. For ρ = e0, f ∈ Cρ,∞[0,∞), and x ∈ [0,∞) it holds:

|Sn(f, x)− f(x)| ≤ 2ω1

(
f,

√
x

n

)
, (31)

|Sn(f, x)− f(x)| ≤ 3

2
ω2

(
f,

√
x

n

)
. (32)

Proof. We apply relations (16) and (17) and Lemma 1.

Remark 3. From relations (31) and (32) we cannot obtain Corollary 1. We can
only obtain the uniform convergence of Snf to f on the compacts subsets of [0,∞).
Moreover, no other choice of the argument h = hn > 0 in Theorem A or Theorem
B, for L = Sn leads estimates in sup-norm of the degree of approximation.

Remark 4. Corollary 1 can be obtained also in another mode. It is easy to show
that if f ∈ Ce0,∞[0,∞), then f ◦ e2 ∈ Ce0,∞[0,∞). Also it is easy to show that all
the functions from the space Ce0,∞[0,∞) are uniformly continuous. Then we can
apply the following theorem of V. Totik [14].

Theorem C If f ∈ C[0,∞) is so that f ◦e2 is uniformly continuous on [0,∞),
then

lim
n→∞

Sn(f) = f uniformly on [0,∞)

.

Now consider the weight ρ(x) = 1
1+x2

, x ≥ 0.
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Theorem 7. Let ρ = e0
e0+e2

and f ∈ Cρ,∞[0,∞). For x ∈ [0,∞), n ∈ N it holds:

ρ(x)|Sn(f, x)− f(x)| ≤ x

n(1 + x2)
|ρ(x)f(x)|

+

(
2 +

x

n(1 + x2)

)
ω1

(
Φf,

√
x

n(1 + x)2(1 + x2)

)
, (33)

ρ(x)|Sn(f, x)− f(x)| ≤ x

n(1 + x2)
|ρ(x)f(x)|

+

√
1 +

x

n(1 + x2)
ω1

(
Φf,

√
x

n(1 + x)2(1 + x2)

)
+

(
3

2
+

x

n(1 + x2)

)
ω2

(
Φf,

√
x

n(1 + x)2(1 + x2)

)
, (34)

‖Snf − f‖ρ ≤
1

2n
‖f‖ρ +

(
2 +

1

2n

)
ω1

(
Φf,

0.423√
n

)
. (35)

‖Snf − f‖ρ ≤
1

2n
‖f‖ρ +

√
2 +

1

2n
ω1

(
Φf,

0.423√
n

)
+

(
3

2
+

1

2n

)
ω2

(
Φf,

0.423√
n

)
. (36)

Proof. Relations (33) and (34) follow from (18), (19) by taking into account
Lemma 1.

Relations (35) and (36) follow from (33) and (34) and the following inequalities√
x

(1 + x2)(1 + x)2
≤ 0.423,

x

1 + x2
≤ 1

2
, (x ≥ 0).

Corollary 2. If ρ = e0
e0+e2

and f ∈ Cρ,∞[0,∞) then

lim
n→∞

‖Snf − f‖ρ = 0. (37)

Proof. We apply (35) or (36) by taking into account that Φf ∈ C[0, 1].

Theorem 8. Let ρ = e0
e0+e2

. For any f ∈ Cρ,∞[0,∞) and x ∈ [0,∞) it holds:

ρ(x)|Sn(f, x)− f(x)| ≤ 1 + x

1 + x2
ω1

(
f,

1√
n

)
, (38)

ρ(x)|Sn(f, x)− f(x)| ≤ 2 + x

2(1 + x2)
ω2

(
f,

1√
n

)
, . (39)

Consequently, for any n ∈ N we have

‖Snf − f‖ρ ≤
1 +
√

2

2
ω1

(
f,

1√
n

)
, (40)

‖Snf − f‖ρ ≤
√

2

4
ω2

(
f,

1√
n

)
, . (41)
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Proof. Relations (38) and (39) follow from Theorem A and Theorem B, respec-
tively, by taking h = 1√

n
. Then relations (40) and (41) follow from (38) and (39),

respectively, since

sup
x∈[0,∞)

1 + x

1 + x2
=

1 +
√

2

2
sup

x∈[0,∞)

2 + x

2(1 + x2)
=

√
2

4

Remark 5. In contrast with the case of the weight ρ = e0 now we obtained
estimates in norm of the degree of approximation. However from relations (40)
and (41) we cannot deduce Corollary 2, because the condition f ∈ Cρ,∞[0,∞)

does not imply that limn→∞ ωj

(
f, 1√

n

)
= 0, for j = 1, 2. Indeed, consider the

function f ∈ F[0,∞) defined in the following mode. For any k ∈ N = {1, 2, . . .},
f(k) = k, f

(
k ± 1

2k

)
= 0 and f is linear on each of the intervals of the form[

k − 1
2k , k

]
,
[
k, k + 1

2k

]
,
[
k + 1

2k , k + 1− 1
2(k+1)

]
and also f(x) = 0 for x ∈

[
0, 1

2

]
.

Then f ∈ Cρ,∞[0,∞) and ωj

(
f, 1√

n

)
=∞, for j = 1, 2. No other choice of h = hn

in (38) or (39) solves the problem, since all choices must be of the form hn = q√
n

,

with q constant.

4 Applications to Baskakov operators

The Baskakov operators are defined by the relation

BAn(f, x) =

∞∑
k=0

(
n+ k − 1

k

)
xk

(x+ 1)n+k
f

(
k

n

)
, x ≥ 0, f : [0,∞)→ R, n ∈ N,

where f is taken such that the series are convergent. Denote qn,k(x) =
(
n+k−1

k

)
xk

(x+1)n+k ,

k ∈ N, x ≥ 0.

Lemma 2. For the test functions ej(x) = xj , j = 0, 1, 2 one has

BAn(e0, x) = 1

BAn(e1, x) = x

BAn(e2, x) = x2 +
x(x+ 1)

n

First we prove the following theorem.

Theorem 9. For ρ = e0 or ρ = e0
e0+e2

we have

BAn(Cρ,∞[0,∞)) ⊂ Cρ,∞[0,∞), n ∈ N. (42)
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Proof. Fix n ∈ N. Let f ∈ Cρ,∞[0,∞) and denote ` = limx→∞ ρ(x)f(x). Let
ε > 0. We write

ρ(x)BAn(f, x) = `ρ(x)BAn

(
e0

ρ
, x

)
+ ρ(x)BAn

(
fρ− `e0

ρ
, x

)
=: T̃ 1

n(x) + T̃ 2
n(x).

(43)

If ρ = e0, then ρ(x)BAn( e0ρ , x) = 1. If ρ = e0
e0+e2

, then from Lemma 1 we

obtain ρ(x)BAn( e0ρ , x) = 1 + x(1+x)
n(x2+1)

. In this case we obtain

lim
x→∞

ρ(x)BAn

(
e0

ρ
, x

)
=
n+ 1

n
. (44)

Denote

˜̀=

{
`, ρ = e0

n+1
n `, ρ = e0

e0+e2
.

Then in both the cases there is x1 > 0, such that

|T̃ 1
n(x)− ˜̀| < ε, x ≥ x1. (45)

Since ` = limx→∞ ρ(x)f(x), there is δ > 0, and M > 0, such that

|ρ(x)f(x)− `| < ε, for x ≥ δ, and |ρ(x)f(x)| ≤M, for x ≥ 0.

Denote cn,k(x) = (ρ
(
k
n

)
f
(
k
n

)
− `)/(ρ

(
k
n

)
)qn,k(x). Choose an integer m > δn.

We have

|T̃ 2
n(x)| ≤ ρ(x)

m∑
k=0

|cn,k(x)|+ ρ(x)
∞∑

k=m+1

|cn,k(x)|

< 2Mρ(x)

m∑
k=0

1

ρ
(
k
n

)qn,k(x) + ερ(x)

∞∑
k=m+1

1

ρ
(
k
n

)qn,k(x)

= : Ṽ 1
n (x) + Ṽ 2

n (x).

Then Ṽ 2
n (x) ≤ ερ(x)BAn

(
e0
ρ , x

)
. From relation (44) it follows that there is

x2 > 0, such that

Ṽ 2
n (x) < 2ε for x ≥ x2. (46)

It remains to estimate Ṽ 1
n (x). If ρ = e0 then we have Ṽ 1

n (x) = 2M
∑m

k=0 qn,k(x).

If ρ = e0
e0+e2

, then we use the equality
(
k
n

)2
+ 1 = k(k−1)

n2 + k
n2 + 1. We have

k

n2
qn,k(x) =

n+ k − 1

n2
· x

1 + x
qn,k−1(x) ≤ qn,k−1(x), k ≤ 1,

k(k − 1)

n2
qn,k(x) =

(n+ k − 1)(n+ k − 2)x2

n2(1 + x)2
qn,k−2(x) ≤ qn,k−2(x), k ≤ 2.
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Then

Ṽ 1
n (x) = 2Mρ(x)

[
m∑
k=2

qn,k−2(x) +
m∑
k=1

qn,k−1(x) +
m∑
k=0

qn,k(x)

]

≤ 8M
m∑
k=0

qn,k(x).

Then in both cases we have

Ṽ 1
n (x) ≤ 8Mρ(x)

m∑
k=0

qn,k(x).

But limx→∞ ρ(x)
∑m

k=0 qn,k(x) = 0. Then there is x3 > 0, such that

Ṽ 1
n (x) < ε, for x ≥ x3. (47)

From relations (43), (45), (46), (46), (47) we obtain

|ρ(x)BAn(f, x)− ˜̀| ≤ 4ε x ≥ max{x1, x2, x3}.

Hence limx→∞ ρ(x)BAn(f, x) = ˜̀. Then BAn(f) ∈ Cρ,∞[0,∞)). The theorem is
proved.

Now we can apply estimates given in the previous section. First consider the
weight ρ(x) = 1, x ≥ 0.

Theorem 10. Let ρ = e0 and f ∈ Cρ,∞[0,∞). For x ≥ 0 and n ∈ N it holds:

|BAn(f, x)− f(x)| ≤ 2ω1

(
f ◦ ψ,

√
x

n(1 + x)

)
, (48)

|BAn(f, x)− f(x)| ≤ ω1

(
f ◦ ψ,

√
x

n(1 + x)

)
+

3

2
ω2

(
f ◦ ψ,

√
x

n(1 + x)

)
,(49)

|BAn(f, x)− f(x)| ≤ 2ω1

(
f,

√
x(1 + x)

n

)
, (50)

|BAn(f, x)− f(x)| ≤ 3

2
ω2

(
f,

√
x(1 + x)

n

)
. (51)

Proof. We apply relations (14), (15), (16) and (17) for L = BAn by taking into
account Lemma 2.

From relations (48) and (48) we obtain:

Corollary 3. Let ρ = e0 and f ∈ Cρ,∞[0,∞). For n ∈ N it holds:

‖BAnf − f‖ ≤ 2ω1

(
f ◦ ψ, 1√

n

)
, (52)

‖BAnf − f‖ ≤ ω1

(
f ◦ ψ, 1√

n

)
+

3

2
ω2

(
f ◦ ψ, 1√

n

)
, (53)
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Consequently
lim
n→∞

‖BAnf − f‖ = 0. (54)

Proof. Relations (52) and (53) follow immediately from relations (48) and (49).
Relation (54) follows from (52) or (53) since f ◦ ψ ∈ C[0, 1].

Remark 6. From relations (50), (51) and more general, from Theorem A or
Theorem B we cannot obtain an estimate in sup-norm of the degree of approxi-
mations.

Now we consider the weight ρ(x) = 1
1+x2

, x ≥ 0.

Theorem 11. Let ρ = e0
e0+e2

and f ∈ Cρ,∞[0,∞). For x ≥ 0 and n ∈ N it holds:

ρ(x)|BAn(f, x)− f(x)| ≤ x(x+ 1)

n(x2 + 1)
ρ(x)|f(x)|

+

(
2 +

x(x+ 1)

n(x2 + 1)

)
ω1

(
Φf,

√
x

n(x2 + 1)(x+ 1)

)
, (55)

ρ(x)|BAn(f, x)− f(x)| ≤ x(x+ 1)

n(x2 + 1)
ρ(x)|f(x)|

+

√
(n+ 1)x2 + x+ n

n(x2 + 1)(x+ 1)2
ω1

(
Φf,

√
x

n(x2 + 1)(x+ 1)

)
+

(
3

2
+

x(x+ 1)

n(x2 + 1)

)
ω2

(
Φf,

√
x

n(x2 + 1)(x+ 1)

)
, (56)

ρ(x)|BAn(f, x)− f(x)| ≤ 1 + x+ x2

1 + x2
ω1

(
f,

1√
n

)
, , (57)

ρ(x)|BAn(f, x)− f(x)| ≤ 2 + x+ x2

2(1 + x2)
ω2

(
f,

1√
n

)
, , (58)

Proof. From Lemma 2 we obtain

ρ(x)BAn

(
e0

ρ
, x

)
=
BAn(e0 + e2, x)

1 + x2
= 1 +

x(1 + x)

n(1 + x2)
.√

BAn(e0 + e2, x)

(1 + x2)(1 + x)2
=

√
(n+ 1)x2 + x+ n

n(x2 + 1)(x+ 1)2

By replacing this in (18) and (19) we obtain relations (55) and (56).
Relations (57) and (58) can be obtained multiplying by ρ(x) relations (7) and

(8) from Theorem A and Theorem B for I = [0,∞), L = BAn, y = x, g = f and
h = 1√

n
. For this note that

ρ(x)[BAn(e0, x) + h−2BAn((e1 − xe0)2, x)] =
1

1 + x2
+
x(1 + x)

1 + x2
=

1 + x+ x2

1 + x2
,

ρ(x)
[
BAn(e0, x)+

1

2
h−2BAn((e1−xe0)2, x)

]
=

1

1 + x2
+
x(1 + x)

2(1 + x2)
=

2 + x+ x2

2(1 + x2)
.
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Corollary 4. Let ρ = e0
e0+e2

and f ∈ Cρ,∞[0,∞). For n ∈ N it holds:

‖BAnf − f‖ρ ≤
1 +
√

2

2
‖f‖ρ +

1 +
√

2

2
ω1

(
Φf,

0.529√
n

)
, (59)

‖BAnf − f‖ρ ≤
1 +
√

2

2
‖f‖ρ +

√
1 +
√

2

2
ω1

(
Φf,

0.529√
n

)
+
(3

2
+

1 +
√

2

2n

)
ω2

(
Φf,

0.529√
n

)
, (60)

‖BAnf − f‖ρ ≤
3

2
ω1

(
f,

1√
n

)
, (61)

‖BAnf − f‖ρ ≤ 1.105ω2

(
f,

1√
n

)
. (62)

Proof. We pass to supremum with regard to x ≥ 0 in relations (55), (56), (57),
(58).

Corollary 5.

lim
n→∞

‖BAnf − f‖ρ = 0. (63)

Proof. We can apply one of relations (55) or (56), since Φf ∈ C[0, 1].

Remark 7. For obtaining relation (63) we cannot apply relations (57) or (58),
since it is not sure that f is uniformly continuous. See the argument given in
Remark 5.

Conclusion For both sequences of operators (Sn)n and (BAn)n and for the
both weights ρ = e0 and ρ = e0

e0+e2
we obtained quantitative results of the degree

of approximation in norm ‖ · ‖ρ by applying the transformation. However, such
estimates are impossible to be obtained directly from general estimates given in
Theorem A and Theorem B. See the Remark 3 Remark 5, Remark 6 and Remark
7.
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Math. 56 (2011), no. 2, 497-504.

[13] Shisha, O. and Mond, B, The degree of convergence of linear positive opera-
tors, Proc. Nat. Acad. Sci. USA, 60 (1968), 1196-1200.

[14] Totik, V., Uniform approximation by Szasz-Mirakjan type operators, Acta
Math. Hungar. 41 (1983), no. 3–4, 291-307.


