
Bulletin of the Transilvania University of Braşov • Vol 8(57), No. 1 - 2015

Series III: Mathematics, Informatics, Physics, 123-128

MAXIMUM CUTS FOR A MINIMUM FLOW

Eleonor CIUREA1

Abstract

In this paper we resolve the following three problems. Given a minimum
flow f in a network G = (N,A, l, u) determine:

(1) the maximum cut [S, S̄] with the property that for every other maxi-
mum cut [X, X̄], S ⊆ X;

(2) the maximum cut [T, T̄] with the property that for every other max-
imum cut [X, X̄], X ⊆ T ;

(3) whether the network G has a unique maximum cut.

2000 Mathematics Subject Classification: 90B10, 90C35, 05C35, 68R10 .
Key words: network flow, minimum flow, maximum cut.

1 Introduction

The network flow models arise in a number of combinatorial applications that
on the surface might not appear to be optimal flow problems at all. The problem
also arises directly in applications. The maximum flow problem and its dual, the
minimum cut problem, are classical combinatorial optimization problems with
many applications in science and engineering; see, for example, Ahuja et al. [1]

Before formally defining the minimum flow problem, we give an application
of minimum flow. We present the scheduling jobs on identical machines. Let
J = {2, 3, . . . , k} be a set of jobs which are to be processed by a set of identical
machines M . Each job i ∈ J is processed by one machine j ∈ M . There is a
fix schedule for the jobs, specifying that the job i ∈ J must start at time t1(i)
and finish at time t2(i). Furthermore, there is a transition time t3(i, j) required
to set up a machine which has just performed the job i and will perform the
job j. The goal is to find a feasible schedule for the jobs which requires as few
machines as possible. We can formulate this problem as a minimum flow problem
in network G = (N,A, l, u), where: N = {1} ∪ N1 ∪ N2 ∪ {n}, 1 is the source
node, N1 = {i|i = 2, 3, . . . k}, N2 = {j = k + i − 1|i = 2, 3, . . . k}, n = 2k is the
sink node, A = A1 ∪ A2 ∪ A3 ∪ A4, A1 = {(1, i)|i ∈ N1}, A2 = {(i, j)|i ∈ N1, j ∈

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
e.ciura@unitbv.ro

124 Eleonor Ciurea

N2}, A3 = {(j, i)|i ∈ N1, j ∈ N2, t2(j) + t3(j, i) ≤ t1(i)} A4 = {(j, n)|j ∈ N2},
l(1, i) = 0, u(1, i) = 1, (1, i) ∈ A1, l(i, j) = u(i, j) = 1, (i, j) ∈ A2 l(j, i) = 0
u(j, i) = 1 (j, i) ∈ A3, l(j, n) = 0, u(j, n) = 1, (j, n) ∈ A4. This problem has many
practical applications, where machines might be workers, tankers, airplanes, truks,
processors etc.

2 Minimum flow problem

Let N be the natural number set and G = (N,A, l, u) a network with the nodes
set N = {1, . . . , n}, the arcs set A = {a1, . . . , ak, . . . , am}, ak = (i, j), the lower
bound function l : A→ N, the upper bound (capacity) function u : A→ N, 1 the
source node and n the sink node.

For a given pair of subset X,Y of the nodes set N we use the notation (X,Y) =
{(i, j)|(i, j) ∈ A, i ∈ X, j ∈ Y } and for a given function g : A → N we use the
notation g(X,Y) =

∑
(X,Y) g(i, j).

A flow is a function f : A→ N satisfying the next conditions:

f(i,N)− f(N, i) =


v, if i = 1

0, if i 6= 1, n

−v, if i = n

(1.1)

for some v ≥ 0. We refer to v as the value of flow f . A flow is called feasible if f
satisfies the following conditions:

l(i, j) ≤ f(i, j) ≤ u(i, j), (i, j) ∈ A (1.2)

The minimum flow problem is to determine a feasible flow f for which v is
minimized.

A preflow f is a function f : A→ N satisfying the next conditions:

f(i,N)− f(N, i) ≤ 0, i ∈ N − {1, n} (2.1)

l(i, j) ≤ f(i, j) ≤ u(i, j), (i, j) ∈ A (2.2)

For any preflow f , we define the deficit of node i as

e(i) = f(i,N)− f(N, i), i ∈ N (3)

We refer to a node i with e(i) = 0 as balanced. A preflow f satisfying the
condition e(i) = 0, i ∈ N − {1, n} is a flow. Thus, a flow is a particular case of
preflow.

We further assume, without loss of generality, that if (i, j) ∈ A the (j, i) ∈ A
(if (j, i) /∈ A we consider that (j, i) ∈ A with l(j, i) = u(j, i) = 0).

Maximum cuts for a minimum flow 125

A cut is set of arcs [X, X̄] = (X, X̄) ∪ (X̄,X), (X, X̄) = {(i, j)|(i, j) ∈ A, i ∈
X, j ∈ X̄}, X ⊂ N , X̄ = N −X, (X̄,X) = {(i, j)|(i, j) ∈ A, i ∈ X̄, j ∈ X}. The
set (X, X̄) denote the set of forward arcs of the cut, and the set (X̄,X) denote
the set of backward arcs of the cut. We refer to a cut [X, X̄] as a 1 − n cut if
1 ∈ X and n ∈ X̄. For the minimum flow problem, the capacity c[X, X̄] of a 1−n
cut is c[X, X̄] = l(X, X̄)−u(X̄,X). We refer to a 1−n cut whose capacity is the
minimum among all 1− n cuts as a maximum cut.

Theorem 1. The value of the minimum flow from the source node 1 to the sink
node n in a network G = (N,A, l, u) equals to the capacity of the maximum 1−n
cut.

For the minimum flow problem, the residual capacity r̂(i, j) of any arc (i, j) ∈
A with respect to a given flow (preflow) f is given by r̂(i, j) = c(j, i) − f(j, i) +
f(i, j) − l(i, j). The residual network is Ĝ = (n, Â, r̂) with Â = {(i, j)|(i, j) ∈
A, r̂(i, j) > 0}.

The minimum flow problem in a network G = (N,A, l, u) can be solved in two
phases:
(1) estabilish a feasible flow if it exists;
(2) if exists a feasible flow, estabilish a minimum flow;

The solution of first fase is presented in [1]. There are three approaches for
solving the minimum flow problem:
(1)using decreasing path algorithms;
(2) using preflow algorithms;
(3) minmax algorithms.

Any directed path from the source nodes 1 to the sink node n in the residual
network Ĝ corresponds to a decreasing path in the original network G. Thus, the
decreasing path algorithms for minimum flow problem correspond to the augment-
ing path algorithms for maximum flow problem. The decreasing path algorithms
for minimum flow are presented in Table 1, where ū = max{u(i, j)|(i, j) ∈ A}.

Decreasing path algorithms Running time

Generic decreasing path O(nmū)

Ford-Fulkerson labeling algorithm O(nmū)

Gabow bit scaling algorithm O(nm log ū)

Ahuja-Orlin maximum scaling algorithm O(nm log ū)

Edmonds-Karp shortest path algorithm O(nm2)

Ahuja-Orlin shortest path algorithm O(n2m)

Dinic layered network algorithm O(n2m)

Ahuja-Orlin layered networks algorithm O(nm2)

Table 1

126 Eleonor Ciurea

Also, the preflow algorithms for minimum flow problem correspond to the pre-
flow algorithms for maximum flow problem. The preflow algorithms for minimum
flow problem are presented in Table 2.

Preflow algorithms Running time

Generic prefluw algorithm O(n2m)

FIFO preflow algorithm O(n3)

Highest label preflow algorithm O(nm log ū)

Deficit scaling algorithm O(nm + n2 log ū)

Table 2

The minmax algorithm computes a minimum flow in the following manner:
knowing a feasible flow, we determine a minimum flow from the source node 1
to the sink node n by establishing a maximum flow in the residual network from
the sink node n to the source node 1, we can use any maximum flow algorithm,
including preflow algorithms.

For details with respect to minimum flow algorithm see [2], [3], [4], [5].

3 Maximum cuts for a minimum flow

Let f be a minimum flow of value v in network G = (N,A, l, u) with 1 source
node, n sink node and residual network Ĝ = (N, Â, r̂) with respect to minimum
flow f . In Ĝ we consider and direct path D̂ = (i, i).

The first problem is to determine the maximum 1−n cut [S, S̄] with property
that for every other maximum 1 − n cut [X, X̄], S ⊆ X. We determine this cut
by

S = {i|i ∈ N, exists a directed path D̂ in Ĝ from source node 1 to node i} (4)

We have 1 ∈ S and determine S̄ = N − S. It’s clear that S ⊆ X for every other
maximum 1−n cut [X, X̄]. We start from source node 1 and use direct BF search.

The second problem is to determine the maximum 1−n cut [T, T̄] with prop-
erty that for every other maximum 1− n cut [X, X̄], X ⊆ T . We determine this
cut by

T̄ = {i|i ∈ N, exists a directed path D̂ in Ĝ from node i to sink node n} (5)

We determine a directed path D̂ = ((i, j), . . . , (k, n)) starting from sink node
n and use inverse BF search. We have n ∈ T̄ an determine T = N − T̄ . It’s clear
that X ⊆ T for every other maximum 1− n cut [X, X̄].

The third problem is if the network G has a unique maximum 1−n cut [X, X̄]
and which is this cut. We determine the maximum 1−n cuts [S, S̄] and [T, T̄]. If
S = T then the network G has a unique maximum 1− n cut and X = S = T .

Maximum cuts for a minimum flow 127

We remark that at the end of any algorithm for minimum flow problem we
have the optimum residual network Ĝ. We determine the minimum flow f with
f(i, j) = l(i, j) + max{0, r̂(i, j)− u(i, j) + l(j, i)}, (i, j) ∈ A.

4 Examples

In this section we present two examples. Figure 1a shows the network G =
(N,A, l, u) with 1 the source node, 4 the sink node and a minimum flow f . On
each arc (i, j) we have l(i, j), f(i, j), u(i, j) in this order. Figure 1b shows the
residual network Ĝ = (N, Â, r̂) with respect to minimum flow f . The value of
minimum flow f is v = 5.

2

1

3

4

3,3,6

2,2,8

2,2,11

1,3,3

3,3,12

2,2,4

(a)

2

1

3

4

9

9

3

4

6

(b)

Figure 1

With formula (4) we obtain S = {1} and we determine S̄ = N −S = {2, 3, 4}.
We have [S, S̄] = (S, S̄) ∪ (S̄, S) = ((1, 2), (1, 3)) ∪ ∅ and c[S, S̄] = l(S, S̄) −
u(S̄, S) = l(1, 2) + l(1, 3) = 3 + 2 = 5 = v. With formula (5) we obtain T̄ = {4}
and we determine T = N − T̄ = {1, 2, 3}. We have [T, T̄] = (T, T̄) ∪ (T̄ , T) =
((2, 3), (2, 4))∪∅ and c[T, T̄] = l(T, T̄)−u(T̄ , T) = l(2, 4)+ l(3, 4) = 2+3 = 5 = v.
Other maximum cut is [X, X̄] = (X, X̄)∪(X̄,X) with X = {1, 3}, X̄ = {2, 4} and
we have c[X, X̄] = l(X, X̄)−u(X̄,X) = l(1, 2) + l(3, 2) + l(3, 4)−u(2, 3) = 5 = v.
It’s clear that S ⊂ X and X ⊂ T . Fourth 1 − 4 cut, and last, in network G is
[Y, Ȳ] = (Y, Ȳ)∪(Ȳ , Y)) with Y = {1, 2} and Ȳ = {3, 4}. The capacity of this cut
is c[Y, Ȳ] = l(Y, Ȳ) − u(Ȳ , Y) = l(1, 3) + l(2, 3) + l(2, 4) − u(3, 2) = 1. Therefore
this cut is not maximum cut.

Figure 2a shows the network G with the same significances as in network from
Figure 1a. In figure 2b we present the residual network shown in Figure 2a. We
obtain S = {1, 3}, S̄ = {2, 4}, T̄ = {2, 4}, T = {1, 3}. Because S = T result that
network G has a unique maximum 1− 4 cut. We have c[S, S̄] = 5 = v.

128 Eleonor Ciurea

2

1

3

4

3,3,6

1,2,8

1,2,11

1,3,3

3,3,12

2,2,4

(a)

2

1

3

4

1

9

3 9

6
1

(b)

Figure 2

References

[1] Ahuja, R., Magnanti, T., Orlin, J., Network Flows. Theory, algorithms and
applications, Prentice Hall, Inc., Englewood Cliffs, NY, 1993.

[2] Ciupala, L., Ciurea, E., About preflow algorithms for the minimum flow prob-
lems, WSEAS Transaction on Computer Research, Issue 1, 3 (2008), 35-42.

[3] Ciurea, E., Ciupala, L., Sequential and parallel algorithms for minimum flows,
Journal of Applied Mathematics and Computing 15 (2004), no. 1-2, 53-75.

[4] Ciurea, E., Ciupala, L., Algorithms for minimum flows, Computer Science
Journal of Moldova 9(3) (2001), 275-290.

[5] Georgescu, O., Algorithms for minimum flows. Dynamic tree implementa-
tion, Bulletin of Transilvania University of Brasov. Seria III: Mathematics,
Informatics, Psysics 1(50) (2008), 513-524.

