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PARAMETER ESTIMATION IN THE ARCH MODEL WITH
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Abstract

We analyze a variant of the ARCH(1) model which captures the variation
of the intra-day price. We study the asymptotic behavior of the least squares
estimator for the parameters of the model.
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1 Introduction

Starting with the seminal paper by Engle [4], a vast literature on ARCH and
related models has been developed. There are various extensions of this model,
as the GARCH model introduced by Bollerslev in [2] or the EGARCH model of
Nelson [10]. The purpose of this note is to study a new variant of the ARCH model
that takes into account the fluctuation of the intra-day price and the liquidity
existent in the market. This new model is motivated by our empirical studies, as
noticed in [12]. Moreover, from the theoretical point of view, the new model that
includes liquidity keeps the main properties of the standard ARCH model, that is,
the estimators for the parameters of the model are consistent and asymptotically
normal. We will discuss these theoretical aspects in Section 2.

In order to capture the fluctuation of the intra-day price in financial markets,
we include in our model the price range for a financial asset in a given trading day,
that is the difference between the maximum price (denoted ht or the highest price
at lag t or trading day t) and the minimum (lowest) price or lt during the same
trading day t. As a proxy for the liquidity we employ the number of shares traded
during trading day t or the trading volume, denoted Lt. Therefore, our model
weighs the impact of past shocks with their corresponding liquidity. In other
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words, if the past volatility was accompanied by high liquidity, then its impact on
the future volatility will be larger. The model therefore does not allow the ”false
shocks” to have a high explanatory power, considering that the lack of liquidity
creates a distorted picture of reality, and shocks that occur under such conditions
must be corrected for their low liquidity. To better illustrate this, let us consider
a certain asset A and let us imagine the hypothetical situation where during a
certain trading day t only two transactions with asset A took place at large time
intervals and with low trading volume, but with a large value for |ht − lt|, that is
the two transactions took place at two significantly different prices. Consider also
that in another trading session t + i, the asset A has also traded in the range of
prices [ht+i, lt+i] (where ht+i = ht and lt+i = lt), but this time the transactions
were numerous and the trading volume was high. Obviously, the trading day
t + i was more ”turbulent” than the day t. But if in both cases only |ht − lt| is
considered as a measure of volatility without including the corresponding liquidity,
then the shocks produced at time t and t+ i will have an identical impact on the
future volatility, which would be clearly erroneous, as the shock from t+ i is much
stronger than the shock from t.

The paper is structured as follows. In Section 2 we introduce and we analyze
the
properties of the extended ARCH model: the existence of the stationary solution,
the computation of the first moments and the behavior of the auto-correlation
function. In Section 3 we study the least squares estimator for the parameters of
the model.

2 The ARCH model with weighted liquidity

We will consider the following model: for every t ∈ Z

Xt = σtεt (1)

with

σ2t = α0 + α1X
2
t−1 + `1Lt−1. (2)

We assume that (εt)t∈Z is a sequence of i.i.d. random variables such that Eε0 = 0
and Eε20 = 1. The sequence (εt)t∈Z is referred to as the driving noise sequence.
The parameters α0, α1, `1 are strictly positive. The sequence (Lt)t∈Z is also a
sequence of i.i.d. positive random variables but in addition we will assume that it
is independent of the sequence (εt)t∈Z. Actually Lt is interpreted as an indicator
of the liquidity and it represents the volume of transactions at time t. It is again
reasonable to assume that it is positive (Lt = 0 only when the market is closed).

The case `1 = 0 corresponds to the classical ARCH(1) model introduced in
[4].
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2.1 Strictly stationarity and ergodicity of the model

From (1) and (2) we can immediately write, for every t ∈ Z

σ2t = α0 + α1ε
2
t−1σ

2
t−1 + `1Lt−1. (3)

We introduce the following notation:

yt := σ2t+1, At := α1ε
2
t , Bt = α0 + `1Lt, t ∈ Z. (4)

With the notation (4), relation (3) becomes

yt = Atyt−1 +Bt, t ∈ Z. (5)

Let us iterate the above relation (5). We get

yt = Atyt−1 +Bt

= AtAt−1yt−2 +AtBt−1 +Bt

= . . .

=

(
k∏
i=0

At−i

)
yt−k−1 +

k∑
i=0

i−1∏
j=0

At−j

Bt−i. (6)

Let us check the existence of a stationary solution to problem (1)-(2).

Proposition 1. Assume that L0 has a density f that satisfies∫
R

(log x)2f(x)dx <∞. (7)

Also suppose that eE(logA1) < 1. Then the system (1)-(2) has a unique strictly
stationary solution which can be written as Xt = σtεt with

σ2t =

∞∑
i=0

i−1∏
j=0

At−j

Bt−i

and A,B given by (4). Moreover the strictly stationary solution is ergodic and Xt

is independent of (εj)j≥t+1 for every t ∈ Z.

Proof:
For every k ≥ 1, let us denote by

ht(k) :=
k∑
i=0

i−1∏
j=0

At−j

Bt−i.

Since ht(k) > 0 for every k, t, the limit

ht := lim
k→∞

ht(k)
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exists in [0,∞]. Moreover, ht(k) satisfies the recursive relation

ht(k) = At−1ht−1(k − 1) +Bt, t ∈ Z.

If ht is finite for every t ∈ Z, taking the limit as k →∞ in the above we get that ht
is a solution (clearly stationary) to (1)-(2). Notice that A and B are non-negative.

Therefore, we need to check that ht is finite. To this end, it suffices to check
that the series

∞∑
i=0

i−1∏
j=0

At−j

Bt−i = α0

∑
i=0

i−1∏
j=0

At−j

+ `1

∞∑
i=0

i−1∏
j=0

At−j

Lt−i

is convergent. The convergence of the first sum follows as in standard ARCH(1)

model. To check the convergence of the series
∑∞

i=0

(∏i−1
j=0At−j

)
Lt−i :=

∑∞
i=0 ui

we will use the Cauchy criterion, that is, we prove that lim supn u
1
n
n < 1 almost

surely. We have

u
1
n
n = e

1
n

∑n−1
j=0 logAt−jL

1
n
t−n

and by the law of large numbers e
1
n

∑n−1
j=0 logAt−j →n→∞ eE(logA1) < 1. The

conclusion will then follow if we prove that L
1
n
t−n →n→∞ 1 almost surely. For

some γ > 0, we can write,

∑
n

P

(
|L

1
n
t−n − 1| ≥ n−γ

)
≤

∑
n

n2γE

(
L

1
n
t−n − 1

)2

=
∑
n

n2γE

(
L

2
n
t−n − 2L

1
n
t−n + 1

)
and

E

(
L

2
n
t−n − 2L

1
n
t−n + 1

)
=

∫
R

(x
2
n − 2x

1
n + 1)f(x)dx ≤ Cn−2

∫
R

(log x)2f(x)dx

by analyzing the asymptotic behavior of the function x
2
n − 2x

1
n + 1. By condition

(7), ∑
n

P

(
|L

1
n
t−n − 1| > n−γ

)
≤ C

∑
n

n2γ−2

and the series converges for γ > 0 small enough. It follows that L
1
n
t−n converges

almost surely to 1 by Borel-Cantelli and the conclusion follows.
The ergodicity follows from Theorem 1.3 in [3].

Remark 1. The condition (7) is satisfied if L0 follows the normal or the Gamma
distribution. But the class of examples is clearly bigger.

The assumption eE(log ε1) < 0 appears also in the standard ARCH(1) model
(see e.g. [5]) and it is verified by a wider class of random variables.
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Remark 2. Supppose P (B0 = 0) < 1, P (A0 = 0) = 0, that
∏n
i=0A−i converges

almost surely to zero as n→∞ and that∫ ∞
1

log q

TA(log q)
P|α0+`1L0|(dq) <∞ (8)

where P|α0+`1L0| denotes the distribution of the random variable |α0 + `1L0| and
TA(y) :=

∫ y
0 P (|A0| < e−x) dx for every y ≥ 0. Then the series

∞∑
i=0

i−1∏
j=0

At−j

Bt−i

converges almost surely absolutely for every t ∈ Z.This follows from Theorem 2.1
in [6] since (At, Bt)t∈Z is a i.i.d. sequence of random variables in R2. See also
Proposition 1 in [9]. Therefore, condition (8) could be used instead of (7).

As a consequence, we compute the mean of the squared volatility.

Lemma 1. Assume that α1 < 1 and E(L0) < ∞. Then for every t ∈ Z, the
squared volatility associated to the stationary solution is integrable and

E(σ2t ) =
α0 + `1E(L0)

1− α1
. (9)

Proof: It suffices to take the expectation in (3) and then to iterate the
relation. Denoting by et = E(σ2t ), we have

et = α0 + α1et−1 + `1E(L0)

= α0 + α1(α0 + α1et−2 + `1E(L0))

= α0(1 + α1 + α2
1) + l1E(L0)(1 + α1 + α2

1) + α3
1et−3

= . . .

= (α0 + `1E(L0))
∑
k≥0

αk1 =
α0 + `1E(L0)

1− α1

where the equality at the beginning of the last line above is obtained by a trivial
limit.

Let us now calculate the fourth moment of the extended ARCH process.

Proposition 2. For every t ∈ Z and for α1 <
1√
3
, we have

E(σ4t ) =
A

1− 3α2
1

(10)

with

A = α2
0 + 3`21 + 2

α2
0α1 + α0`1E(L0)

1− α1
+ 2α1`1(α0E(L0) + `1(E(L0))

2)
1

1− α1
. (11)
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Proof: First, fix s, t ∈ Z and notice that

E(σ2tLs) =
∞∑
i=0

i−1∏
j=0

E(At−j)

E(Bt−iLs)

= (α0E(L0) + l1(E(L0))
2)
∞∑
i=0

αi1

= (α0E(L0) + `1(E(L0))
2)

1

1− α1
(12)

where we used

E(Bt−iLs) = E(α0 + `1Lt−i)Ls = α0E(L0) + `1(E(L0))
2

since Lt is a i.i.d. sequence of random variables.

From relation (3), we get for every t ∈ Z

E(σ4t ) = α2
0 + 3α2

1E(σ4t−1) + 3`21 + 2α0α1E(σ2t−1) + 2α0`1 + 2α1`1E(σ2t−1Lt−1)

= α2
0 + 3α2

1E(σ4t−1) + 3`21 + 2
α2
0α1 + α0`1E(L0)

1− α1
+ 2α1`1E(σ2t−1Lt−1)

and by relation (12),

E(σ4t ) = 3E(σ4t−1) +A

with A given by (11). But iterating the above identity, we get (10).

Remark 3. The condition α1 < 1√
3

also appears in the standard ARCH (1)

model. Actually, from (10) one can recover the standard ARCH case by taking
l1 = L0 = 0.

Let us now compute the correlation function of the squared volatility and
analyze its asymptotic behavior.

Proposition 3. Assume α1 <
1√
3
. For every t ∈ Z and for every k ≥ 1,

E(ytyt−k) = aαk1 + b

where

a = E(σ40)− 1

(1− α1)2
[
α0(α0 + l1) + l1α0E(L0) + `21(E(L0))

2
]

(13)

and

b = α0l1(1− E(L0)). (14)
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Proof: Formula (6) reads, for every k ≥ 1,

yt =

(
k−1∏
i=0

At−i

)
yt−k +

k−1∑
i=0

i−1∏
j=0

At−j

Bt−i

and this implies

E(ytyt−k) =

(
k−1∏
i=0

E(At−i)

)
E(y2t−k) +

k−1∑
i=0

i−1∏
j=0

E(At−j)

E(yt−kBt−i)

= αk1E(σ40) +

k−1∑
i=0

αi1E(yt−kBt−i)

= αk1E(σ40) +
k−1∑
i=0

αi1

[
α0
α0 + `1
1− α1

+ `1E(yt−kLt−i)

]
and by (12) we can write

E(ytyt−k) = αk1E(σ40) +
k−1∑
i=0

αi1

[
α0
α0 + `1
1− α1

+ `1
α0E(L0) + l1(E(L0))

2

1− α1

]
= αk1E(σ40) +

[
α0
α0 + `1
1− α1

+ `1
α0E(L0) + l1(E(L0))

2

1− α1

]
1− αk1
1− α1

= αk1E(σ40) +
1− αk1

(1− α1)2
[
α0(α0 + l1) + l1α0E(L0) + l21(E(L0))

2
]

and thus

Cov(yt, yt−k) = E(ytyt−k)− E(yt)E(yt−k)

= αk1E(σ40) +
1− αk1

(1− α1)2
[
α0(α0 + l1) + l1α0E(L0) + l21(E(L0))

2
]

−(α0 + l1E(L0))
2

(1− α1)2

= aσk1 + b

with

a = E(σ40)− 1

(1− α1)2
[
α0(α0 + l1) + l1α0E(L0) + l21(E(L0))

2
]
,

b =
1

(1− α1)2
[
α0(α0 + l1) + l1α0E(L0) + l21(E(L0))

2 − (α0 + l1E(L0)
2)
]

= α0l1(1− E(L0)).

The conclusion of Proposition 3 is thus obtained.
When the expectation of the noise satisfies E(L0) = 1 (which is a natural

assumption), we have the following behavior of the correlation function of the
ARCH process.
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Corollary 1. Assume E(L0) = 1. Then

α−k1 Cov(yt, yt−k)→k→∞ a

where a is defined by (13).

Proof: Is is an immediate consequence of Proposition 3 since b = 0 (b is given
by (14)).

Remark 4. The ARCH process with liquidity has short memory when E(L0) = 1
in the sense that ∑

k≥0
|Cov(yt, yt−k)| <∞.

That is, it keeps the properties of the standard ARCH (1) model. If E(L0) 6= 0,
then clearly the above series is not convergent and the model has long memory.

3 Least squares estimator

We will use an idea from [1] in order to construct the Least Squares Estimator
(LSE). Adding and subtracting X2

t to both sides of relation (2), we obtain

X2
t = α0 + α1X

2
t−1 + l1Lt−1 +X2

t − σ2t

and since from (1), X2
t = σ2t ε

2
t , we can write

X2
t = α0 + α1X

2
t−1 + l1Lt−1 + σ2t (ε

2
t − 1)

= α0 + α1X
2
t−1 + l1Lt−1 + ηt

where we denoted by
ηt = σ2t (ε

2
t − 1). (15)

The family (ηt)t∈Z is a family of i.i.d. random variables, and for each t, the random
variable ε2t − 1 follows a chi-square distribution χ2(1). Let us denote for every
t ∈ Z

Yt = X2
t , α = (α0, α1, l1), Zt = (1, Yt−1, Lt−1). (16)

Then, with the notation (16), we have the vectorial expression

Yt = ZTt α+ ηt (17)

where ZTt denotes the transpose of the vector Zt.
The purpose is to estimate the parameters α based on the observations Z1, ..., ZN .

We will use a least squares method. The Least Squares Estimator is usually con-
structed by minimizing the quadratic error (here the error is interpreted as ηt)

N∑
t=1

η2t =

N∑
t=1

(
Yt − α0 − α1Yt−1 − `1Lt−1

σ2t

)2

.
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By differentiating in the above relation with respect to αand solving the equation
d
dα

∑N
t=1 η

2
t = 0 we obtain the estimator

α̂ =

∑N
t=1 ZtYt∑N
t=1 ZtZ

T
t

(18)

and replacing in (18) Yt by the right hand side of (17] we get

α̂− α =

∑N
t=1 Ztηt∑N
t=1 ZtZ

T
t

. (19)

Proposition 4. Assume that the sequence (Lt)t∈Z in (2) is strongly mixing. Sup-
pose (8) holds. Then the estimator α̂N is strongly consistent, i.e. as N →∞

α̂N → α almost surely.

Moreover, α̂N is asymptotically normal, that is, as N →∞,

N−
1
2 (α̂N − α)→d N(0, U0U

T
0 )

where →d stands for the convergence in distribution, Ut := Ztηt for every t ∈ Z
and N(0, U0U

T
0 ) is the Gaussian law with mean zero and variance U0U

T
0 .

Proof: Under (8), it follows from Proposition 1 that (Xt)t∈Z is strictly sta-
tionary and ergodic. Since (Lt)t∈Z in (2) is strongly mixing and for every t ∈ Z,
the random variable Lt is independent by Xt (from Proposition 1), we obtain that
the vector (Xt, Lt)t∈Z is also stationary and ergodic (see [7]). Then Ztηt and ZtZ

T
t

are also stationary and ergodic. It follows from the pointwise ergodic theorem for
stationary sequences (see [11]) that almost surely

1

N

N∑
t=1

Ztηt →N→∞ E(Z0η0) = 0

(from (15)) and

1

N

N∑
t=1

ZtZ
T
t →N→∞ E(Z0Z

T
0 ) 6= 0.

This and (19) gives the strong consistency of the estimator. Let us regard the
asymptotic distribution of the estimator (18). Denote Ut = Ztηt for every t ∈ Z.
We first notice that (Ut)t∈Z is a martingale difference sequence. Indeed, let con-
sider FUt the sigma algebra generated by the random variables Uj , j ≤ t and
Gt the sigma algebra generated by the random variables ((Xj)j≤t, (Lj)j≤t+1).
From Proposition 1 and our assumptions, εt is independent of Gt−1 and thus
E (Ut|Gt−1) = 0 for every t. Since FUt ⊂ Gt we obtain E

(
Ut|FUt−1

)
= 0 for every t

and therefore (Ut)t∈Z is a martingale difference sequence. From the central limit
theorem for stationary ergodic martingale differences (see e.g. [8]) we obtain that

1√
N

N∑
t=1

Ut → N(0, E(U0U
T
0 ))

and this concludes the proof.
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