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NONEXISTENCE OF SUBNORMAL SOLUTIONS FOR A
CLASS OF HIGHER ORDER COMPLEX DIFFERENTIAL
EQUATIONS
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Abstract

In this article, we investigate the existence of subnormal solutions for a
class of higher order complex differential equations. We generalize the result
of N. Li and L. Z. Yang [14], L. P. Xiao [17] and also result of Z. X. Chen
and K. H. Shon [4].
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1 Introduction

In this article, we use the standard notations of the Nevanlinna theory, see
[11, 12, 18]. We denote the order of growth of a meromorphic function f by
o(f). To express the rate of growth of meromorphic of infinite order, we recall the
following definitions.

Definition 1 ([18]). The hyper-order of growth of a meromorphic function f is
defined by

— loglogT(r, f)

lim ————=——2=2
r—-00 log r

o2(f) =

where T(r, f) is the Nevanlinna characteristic function of f.

In [7], Chiang and Gao gave the definition of the e-type order of a meromorphic
function as follows.
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Definition 2 ([7]). Let f be a meromorphic function. Define

R ey log T'(r, f)
Je(f) - TEIEOOT

to be the e-type order of f.

The following results are obvious.

1. If 0 < 0.(f) < 400, then oo(f) = 1.
2. If o2(f) < 1, then o.(f) = 0.

3. If o2(f) = 400, then o(f) = +oo.

Consider the second-order homogeneous linear periodic differential equation
ffHPE) f +Q(e) f=0, (1)

where P (w) and @ (w) are not constants polynomials in w = e* (z € C). It’s well
known that every solution of equation (1) is entire.

Definition 3 ([8, 16]). If f # 0 is a solution of equation (1), and satisfies o.(f) =
0, then we say that f is a nontrivial subnormal solution of (1). For convenience,
we also say that f =0 is a subnormal solution of (1).

In [8, 16], subnormal solutions of (1) were investigated. In [16], H. Wittich
has given the general forms of all subnormal solutions of (1) that are shown in
the following theorem.

Theorem 1. If f # 0 is a subnormal solution of (1), then f must have the form
f(z) = e“(ap+ ar€® + - - - + ame™),
where m > 0 is an integer and c, ag,ai, ..., ey are constants with agay, # 0.

Based on the comparison of degrees of P and (), Gundersen and Steinbart [8]
refined Theorem 1 and obtained the exact forms of subnormal solutions of (1) as
follows.

Theorem 2. Under the assumption of Theorem 1, the following statements hold.
(i) If deg P > deg @ and Q # 0, then any subnormal solution f # 0 of (1)
must have the form

f(z) =ao+aie™ 4+ +ame™ ",

where m > 1 is an integer and ag, a1, ..., a;y, are constants with aga,, # 0.
(i) If @ = 0 and deg P > 1, then any subnormal solution of (1) must be a
constant.

(ii1) If deg P < deg @, then the only subnormal solution of (1) is f = 0.
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For second order differential equations, Chen and Shon [4] studied the exis-
tence of subnormal solutions of the equation

P4 [P + Po(e79)] 4 [Q1(€) +Qa (¢79)] =0, (2)

where Pj(z), P2(z),Q1(2) and Q2(z) are polynomials in z, and obtained the fol-
lowing results.

Theorem 3. Let Pj(z),Q;(2) (j =1,2) be polynomials in z. If
deg Q1 > deg P, or deg Q2 > deg P,

then the equation (2) has no nontrivial subnormal solution, and every solution of
(2) satisfies oa(f) = 1.

Theorem 4. Let Pj(z),Q;(z) (j =1,2) be polynomials in z. If
deg Q1 < deg P; and deg Qo < deg P

and Q1+ Q2 # 0, then the equation (2) has no nontrivial subnormal solution, and
every solution of (2) satisfies oo(f) = 1.

Li-Yang [14] considered the case when deg @) = deg P} and deg Q2 = deg P,
in the equation (2), and they proved it.

Theorem 5. Let

(2) = apz"+---+ a1+ ao,
(2) = bpz"+---4 b1+ bo,
Py(z) = epz™ 4+ +co,
(2) = dpz™+---+di +do,

where a;,b; (i = 0,...,n), ¢;,d; (j =0,...,m) are constants, apbpcmdy, # 0.
Suppose that andy, = by and any one of the following three hypothesis hold:

1. There exists © satisfying (—g—z)ai +b#0,0<i<n.
2. There exists j satisfying (—s—z)cj +d; #0,0<j<m.
3. (—%)2 + (—%)(CLO + Co) + by + dp 7& 0.

Then (2) has no nontrivial subnormal solution, and every nontrivial solution

f satisfies oo(f) = 1.

In the same article [14], Li-Yang investigated the existence of subnormal solu-
tions of the general form

[P + P ()] 4 @1 () + Qe (e7) [ r =0, (3)

where Pj(z), P2(z),Q1(2) and Q2(z) are polynomials in z. a, 8 are complex con-
stants, and they proved the following results.
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Theorem 6. Let

P (z) = apm 2™ +---+ a1+ ano,

Py(2) = agm,2™ + -+ az + a,

Q1 (2) = b 2"+ + b+ bio,

Q2 (Z) = bgmz”? 4+ -+ bo1 + bo,
where my, > 1, ng, > 1 (k = 1,2) are integers, a1, (i1 = 0,...,m1), ag,(ia =
0,...,mg), bij;(j1 = 0,...,n1), bajp(jo = 0,...,n2), a and  are complex con-

stants, a1m,a2myb1n,bon, # 0, af # 0. Suppose mia = ciniff (0 < ¢1 < 1) or
maa = canaf (0 < ca < 1). Then (3) has no nontrivial subnormal solution, and
every nontrivial solution f satisfies oo(f) = 1.

Theorem 7. Let

P (z) = apm 2™ +---+ a1 + a,

Py (z2) = a2m,2™ +--- + a1 + ag,

Q1(2) = by 2™ + -+ bi1 + bio,

Q2(2) = bapy2"™ + -+ ba1 + oo,
where my, > 1, np > 1 (k = 1,2) are integers, a4, (in = 0,...,m1), ag,(ia =
0,...,m2), b1, (j1 = 0,...,n1), baj,(jo = 0,...,n2), a and B are complex con-

stants, a1m,a2mybin,bon, # 0, af # 0. Suppose mia = ciniff (e1 > 1) and
maa = canaf (ca > 1). Then (3) has no nontrivial subnormal solution, and every
nontrivial solution f satisfies oo f) = 1.

For higher order differential equations, Chen-Shon [5] and Liu-Yang [15] im-
proved the Theorems 3, 4 to higher periodic differential equation
f(k) + [Pk:—l (€*) + Qr_1 (e—z)} f(k—l) 4ot [PO () + Qo (6—2)] f=0 (4
and they proved the following results.
Theorem 8 ([15, 5]). Let Pj(2),Q;(z) ( =0,...,k—1) be polynomials in z with
deg P; = mj, deg Q; = n;. If Py satisfies
mo >max{m;:1 <j<k—-1}=m
or Qo satisfies
no > max{n;:1<j<k—-1} =n,
then (4) has mo montrivial subnormal solution, and every solution of (4) is of
hyper-order oo(f) = 1.
Theorem 9 ([5]). Let Pj(2),Q;(2) (j = 0,...,k — 1) be polynomials in z with
deg P; = mj, degQ; = nj, and Py + Qo # 0. If there exists mg,ng (s,d €
{0,...,k —1}) satisfying both inequalities
ms > max{m;:j=0,...,s—1,s+1,....k—1} =m,
ng > max{n;:j=0,...,d=-1,d+1,...,k—1} =n,
then (4) has mo montrivial subnormal solution, and every solution of (4) is of
hyper-order oo(f) = 1.
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2 Main results

The main purpose of this article is to answer the following question.
Question. Can Theorems 6, 7 be generalized to higher order differential
equation? We will prove the following results.

Theorem 10. Let

FO+[Peor (e241%) + Qpn (e7*1) ] fETV e [Py (€79%) + Qo (e7*°%)] f =0,
(5)
where
Pj(z) = ajm;z2"™ + aj(mj,l)zmjfl +---+aj, j=0,...,k—1,
Qj(2) = bjn;2"™ +bjn; 1)z T+ bjo, =0, k1
and mj > 1,n; > 1(j=0,....,k —1;k > 2) are integers, aj, # 0,bj, # 0 and

a; #0 (j =0,..., k=1, u=0,...,my; v=0,...,n5) are complex constants.
Suppose that

cjmoa():mjaj,0<c]~<1,Vj:1,...,k:—1
or
djnoozo:njaj, 0<dj<1,Vj:1,...,k—1,

then equation (5) has no nontrivial subnormal solution, and every solution of (5)

satisfies oo(f) = 1.

Theorem 11. Let
f(k)+[Pk—1 (e%-1%) 4+ Qp_y (e—akflz)] f(k—1)+. . .+[p0 (€% + Qo (e—aoz)] f=0,

where

Pj(z) = ajmjzmj+aj(mj_1)zmj_1+~-+ajo, j=0,....k—1,

Qi(2) = by bja, )2 b, =0,k
and mj > 1,n; >1(j=0,....,k—1;k > 2) are integers, aj, # 0,bj, # 0 and

a; #0(j=0,....,k—1;u=0,...,m;; v=0,...,n;) are complex constants such
that Py (€*0%) + Qo (e~*0%) £ 0. If there exists s,t € {0,...,k — 1} such that

msos = c;miog, ¢ >1, 7=0,...,s =1, s+1,...,k—1,
and
niay = djnjog, dj >1, j=0,...,t—=1,t+1,..., k-1,

then equation (6) has no nontrivial subnormal solution, and every solution of (6)
satisfies oo(f) = 1.

As a generalization of higher order equations of Theorem 1.5 and Theorem 1.6
in [17], we have the following results.
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Theorem 12. Let
P; (€%9%) = ajm, €% + ajgm, pyel™ VY 4 tago, =0, k=1,

where m; > 1 (j = 0,...,k — 1;k > 2) are integers, aj, # 0 and o # 0 (j =

0,....,k—1;u=0,...,m;) are complex constants. Suppose that cymoag = m;jc;,
0<c¢;<1,Vj=1,...,k—1. Then equation
FE 4 Poy (e70) fE 4 By (e20%) f = 0 (7)

has no nontrivial subnormal solution, and every solution satisfies oo(f) = 1.
Theorem 13. Let

P} (e%) = ajm; ™% + aj(mj_1)6(mj_1)ajz +--+ajpe®* j=0,... k-1,

where m; > 1 (j = 1,...,k — 1;k > 2) are integers, aj, # 0 and oj # 0 (j =
0,....,k—=1;u=0,...,mj) are complex constants. Suppose that Py (e*°*) # 0

and there exists s € {1,...,k — 1} such that cymsas = mjo, 0 < ¢; < 1,Vj =
0,...,s—1,s+1,....,k— 1. Then the equation
PO+ P (e 2) fD o By (e20%) f =0 (8)

has no nontrivial subnormal solution, and every solution satisfies oo(f) = 1.

In [15], Liu-Yang gave an example that shows that in Theorem 8, if there
exists deg P; = deg P; and deg Q; = deg Q; (i # j), then equation (4) may have a
nontrivial subnormal solution.

Example ([15, page 610]). A subnormal solution f = e * satisfies the follow-
ing equation

FO 4 D g (€2 e ) f 4 (e e B f =0,

where n is an odd number.
Question. What can we say when deg Py = deg P} and deg Qo = deg@; in
equation (4)? We have the following result.

Theorem 14. Let Pj(2),Q;(2) (j = 0,...,k — 1) be polynomials in z with

deg Py = degPi = m,deg Qo = deg@Q1 = n, degP; = mj, deg@; = n; (j =
2,...,k—1), let

Pi(2) = am2™+am 12" +---+ao,

Py(2) = bpz™+bp12™ 4+ by,

Q1(z) = 2"+ Cno1 2" 4+ o,

Qo (Z) = dp2" + dn—lzn_l + -+ do,
where ay, by, Cy,dy (u=20,...,m;v=0,...,n) are complex constants, ay,by,cnd, #
0. If amdy, = bpcp, m > max{m; : j = 2,...,k— 1}, n > max{n; : j =
2,...,k —1} and e=m/9m)% s not a solution of (4), then equation (4) has no

nontrivial subnormal solution, and every solution f of (4) satisfies oa(f) = 1.
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Example. This example shows that Theorem 14, is not a particular case and
it is different from Theorems 8, 9. Consider the differential equation

"+ (ez + e*Z) '+ (63Z — e*QZ) f+ (—2€3z + 2672'2) f=0.

By Theorems 8, 9, we can’t say anything about the existence or nonexistence
of nontrivial subnormal solutions, because neither hypotheses of Theorem 8 or
of Theorem 9 are satisfied. But, we can see that all hypotheses of Theorem
14 are satisfied, then we guarantee that the above equation has no nontrivial
subnormal solution. In fact, we have k = 3, Py(e®) = €%, Q2(e %) = e, Pi(e?) =
e37,Q1(e7?) = —e 2%, Py(e®) = —2¢%* and Qp(e™®) = 2%, m = 3, n = 2,
m>1=degPo,n >1=degQs, am, = 1,by = —2,¢, = —1 and d,, = 2, and
we have a,,d, = bnc,. It’s clear that e~ (bm/am)z — ¢2% {5 ot a solution of the
equation above.

Remark 1. In Theorem 14, if the equation (4) accepts e~(bm/am)z 45 g solution,
then (4) has a subnormal solution. But, if e~m/am)* doesn’t satisfy (4), is there
another subnormal solution may that satisfy (4)? The conditions of Theorem 14
guarantee that, if (4) doesn’t accept e=m/9m)* a5 a subnormal solution, then (4)
doesn’t accept any other subnormal solution.

Remark 2. In Theorem 14, we can replace the condition ” e~ (Om/am)z is not q
solution of (4) 7 by many partial conditions. For example

1. P]'(O)-FQJ'(O)ZO, (jZO,...,k—l).
2. Pi(0)+Q;(0)=1, (j=0,....,k—1) and ay, # bp,.
3. Pj(0)+Q;(0)=1, (j=0,...,k—1), am = by, and k is an even number.

4. Pi(0)+Q;(0)=0,P(0)+Q(0)=1(=0,....55l=s+1,...,k—1),
am = by, and s,k are both even or both odd. And so on.

Remark 3. In Theorem 5, the hypotheses (1)-(3) can be replaced by the condition
7e=(0n/an)z s not a solution of (2)”.

3 Some lemmas

Lemma 1 ([18, page 82]). Let fi(z) (j = 1,...,n) be meromorphic functions,
and gij(z) (j =1,...,n) be entire functions satisfying

1.3 fi(2)e%®) = 0.
=0

2. when 1 < j <k <n, then gj(z) — gr(2) is not constant.
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3. when1<j<nandl1l < h<k<n, then
T(r, f;) = o{T(r,e %)}, r—o0,r ¢ E,

where E C (1,400) is of finite linear measure or finite logarithmic measure.

Then fj(2)=0 (j=1,...,n).

n [5], Chen-Shon proved [5, Lemma 2| that (4) has no polynomial solution
under the hypotheses of Theorem 9. We will prove a similar result for the general
case under one condition that factor f in (4) is not identically zero. Chen-Shon
used the Lemma 1 in their proof, to get a contradiction in case that f is polynomial
with deg(f) < s < d. We use the same method but for all equations of the form
(4), just with condition Py (€*) + Qo (e~*) # 0. We will prove.

Lemma 2. Let Pj(z),Q;(z) (j =0,...,k—1) be polynomials in z with deg P; =
mj, deg Q; = nj. If Py(e*) + Qo (e7?) # 0, then every solution of the equation

f(k:) + [Pk:—l (%) + Qi1 (e—z)] f(k:—l) I [PO (") + Qo (e—z)] F=0 (9
18 transcendental.

Proof. 1t’s well known that every solution of the equation (9) is an entire function.
f =0, is trivial solution. Since Py (e*)+ Qo (e %) # 0, then f can’t be a constant.
Now, suppose that f is a nonconstant polynomial solution of (9). Let

m; n;
Pi(e) +Qj (e7%) =D ajpe” +cj+ Y bjge ”, (10)

p=1 q=1
where ajp,bjqand ¢j (j =0,...,k—1;p=1,...,m;jand ¢ =1,...,n;) are complex
constants. m; > 1,n; > 1 are integers and ajm;bjn; # 0, for all j =0,...,k—1.

Set m = max{m; : j =0,...,k—1} and n = max{n; : j =0,...,k —1} . Then
we can rewrite (10) as

Pj(e*) +Qj (e Z ajpe’” "’Zaypep +CJ+Zque 4 Z bjqe” ",
p=m;+1 qg=n;+1
(11)
where aj, =0, (p=m;+1,...,m)and bjy =0, (¢ =n; +1,...,n). By (9) and
(11), we obtain

m n
ZApepz +Ce® + Zqu_qZ =0, (12)
p=1 q=1
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where

k—1
Ap = Eajpf(]), (p = 17 s 7m)>
7=0
k—1 .
Bq = ijqf(j)v (q:l,...,n)7 (13)
7=0

k—1
c = fl4 chf(j).
j=0

Since f is polynomial, then A,, B, and C are also polynomial. And

T(r,Ap) = O{T(r,e(a*mz)}, p=1,...,m,
T(r,By) = of{T(r,e P} ¢=1,...,n, (14)
T(r,C) = o{T(r,e P},

where —n < f < a@ < m. By Lemma 1, (12) and (14), we obtain
Ay(z)=0(p=1,...,m), By(2) =0 (¢=1,...,n) and C(z) = 0. (15)

Since deg f > deg f' > --- > deg f*~1) > deg f*), then by (13) and (15), we see
that
apm = +++=ap1 = cg = bor = -+ = bop, = 0.

Thus Py (e*) + Qo (e *) = 0, and this contradicts the assumption Py (e®) +
Qo (e7%) # 0. Therefore, every solution of (9) must be a transcendental entire
function. ]

Lemma 3 ([5, 1]). Let Ao, Ai,...,Ax_1 be entire functions of finite order. If
f(2) is a solution of the equation

FO + A fE D 4 A f 4+ Agf =0,
then oo(f) < max{o(A4;):j=0,...,k—1}.

Lemma 4 ([9]). Let f be a transcendental meromorphic function, and a > 1 be a
given constant. Then there exists a set E C (1,00) with finite logarithmic measure
and a constant B > 0 that depends only on o and i,7(0 < i < j), such that for
all z satisfying |z| =r ¢ EU[0,1]

<B [T(ar’f)(loga r)log T (ar, f) ]71.

r

19(2)
f92)

Lemma 5 ([9]). Let f(z) be a transcendental meromorphic function with o(f) =
o < +oo. Let H={(k1,j1),-..,(kq Jq)} be a finite set of distinct pairs of integers
that satisfy k; > j; > 0, fori = 1,...,q. And let € > 0 be a given constant.
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Then there exists a set E € [0,27m) that has linear measure zero, such that if
Y € [0,2m)\E, then there is a constant Ry = Ro(v) > 1 such that for all z
satisfying arg z =1 and |z| =r > Ry and for all (k,j) € H, we have

F®(2)
)
Lemma 6 ([10, 13]). Let f(z) be an entire function and suppose that |f*)(z)|

is unbounded on some ray argz = 0. Then, there exists an infinite sequence of
points z, = e’ (n=1,2,...), where r, — +o0, such that f*)(z,) = 0o and

< ‘Z|(071+5)(k7j).

<

U) (4 ;
‘f (2n) 1 !\znlkﬂ(l—i—O(l))y (j=0,....,k—1).

f® ()|~ (k=13)
Lemma 7 ([2]). Let f be an entire function with o(f) = o < 4o00. Suppose

there exists a set E'U[0,2m) that has linear measure zero, such that for any ray
argz = 0y € [0,2m)\E and for sufficiently large r, we have

< Mr*,

F(re™)

where M = M(6y) > 0 is a constant and k > 0 is a constant independent of g,
then f is a polynomial with deg f < k.

[o¢]
Let f(z) = ) anz" be an entire function, ps(r) be the maximum term, i.e.,
n=0

pg(r) = max{|a,|r™; n = 0,1,---}, and let v¢(r) be the central index of f, i.e.,
ve(r) = max{m; p¢(r) = |am|r™}.

Lemma 8 ([6]). Let f be an entire function of infinite order with oa2(f) = a (0 <

a < 00) and a set E C [1,4+00) have finite logarithmic measure. Then there exists

{21, = rre} such that |f(zx)] = M(ry, f), 0 € [0,27), klim 0 = 0y € [0,2m),
—00

re € B, r, — 00, and such that

1. if oo(f) = a (0 < a < ), then for any given 1 (0 < &1 < ),

exp{ry '} <wvp(ry) < exp{r,2‘+51},

2. if o(f) = o0 and o2(f) =0, then for any given g2 (0 < g9 < %) and for any
large M > 0, we have as ry, sufficiently large

il < v(rg) < exp{r?}.

Lemma 9 ([12]). Let P(2) = apz™ + apn_12""1 + - + ag be a polynomial with
an # 0. Then, for every € > 0, there exists 1o > 0 such that for all v = |z] > 1
we have the inequalities

(1 =g)anlr™ < |P(2)] < (1 +¢)[an|r™.
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Lemma 10 ([3]). Consider h(z)e* where h is a nonzero entire function with
oh)=a<1,a=de% (d>0,p €[0,27)). Set Ey = {6 € [0,27) : cos(¢ + 0) =
0}. Then for any given e (0 < e < 1—a), there is a set E C [0,27) that has linear
measure zero, if z =re?? 6 € [0,27)\(E U Ey), we have as r sufficiently large

1. if cos(p +60) > 0, then

exp {(1 —e)drcos(p + 0)} < |h(z)e®*| < exp{(1+¢e)drcos(p+0)},

2. if cos(p + 0) <0, then
exp{(1+¢e)drcos(p+60)} < |h(z)e?| < exp{(l —¢e)drcos(p+0)}.
0

Let P(z) = (a+ib)z" + -+ be a polynomial with degree n > 1, and z = re®.
We denote 0(P,0) := acos(nf) — bsin(nd).

Remark 4. By definitions of P;,Q; (j = 0,...,k — 1) in Theorem 10 and
Theorem 11, by Lemma 9 and Lemma 10, we can obtain that for all z = re',

6 € [0,2m)\(E U Ep)

. m;o(a;z,0)r . .
oz (omaEy | ‘a]mj| eMmioley (1+0(1)), (6(ajz,0) > 0;r — +00)
‘PJ (6 J )+Q] (6 7 )‘ { ‘bjnj‘ e—nj6(ajz,0)T(1+o(1))7 (5(ajz79) <0;r — +OO)

4 Proof of Theorem 10

Proof. (1) Suppose that f is a nontrivial solution of (5). Then f is an entire
function. Since Py (e*°?) + Qo (e~**) # 0, then every nonzero constant is not
a solution of (5). Now, suppose that fo = anz” + -+ a9 (n > 1; ag,...,an
are constants, a, # 0) is a polynomial solution of (5). Let Ey = {0 € [0,27) :
§(apz,0) = 0}, Ep is a finite set. Take z = re'?, 0 € [0,27)\(Eo U E) with E some
set with linear measure zero. If ¢;moag = mjoy, (0<¢; < 1,Vj=1,...,k—1),
then we choose 6 € [0, 27)\(EyUE) such d(apz,0) = |ag| cos(arg g+ 6) > 0, then
ez, 0) = %moé(agz,e) >0,(Vj=1,...,k—1). By Lemma 9, Lemma 10 and

j
(5) for a sufficiently large r, we have

| laomo| €m0 (14 0(1)) = |Po(e%) + Qo (e*%) || fol
k—1
< ‘fék)‘ + D [P (e%7) + Q; (e77)] ‘féj)‘
j=1

< Mecmoé(aozﬁ)rrn(l + 0(1))7
where 0 < ¢ = max{c; : j =1,...,k—1} < 1. This is a contradiction. Then (5) has
no nonzero polynomial solution. If djnoag = njay, (0 <d; <1,Vj=1,...,k—1),
then we choose 6 € [0, 27)\(EgUE), such that 6(agz, ) = |ag| cos(arg ap+6) < 0,
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d:
then §(ojz2,0) = #noé(aoz, 0) <0,(Vj=1,...,k—1). Using the similar method

J
as in case 6(agz,0) > 0, we obtain
|an| |b0no| e—ngé(aoz 0)r n( -|—O( )) < Me—dngﬁ(agz,@)rrn(l + 0(1))7

where 0 < d = max{d; : j = 1,...,k — 1} < 1. This is a contradiction. So, (5)
has no nonzero polynomial solution.

(2) By Lemma 4 we can see that there exists a set £ C (1,00) with finite log-
arithmic measure and there is a constant B > 0 such that for all z satisfying
|z| =r & EUJ0,1], we have

<B[T@r P, j=1,...,k (16)

Suppose that f # 0 is a subnormal solution, then o.(f) = 0. Hence, for all £ > 0
and for sufficiently large r, we have

T(r, f) <e™. (17)

Substituting (17) into (16) with sufficiently large |z| = r ¢ E U [0, 1], we obtain

792)
7(z)

< BeXUtDr < ge2ebtr 51 | k. (18)

(i) Suppose that ¢;moag = mjaj, (0 <c¢; <1,Vj=1,...,k—1). Take z = ret?
such that » ¢ EU [0, 1] and 6(agz,0) = |ag| cos(arg ag + 0) > 0, then 6(a;z,0) =

—m05(agz 0) >0,(Vj=1,...,k—1). Therefore
m;

| Py (62%) + Qo (€7%%) | = lagm, | €702 0%97(1 4 o(1)), (19)
‘Pj (eajz) + Qj (e—ajz)‘ _ ‘ajmj ‘ emj6(ajz,6)r(1 + 0(1))
= [am, | e (14 0(1))
< DemIenOr (1 4 (1)), (20)

where D = max {|ajm,|} and 0 < ¢ = | Jnax {lej|} < 1. Substituting (18),

1<j<k—1 <j<he1
(19) and (20) into (5), we obtain
[aomo| ™01+ 0(1) = [Py (e7°%) + Qo (7))
f(k — o ot | FO)
7 +Z\P i) 4 Q; (e79%)] e

< Ber(k+1)r (k‘ o )DBecmo(S(aoz,G)re%(k-i-l)r(1 + 0(1))‘
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Hence,
|a0m0|6m05(a0z,9)r(1 +0(1)) < Me[cmgé(agz,G)JrQs(kJrl)]r(1 +O(1)) (21)

for some constant M > 0. Since 0 < ¢ < 1, then we can see that (21) is a
contradiction when

1-c
O<e< mm(ﬂ;(agz,ﬁ).

Hence, equation (5) has no nontrivial subnormal solution.
(ii) Suppose that d;jngag = njay, (0 <dj <1,Vj =1,...,k —1). We choose
z = re? such that r ¢ EU[0,1] and §(agz,0) = |ag| cos(argag + ) < 0, then

d.
§(ajz,0) = “Lngd(apz,0) < 0, (Vj =1,...,k — 1). Using the similar method as
]
in the proof of (i) above, we obtain
|b0n0|6—n06(a0z,9)r(1 JrO(l)) < Me[—dng&(aoz,9)+26(k+1)]'r(1 JrO(l)), (22)

where 0 < d = | nax 1{\de} < 1, and for some constant M > 0. We see that (22)
<j<k—

is a contradiction when

0 ———npf 0).
<e< 2<k+1)n0 (o2, 0)
Hence, (5) has no nontrivial subnormal solution.
(3) By Lemma 3, every solution f of (5) satisfies o9(f) < 1. Suppose that
o2(f) < 1. Then o.(f) = 0, i.e., f is subnormal solution and this contradicts the
conclusion above. So o3(f) = 1. O

5 Proof of Theorem 11

Proof. Suppose that f # 0 is a solution of equation (6). Then f is an entire
function. Since Py (e®°%) + Qo (e~*°*) # 0, then f cannot be nonzero constant.

(1) We will prove that f is a transcendental function. We assume that f is a
polynomial solution to (6), and we set

f(2) = anz" + - + ao,
where n > 1, ag,...,a, are constants with a, # 0. Suppose that s < t. Since

Py (e7°%) + Qo (e~ %) # 0, then we can rewrite (6) as

n

o Pj(e%%) + Qj(e™%) () .
6= 2L R e ) )

j=1

which is a contradiction since the left side of equation (23) is a polynomial function
but the right side is a transcendental function, and even in case

Pj(eajz) + Qj(efocjz)
Po(eaoz) + Qo(e—aoz)

:Kja Vj:1,~--,n,
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where K, Vj = 1,--- ,n are complex constants, we obtain a, = 0, and this also
contradicts the assumption a,, # 0. Hence, every solution of (6) is transcendental.

(2) Now, we will prove that every solution f of (6) satisfies o(f) = +oo.
We assume that o(f) = 0 < 4+o00. By Lemma 5, we know that for any given
e > 0 there exists a set £ C [0,27) that has linear measure zero, and for each
¥ € [0,2m)\E, there is a constant Ry = Ro(1)) > 1 such that for all z satisfying
argz =1 and |z| = r > Ry, we have for [ <k —1

f(j)(z)
fO(z)

Let H = {0 € [0,27) : 0(asz,0) = 0}, H is a finite set. By the hypotheses of
Theorem 11, we have H = {6 € [0,27) : §(jz,60) =0,(j =0,...,k —1)}. We
take z = re?, such that 6 € [0,27)\F U H. Then 6(asz,60) > 0 or §(asz,0) < 0. If
d(csz,6) > 0, then §(az,0) >0forall j =0,...,s—1,s+1,...,k—1. We assert
that ‘f(s)(z)’ is bounded on the ray argz = 6. If ‘f(s) (z)’ is unbounded, then by
Lemma 6, there exists an infinite sequence of points z, = 7€ (u=1,2,...)
where r, — 400 such that f(*)(z,) — oo and

< |z THDGD =1k (24)

O (z,) 1 _i .
< —z|° 7 (1 4+ 0(1)), (7=0,...,s—1). 25
T | S ol o), ( ) (25)
By (6) we obtain
|asms| ems(s(asZuﬁ)""u(l + 0(1)) — ’PS(easzu) + Qs(e_aszu)‘
k—1 1
F®) (z,) _ e f(])(zu)
< S B+ Q)
(s) J J (s)
[ (zu) =0 j£s [ (zu)
<r o—1+¢)(k—s) + Z ’Clj ’ emj6(0(j2u,0)7’uT(O'—1+8)(j_5)
—u mJ U
j>s
1 m;0(e;zy,0)ry, .5—J
3 o g [ O (1 o)
71<s
U (14 of1)), (26)

for some M > 0, where p > max{ max {(c—1+¢)(j—s)}; max {s —j}}
s<j<k—1 0<5<s

= max{ max {(al+5)(js)};s}. Since 0 < C = max{1} < 1 and

5<j<k-1 j G
d(aszy,d) > 0, then (26) is a contradiction when r, — +oo. Hence, f(s)(z)}
is bounded on the ray arg z = 6. Therefore, for sufficiently large r, we have

‘f(rew)‘ < Cqrré. (27)

If §(asz,0) < 0, then 6(a;z,0) < 0forall j =0,...,s—1,s+1,....,k—1, in
particular §(ayz,0) < 0,1i.e., —nyd(azz,0) > 0. We assert that ‘f(t)(z)‘ is bounded
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on the ray argz = 0. If ‘f(t)(z)‘ is unbounded, then by Lemma 6, there exists an
infinite sequence of points z, = r,e® (u = 1,2,...) where r, — +o00 such that
f®(z,) = co and

f(j) Zu 1 W )
|f<t>éz ; - (t—j)!|zu|t YA +o(D), (G=0,...,t—1),
We obtain
e, | €002 (1 4 o(1)) < Mem PredlenzufIrupp (1 4 (1)) (28)

for some M > 0, where p > max {t<r;1§akxl {(c6—=1+¢)(j— t)};orgjai(t {t - j}}

= max{ max {(oc—14¢)(j— t)};t} . Since 0 < D = max{4} < 1 and
t<j<k—1 J J

—nd(ayz,0) > 0, then we see that (28) is a contradiction when r,, — +00. Thus,
for sufficiently large r, we have

’f(rew)’ < Cort. (29)

Since the linear measure of £ U H is zero, by (27), (29) and Lemma 7, we con-
clude that f is polynomial, which contradicts the fact that f is transcendental.
Therefore o(f) = +o0.

(3) Finally, we will prove that (6) has no nontrivial subnormal solution. Sup-
pose that (6) has a subnormal solution f. So, o(f) = co and by Lemma 3, we see
that o2(f) < 1. Set o2(f) = p < 1. By Lemma 4, there exists a set E; C (1,00)
having a finite logarithmic measure, and there is a constant B > 0 such that for
all z satisfying |z| = r & [0, 1] U E1, we have

<BT @ )P, j=1,....k (30)

19(2)
e

From Wiman-Valiron theory, there is a set Fy C (1,00) having finite logarithmic
measure, so we can choose z satisfying |z| = r & Ey and |f(2)] = M(r, f). Thus,

we have
f9) _ (m N G, -

By Lemma 8, we can see that there exists a sequence {z, = rpe?"} such that
|f(zn)| = M(rp, f), 6n € [0,27), li_>m 0, = 6y € [0,27), r, & [0,1] U Eq U Ey,
n—oo

rn — 00, and such that

1. if g > 0, then for any given g1 (0 < &1 < p),

exp{rh "'} <wvy(r) < exp{riter}, (32)
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2. if p = 0, and since o(f) = oo, then for any given g5 (0 < g9 < %) and for
any large M > 0, we have as r, sufficiently large

rM < vp(r,) < exp{r2}. (33)

From (32) and (33), we obtain that
vE(rp) > Ty, Th — 00. (34)

Since 0y may belong to {6 € [0,27) : d(asz,0) > 0}, or {6 € [0,27) : §(as2,0) <
0}, or {6 € [0,27) : §(as2,0) = 0}, we divide the proof into three cases.

Case 1. 0y € {0 € [0,27) : 6(as2,0) > 0}. By 6, — 0o, there exists N > 0 such
that, as n > N, we have 6(aszy, 6,) > 0. Since f is subnormal, then for any given
€ > 0, we have

T(r, f) <eT. (35)
By (30), (31) and (35), we obtain
(22Y (o) = |LCnd) < Bip o, g < B, =1,k

(36)
Because 0(aszp,0,) > 0, then §(oj2zp,60,) >0 (j =0,...,s—1,s+1,...,k—1),
and we have

| Py(e2) + Qs(e7%%)| = |asm,| €2 (@s=n 0 (1 4 o(1)) (37)
and
[Bi(e™) 4+ Qi) = [agm, 2@ (14 o(1))

= |ajm, (1+0(1))
< MO0 (14 o(1), j# s (38)

%é(as Zn 70n)7'n

where M = max{|a;m,|} and 0 < C = max{cij} < 1. We have by (6)
j i &

QgZn —QsgZn f(S) (Zn)
‘Ps(e )+Qs(€ )‘ f(zn)
O] S ey o gagey | £9 ()
: f(zn) j=%¢s‘Pj(e )+ Qile )‘ fln) |

By using Wiman-Valiron theory, we obtain

R+ Qule =] () (4o

n

k k-1 J
< <Vf(rn)> (I+o(1)+ > \Pj(eo‘jz")Jer(e_ajz")}<Vf(rn)> (1 +o(1)).

T ) X
" J=0,j7#s
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which implies

k—s
[Py(es™) + Qs<e—as%>\ (14 0(1)) < (”f(r")) (14 o(1))

ve(r,) )7 ~*
Jj= 0]#8 "

By (34) we have

I/fyn) >1, r, -+
then
[Py(e®™n) + Qs(e"“z”)} (1+0(1))
a z -z Vf(?”n) b
<1+ ¥ Imem raee L) 1+ 0(1))
3=0.j#s "
and by (36), (37) and (38) we obtain
|G, | €07 000 (1 4 0(1)) = |[Py(e®™) + Qs(e™*)| (1 4 0(1))
e Zn —izn Vf(?“n) g
<1+ Z i) 4 Qe )| ) (Ate()
Jj=0,j#s
< kMBeCmsé(aszn,0n)rn€2(k+1)5rn(1 +0(1)) (39)

Since 0 < C' < 1 and §(aszp, 0,) > 0, then we can see that (39) is a contradiction

when 7, — oo and

1-C
O<e< mms(S(aszn,Hn).

Case 2. 0y € {0 € [0,27) : 6(asz,0) < 0}. By 6,, — 6, there exists N > 0 such
that, as n > N, we have §(s2p,0,) < 0, then 6(az,,0,) >0 (j =0,...,5s—1,s+
1,...,k—=1). In particular §(azp,0,) < 0, i.e., —nid(ayzn, 0,) > 0. We have

[Pa(e5) + Qu(e™ )] = fban, | ¥4 207 (1 4 (1) (40)
and
[Bi(e™) + Qe ™)| = [bjn, | €75 (1 4 o(1)

= foin | (1ol
< MePmdlznnr (1 4 o(1)), j£t, (41)

§(atzn,o9n)rn

where M = max{|bjn,|} and 0 < D = max{di]_} < 1. By the same way used to
j J
obtain (39) we deduce that, after (34), (36), (40), (41) and (6), we obtain

|btnt| e—nté(atznﬁn)rn(l + 0(1)) < k,MBe—Dnt(S(atzn,Gn)rne2(k+1)6rn(1 _{_0(1))‘ (42)
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Since 0 < D < 1 and —nyd(azn,0,) > 0, then we can see that (42) is a contra-
diction when r,, — oo and

1
0<e< ~3 ned (e zn, On).

- D
(k+1)
Case 3. 0y € H = {6 € [0,27) : d(asz,0) = 0}. By 6, — 6, for any given
v > 0, there exists N > 0 such that, as n > N, we have 6,, € [#y — 7,00 + 7] and
2y = rpe € S(0p) = {z: 0y — v < argz < 0y +v}. By Lemma 4, there exists a
set F3 C (1,00) having finite logarithmic measure, and there is a constant B > 0,
such that for all z satisfying |z| = r ¢ [0,1] U E3, we have for [ <k —1

<B[T@r HP " < BT @2r, )FY, j=1+1,... k. (43)

Now, we consider the growth of f(re) on the ray argz = 0 € [0 —, 09)U(6g, o+
~v]. Denote S1(6p) = [6o — 7, 00) and S2(0g) = (6o, 0o + 7]. We can easily see that
when 61 € S1(0y) and 0y € Sa(6p) then d(asz,01)0(asz,62) < 0. Without loss of
the generality, we suppose that §(asz,0) > 0 for 6 € S1(6p) and d(asz,0) < 0 for
0 € Sa(bp). Since f is subnormal, then for any given £ > 0, we have

T(r f)<e”. (44)
We assert that }f(s)(reie)} is bounded on the ray argz = 6. If }f(s)(z)’ is un-

bounded, then by Lemma 6, there exists an infinite sequence of points w, = r,e*
(u=1,2,...) where r, — 400 such that f*)(w,) — oo and

(1 +0(1) <ri(1+o0(1), 7=0,...,s —1.  (45)

f(s)(wu) ~ (s— i)

By (43) and (44), we obtain

‘ [P | 1

< BIT 2ry, )T < BIT 2ry, f)IFT < 2FHDer 5 — g1, k.

f(j) (wy)

(46)
By (6), (37), (38), (45) and (46), we deduce

’asms‘ emsé(asznﬂ)'ru(l + 0(1)) < kMBeCmsé(aSwu,G)rue2(k+1)sruri(1 + 0(1)) (47)

Since 0 < C' < 1 and 6(aswy,#) > 0, then we can see that (47) is a contradiction
when r, — oo and

1-C
O<e< mms(S(aswu,Q).

Hence, for sufficiently large r, we have

‘f(reie)‘ < Myr? (48)



Nonexistence of subnormal solutions for complex differential equations 47

on the ray argz = 0 € [0y — ,6p). For 6 € Sa(0y), we have d(asz,0) < 0,
0(arz,0) < 0 and we assert that ‘f(t)(rew)} is bounded on the ray argz = 6.
If ‘ f (t)(z)‘ is unbounded, then by Lemma 6, there exists an infinite sequence of
points w, = r,e? (u=1,2,...) where r, — +o0 such that f®(w,) — co and

f(])(wu) 1 i . -
‘f(t)(wu) = (t_j)!ru J(140(1)) <ry(l+o0(1)), j=0,...,t—1. (49)
By (43) and (44), we obtain

< B[T 2y, /)Y < BT 2ry, I < BEEDT =41,k

f(j)(wu)
FO(wy,)

(50)
By (6), (40), (41), (49) and (50), we deduce

’btnt| e—nté(atwu,e)ru<1 +0(1)) < kMBe—Dm&(atwu,G)rue2(k+1)£rnTZ(1 +0(1))_ (51)

Since 0 < D < 1 and —n¢6(ayzp, 0,) > 0, then we can see that (51) is a contra-
diction when r, — oo and

O<e< —mnté(atzn,ﬂn).

Hence, for sufficiently large r
‘f(rew)‘ < Myrt (52)

on the ray argz = 6 € (6o, 6p +7]. By (48) and (52), we have for sufficiently large
r
‘f(rew)) < Mrk (53)

on the ray argz = 0 # 6y, z € S(fp). Since f has infinite order and {z, = e €
S(6p)} satisfies |f(zn)| = M(ry, f), we see that for any large N > 0, and as n
sufficiently large, we have

e = exp{rl}. (54)

Then, from (53) and (54), we get Mr¥ > exp{r)'} that is a contradiction. Hence,
(6) has no nontrivial subnormal solution.

(4) By Lemma 3, every solution f of (6) satisfies o9(f) < 1. Suppose that
o2(f) < 1, then o.(f) = 0, i.e., f is subnormal solution and this contradicts the
conclusion above. So o3(f) = 1. O

6 Proof of Theorem 12

Proof. We consider Q;(z) =0 (j=1,...,k—1) in (5). By a similar method of
proof to Theorem 10, we conclude the result. O
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7 Proof of Theorem 13

Proof. We consider Q;(2) =0 (j=1,...,k—1) in (6). We use the same method
as in the proof of Theorem 11. Just in the case when §(asz,0) < 0, we use the
fact that |f(k)(z)‘ is bounded on the ray arg z = 6. If ‘f(k)(z)‘ is unbounded, then
by Lemma 6, there exists an infinite sequence of points z, = e (n=1,2,...)
where 7, — 400 such that f*)(z,) = co and

‘f@)(zn) <rk(140(1)), (j=0,... k—1). (55)

F®) (zn)

(2n
By the definition of P} (e%%), and because §(csz,6) <0, ie., 6(ajz,0) <0,Vj, by
msos = c;mja;. Then, we can write

B (6570 = fag 50597 (14 (1) 56)
By (8), (55) and (56), we have

, f(j)(zn)
= f( )(Zn)
k—1
< Y laja] o Omerk(1 4 o(1)). (57)
=0

Since (a2, 6) < 0,5 , then (57) is a contradiction as r,, — co. Thus, ‘f(k)(z)| <
M, so |f(2)| < MrF. O

8 Proof of Theorem 14

Proof. Suppose that f is a nontrivial subnormal solution of (4). Let
h(z) = f(2)elm/om)z,

Then h is a nontrivial subnormal solution of the equation

k—1
B+ 3" [Ry () + 85 (e72)] 1) =0, (58)

§=0

where
) b k—j k-1 b l—j
R; (e*) + S; (ef‘z) =y <_a> +ZOZJ <_a> [Pl (e*) + @ (672)] )

Because m > max{m; : j =2,...,k—1} and n > max{n; : j =2,...,k — 1}, we
have

deg Ry = degP =m,

degS1 = degQi =n.
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From a,,d,, = b,,¢,, we see in the formula

By () +50(e7) = (—b’">k Ly <—2’”)l [P(e) + Qi ()]

m
that
deg Ry < m,
degSy < n.
Then, we have
degRRy = m>degR;:5=0,2,...,k—1,
degS1 = n>degS;:7=0,2,...,k—1

and since e~ (bm/@m)? is not a solution of (4), then

Fo (¢) + o (e7%) = <—bm)k s (—Z’")l (A + @ (e )] 20.

am m

=0

By applying Theorem 9 on equation (58), we obtain the conclusion.
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