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FIRST ORDER JETS OF BUNDLES OVER A MANIFOLD
ENDOWED WITH A SUBFOLIATION

Adelina MANEA!

Abstract

Let (E,m, M) be a bundle over the manifold (M, Fy, F»), where (Fy, F3)
is a subfoliation on M. We define the (F, F5)-1-jet manifold, Jp, . If J'z
is the 1-jet manifold of 7, then there is a diffeomorphism between Jm and
the total space of the fibre bundle Jf wx pJf, wxpJjw, where Ji m and
J llm_)ﬂ are the transversal 1-jet manifold and the leafwise 1-jet manifold of the
bundle 7, with respect to foliations F; and Fs, respectively.
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1 Introduction

Generally speaking, jets are equivalence classes of maps between manifolds,
maps which have the same derivative until a specificated order. The language
of jets has appeared as a concise way of describing phenomena associated with
the derivatives of maps, so it is an appropiate language for many physical theories
(mechanics, field theories). Jet spaces constitute a natural geometric environment
also for differential equations and for equations of mathematical physics, particu-
larly those associated with the calculus of variations, [5], [7], [12]. We refer to [2],
[10], [13], for an introduction to jets.

In this paper we investigate the first order jets of bundles in a particular case,
when the base space admits a subfoliation. Foliations, subfoliations and I-flags
of foliations on manifolds also could have physical interpretations. Geometrical
and cohomologycal aspects of such manifolds are investigated in [3], [9], [14],
[15] and [16]. Tangent manifold of a Finsler space, big-tangent manifold, are
examples of manifolds endowed with subfoliations, [1], [4], [17]. Bundles over
foliated manifolds are studied in [11], [8] and the k-jets of origin O of differentialble
mappings from R to a manifold endowed with an [-flag of foliations are studied
in [6].

The paper is organized as follows. Section 2 contains the basic theoretical
aspects about subfoliations and first order jets of bundles. In subsections 2.1 we
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determine a basis adapted to a subfoliation on a Riemannian manifold, which will
be used in the next section. In section 3 we consider a bundle (E, 7, M) over the
manifold (M, Fy, Fy), where (Fy, F») is a subfoliation on M and we define leafwise
F5-jet manifold, the F51 — 1-jet manifold and the transversal Fi-jet manifold of the
bundle 7. The main result, Theorem 1, proves that the 1-jet manifold of 7w, J'x,
is diffeomorphic with the total space of the fibre bundle melﬂx EJ};217T>< EJ%27T,
where J;;lﬂ and Jllwgﬂ are the transversal 1-jet manifold and the leafwise 1-jet
manifold of the bundle 7, with respect to foliations F; and s, respectively, since
J s, ™ is the Fp; — 1-jet manifold of m with respect to subfoliation (F1, F3). In the
last section we particularised the general result from previous sections in the case
of bundles over a big-tangent manifold of a Riemannian manifold.

2 Preliminaries

In this section we present the notions of foliation and subfoliation following
[14], [3], then the first order jets manifold of a bundle, [10].

2.1 Subfoliations

A g-codimensional foliation F of an m-dimensional manifold M is a partition
of M into (m—¢q)-dimensional submanifolds, called leaves. The set of vector fields
tangent to leaves form an integrable subbundle F' of TM, called the structural
bundle of (M,%F). The transversal bundle QF = TM/F is exactly the normal
bundle of F' in TM when M is a Riemannian manifold.

On the foliated manifold (M, ) there is an adapted atlas whose coordinate
system on the open set V C M is (') = (2%, 2"), where a = 1,¢, u = ¢+ 1,m,
such that the points in the same leaf £ NV have their first ¢ coordinates equal,
and are distinguished by their last (m — ¢) coordinates. Locally, the structural
bundle F' is spanned by {%}u.

A (q1,q2)-codimensional subfoliation on M is a couple (Fi, Fy) of integrable
subbundles Fj of TM of dimension m — qi, k = 1,2, and F, being at the same
time a subbundle of Fj, [3]. Such a subfoliation determines two foliations on
M: a (m — ¢1)-dimensional foliation 7 with structural bundle F; and a (m — ¢2)-
dimensional foliation Fy with structural bundle F». Moreover, every leaf of F; has
a d = (g2—qi1)-codimensional foliated structure determined by Fj, with transversal
bundle QFQl = Fl/FQ.

We denote by QFy = T'M/F}, the transversal bundle of foliation JF; and by pg
the canonical projection on QF}.

Let (M, g) be a Riemannian m-dimensional manifold, and (F1, F2) a (¢1,g2)-
codimensional subfoliation on it. Then, @ F}, is isomorphic with the normal bundle
of I} and we have the following decompositions:

TM =QI ®F1, TM=QF,®F,, I'N=QFy ®F>. (1)

We also have the isomorphism QF, = QF; @ QF»;.
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The first equality of (1) produces a double grading of forms on M of bidegree
(p,q), with QFj-degree p and Fj-degree g, since the last relation (1) leads to a
double gradind (7, s), ¢ = r + s, of Fi-degree q into QF51-degree r and Fy-degree
s. The exterior diferential admits the decomposition

F T F F 7. &z 7.
d=dyy+dy" 4 +dyi, dy =dyg" +dy% + dpi, (2)
where dgll means the exterior derivative along the leaves of J; in M, and dgfl
means the exterior derivative along the leaves of 3 in £, for every leaf £ of J7.

From the classical theory of foliated manifolds, there is an atlas {(U,¢)}
adapted to (F1, F3), with local adapted coordinates

iAo
(.CU » L, T )1§iSQ1<a§lp<u§ma

such that in every domain U, leaves of JF; are defined by fixing the first ¢; coor-
dinates and the leaves of F, are defined by z* = const. and z® = const.
In this paper, the indices will take the following values: 7,41, .. = 1,q1; a,aq,.. =
q1 +1,q2; u,uy, ... = qgo + 1,m and, begining with the next section, o, a1, .. = 1, n.
For two adapted local charts (U, (2%, 2%, z%)), (U, (2, 2%, 2%!) whose domains
overlap, in U N U, there are the following relations:

ox’ ox' oz

p— p— _0
oxer  9zw  dxwr ’

so the change rules for local coordinates are
=z (2"), x=z"(a", 2%, " =2z" (2" 2" "). (3)

For such an adapted chart (U, (z¢, 2%, %)), the local coordinates on the plaque
U N3y are (), so the bundle Fy is locally spanned by {%} Let us

g2<usm’
denote
1) _ 0
spa P2 oxe )’

the projection of vector field % on the normal bundle QF;, for every a =

q1 + 1, ¢o. Since 5%& — aga belongs to Fy, there are the local differentiable functions

t% € Q%(U) such that

0 0 0
= - tZ ) (4)
ox®  Ox° oz
where we use the Einstein convention for summation.
Local coordinates on the plaque UNJF; are (z%, z"), so the bundle F} is locally

o) el
spanned by {W’ W}q1<a§q2<ugm' Let us denote

0 0
sz oxt )’

on the normal bundle QF1, for every i =1, q;.

8 -
ox?

the projection of
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Since 6‘;2. — 8?& belongs to F1, there are the local differentiable functions t¢, i €
Q°(U) such that
00 el w9 (5)
oxt  Odxt ' Oxe ' Oxv

The functions t;,t{,t} are satisfying g (%, 8%) =0,9 (5‘;“ 8%,6) =0,Vq <
k < m, respectively.

The coordinate transformation (3) leads to the following transformation for

£ 10 g o e
_ €T T T
Zi 8@.1},1 = ai.al + tz 857(11’ (6)
_, 0x® ox® oz’
T (7)

i gga gzt g’

Oz ox¥ ox¥ oxt
al Fu1 _ Uu
it ogar T ' pgu oz TV gz ®

since we have

o _0s" 6 0 oxt b
ST 9Fm fxe’ Sz 9z fat

We obtained in this way the local basis

6o 6 0
{M’W’@x“}’ (9)

of TM, adapted to (F1, Fy), where the vector fields {%}i spanned a comple-

mentary distribution to the structural distribution of &7 in T'M, and {%, &%}i,a
spanned a complementary distribution to the structural distribution of Fy in T'M.

2.2 First order jet manifold of a bundle

Let (E, 7, M) be a fiber bundle, where 7 : E — M is a surjective submersion,
M is a m-dimensional differentiable manifold and the fibre dimension is equal to n
(so, E is a (m + n)-dimensional manifold). For a local chart (V, (z')) in M, the
adapted coordinate system in 7! (V) C E is (:Ci,yo‘), where i = 1,m, a = 1,n.
We shall use the same notation z* for the coordinate functions x* from M and
2 o from the manifold E. A local section of the bundle 7 in € M is a map
®:V - E, x €V C M such that ® om = 1. The set of all local sections of 7
in z is denoted by I'; (7). In [10] is defined the 1-jet of a local section as follows:

Definition 1. We said that two local sections ®, ¥ € T', (w) are 1-equivalent
at x if ®(x) = ¥ (z) and if in some adapted coordinate system (:Ui,yo‘) around
® (x),
9 (y*o®) 9 (y* o W)
2 (@)= S (),
fori=1,m and o = 1,n. The equivalence class containing ® is called the 1-jet
of the section ® at x and is denoted j1®.

(10)
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Obviously, the conditions (10) have geometrical meaning and for ®, ¥ € T';, ()
which satisfy ® (z) = ¥ (z), the equality j1® = j; ¥ is equivalent with @7, p =
‘I’*\Tva where @, is the linear tangent map of the map .

The 1-jet manifold of 7 is the set

Jir={ji®|zeM T, (n)}.

Given an atlas of adapted charts (U, z) on E, where z = (mi, yo‘), the collection of
charts (Ul, zl) is a (m + n + mn)-dimensional C*-atlas on J!'m, where

Ult={jloeJ'r|®(x)eU},

and the functions

2= (27 (11)

are defined by 2' (j1®) = 2’ (2), y* (j2®) = @ (), y® (ji®) = a(gg;c;@) (z).
Moreover, (J17T, T, M) and (J17r, 1,0 E) are bundles, where the surjective sub-
mersions m : J'w — M, T ° J'n — E are defined by m; (j;@) = z and
7m0 (j2®) = @ (2).

In the following we shall consider the bundles over a manifold endowed with
a 2-flag (also called subfoliation).

3 First order jets of a bundle, adapted to a subfolia-
tion of the base space

Let (M, Fy, F5) be an m-dimensional manifold with (g1, g2)- subfoliation (Fy, Fy),
and (E,m, M) a bundle over M of rank n, so that dim £ = n + m. For a local
adapted chart (V, (a:i, x®, x“)) in M, we have an adapted local chart (U, (2, 2%, 2%,
y%)) in E and an adapted local chart (Ul, (:zi,af“,a:“, y, yl’-l,yg‘,yff)) in the 1-jet
manifold J'7. The last one is exactly the chart (11), where we replace the indice
1 taking values from 1 to n with the indices i = 1,q1,a =q1 + 1, g2, u=gq2 + 1, m

3.1 Leafwise F,-1-jet manifold

Definition 2. We say that two local sections ®, ¥ € I'y () are leafwise Fs-
equivalent at v € M if ® (x) = U (x) and if, in some adapted coordinate system
(xi, %, ", yo‘) around ® (x)

O(Yy*o®) . 9y o¥)
e G e COF (1)

for everyu = qa + 1,m . The equivalence class containing ® is called the leafwise
Fy-1-jet of ® and it is denoted by j51®.
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Remark 1. The conditions (1) do not depend upon the choice of charts. So, let
us consider (5;@1,5:@1,5:“1,@&1) be another coordinate system around ® (x). Then
we have

9 (g™ 0 @)
dzm

og™ Dar o

(z) = e (® (x)).ajm () + o 9 (y* o ®) O

(@ (@) S (@)

(z),

Fu

using the relationship =% o ® = x% between similarly-named coordinate functions
on E and M. The result follows now from ® (x) = ¥ (z) and relations (1).

Remark 2. We can say that ®,¥ € T, (7) are leafwise Fy-equivalent at x if they
are 1-equivalent at x (Definition 1) in the leaf of Fo which contains the point x.

Proposition 1. Let ®,¥ € I'; (1) be two local sections such that ® (x) = ¥ (x).
Then jlx’FQCD = ji’FZ\II if and only if Pyp,, = Viip,, -

Proof: In adapted coordinates (xi,a:“,a:“) around x € M, we have Iy, =
o)
span {W(x)},

b (o @) = 20 ) 2@ @),

and a similar expression for W, , (8% (z)). The equality brg = Ly g
equivalent with ® (z) = ¥ (x) and relations (1), which implies @, , (% (z)) =

W (52 (@), m

Remark 3. If jL® = j1U, then ji’F2<I> = ji’FQ\IJ. Indeed, if ® and U are local sec-

tions 1-equivalent at x, then Py 1, 0 = Wy, 01, which assures @y g, , = ViR, ,, SO
b2 = jLP2y by Proposition 1. The converse is not true: jy™2® = jL1? (®+ Q)
for every local section Q € Ty () which is basic with respect to foliation Fo (that

means 8(%2352) (x) =0), but j1® # jl (® + Q).

Let Agp = {(U, z = (xi, x®, ¥, yo‘))} be an adapted atlas on E. The induced
coordinate system (Ul’FQ, zl’F2) on the set

Jhow = {jfchzé lzeM,®el, (w)} ,
is defined by:
Uhtr = {ji’FQ‘I’ e J'Pr | ®(x) € U} , 2= (2t a2y 20, (2)

with z° (ji’&(l)) =z’ (x), 2° (jglc’F2<I>> = 2% (z), 2" (jglc’F2<I>> = 2" (z), y* (jfc’FZ ) =

® (x), and 22 (ng’F2 ) = 8(%22(1)) (x), respectively.

It is easy to verify that the collection of all charts (Ul’F2, zl7F2) isa (m+n+
+n(m — go))-dimensional C*-atlas on J"*27. The maps

t J};QW — M, 7Tl1 (jl’F2<I>> =z,

T
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7rl1’0 : Jf;27r — E; 71'11’0 (ji’F2<I>> =o(x),

for every ji’F2<I> € J%QTF, are the correspondent of maps 7, m ¢ from subsection
2.2. The Remark 3 assures that the map

o Jir — J,lp27r; t (j;@) = jbibg,
is well-defined. Moreover, there are the relations

Wi,o ol =my, (3)

ﬂllo7rl = T1; 77071570 :71'%.

l

Proposition 2. The functions 7Tl1 0, T are surjective submersions.

Proof: Let w € E and x = 7 (w) € M. There is a local section ® € T'; (7) such
that ® () = w and then 7rll70 <j£};F2<I>) = w. Hence, 7rll70 is a surjective map. Using
the local coordinates (U, z) around w = ® (x), and (Ul’FQ,zl’FQ) around ji’FQ@,
the composite map z o 7rl1,0 o (zl’Fl)_l is just the projection pry : 2bF2 (Ul’FQ) C
Rty Rgm(n—a2) _y Rntm gq itg rank is equal to n+m. Then 7r1170 is a submersion.

A similar argument is used for the map 7!, so it is also a submersion. For an
arbitrary ji’Fz(ID € JHPer, the 1-jet of the section ® satisfies ' (j;<1>) = ji’FQCD.
We obtained that 7! is surjective. O

Remark 4. Taking into account the Proposition 2, (J;;Qﬂ',ﬂ'lLO,E) is a fibered
manifold, and the relation (3) implies that 7t is a surjective bundles morphism.

Example 1. If 7 is the trivial bundle (M x R, m, M), then it is known, [10], that
there is a canonical diffeomorphism ¢ : Jim — T*M x R defined by p(jl®) =
(dPy, ®(x)), where ® = proo @, for & € I'y(w), and pra: M x R — R. The map

T g = Fy x R, 1(552®) = (57 @,, B(2)),

15 also a diffeomorphism, where F5 is the dual of bundle F5, and the operator dgfl
is introduced in (2).

3.2 The Fy-1-jet manifold of the bundle =

Let (E,m, M) be a bundle with the base space endowed with a subfoliation
manifold like in previous section.

Definition 3. We say that two local sections ®,¥ € Iy (7) are Fy1-1-equivalent
atx € M if & (x) = VU (x) and if, in some adapted coordinate system (azi, %, Y, yo‘)
around ® (x),
§(y*o®) §(y* o W)
o) () = 22 0
é

for every a = q1 +1,q2, (where 535 s introduced in (4)). The equivalence class
containing ® is called the Fy-1-jet of ® and it is denoted by j%’Fm(I).
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Remark 5. By a straightforward computation, we see that the conditions (4) have
geometrical meaning.

Proposition 3. Let ®,¥ € I'; (1) be two local sections such that ® (x) = ¥ (x).
Then jo'™ ® = j’"™ U if and only if B, , = VuQry.,-

Proof: In adapted coordinates (xi,x“,x“) around x € M, we have QFs ; =
6
span {32 ()},

b (e 0) = U @) @),

Sz

oz y
and a similar expression for U, , (% (x)) The equality j;’Fm(I) = j;7F21\IJ is
equivalent with ® (z) = ¥ (z) and relation (4), which implies
0 )
Do (5:13(1 (113)) =V.io <5$a (95)) :
O

The set of all F51-1-jets of 7,
Jhy,m={ja™® |2 e M, ® €T, (m)},

has a natural structure of (m +n+ n (g2 — ¢1))-dimensional C*°-differentiable
manifold given by an atlas whose charts are (U For oF 21) where

U = (e e Jp,m | @ (2) € U, 2™ = (0% 2%y, 27), (5)

with z° (j;’Fm@) =2 (x), 2% (j%’Fm(I)) =z%(x), z* (j%’Fm@) =z (z),
a  :1,F21 _ a  :1,F2 _ (y“o®) : i
Yy (Jo @) = @ (2), and 2§ (jz ' @) = =5;a— (v), respectively, where (U, (2°,
x® x* y*)) is a local chart on E. The manifold J 1{5177 could be also called the

(F1, Fy)-1-jet manifold. Moreover, there are the following maps who give to J};Qlw
some structures of fibered manifold:

For . gl . For (1L, Fo1) —
™A Jp, = M, m P (R e) =,

ﬂf%l : J};217r — B 7{201 (j%’Fm(I)) =®(z),

for jalz’Fm(P € J},ﬂﬂ. They are the correspondent of maps 7, 7 o from subsection
2.2.
The maps
ot e — J};‘Zlﬂ'; rfn (j;q)) :j;7F21<I>,
are well-defined. Indeed, from Proposition 3, the equality j1® = jl¥ implies

1P 1,F . .
Jo 2 ® = ju7 ' W. Moreover, there are the following relations

F F
T oMt =10, (6)

ﬂle F21.

ot = 7y; ﬂowfﬁl =m

.. . .. . P
From the similar reasons as in Proposition 2, the functions 7; '

submersions.

, w121 are surjective
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3.3 Transversal Fj-1-jet manifold

Definition 4. We say that two local sections ®,¥ € T'y(7) are transversal
Fi-1-equivalent at x € M if ®(x) = ¥ (x) and if, in some adapted coordinate
system (x’, z°, x“,yo‘) around ® (x)

6(y*o®)  0(y*o¥)
00 () = 22 g, @
for every i = 1,q1, (where 6‘; is introduced in (9)). The equivalence class con-

taining ® is called the transversal Fi-jet of ® and it is denoted by ji’FlCD.

Remark 6. By a straightforward calculation, the conditions (7) have geometrical
meaning.

Proposition 4. Let ®,¥ € I'; (7) be two local sections such that ® (x) = ¥ (x).

Then j™ @ = j5™ if and only if Tuor, . = Vuor .-

Proof: In adapted coordinates (a:i,xa,x“) around x € M, we have QF; ; =
span { 327 (x)},

v (@) = S ) @ @),

oxt

and a similar expression for W, , (5%& (:1;)) The equality jnglCI) = jfc’Fl\Il is
equivalent with ® () = ¥ (x) and relation (7), which implies ®, , (5%& (z))
U, o (% (z)). O

The set of all transversal Fi-jets of m,

Jpm={it"® |z e M,®eT,(n)},

has a natural structure of (m 4+ n + n - q1))-dimensional C'*°-differentiable mani-
fold given by an atlas whose charts are (U1, 2%1), where

Ut = {jtRe e Jhn | @ (v) e UL, 280 = (oF, 2%, 2, 4, 20) (8)

1
with 2 (j;Fl @) = 2% (2), 2° (j;ﬂ@) = 29 (z), 2" (jf;Fl q>) = 2% (z), y° (j;i:Fl q>) -
P (z), and 2 (jfc’Fl <I>) _ (yo®) (z), respectively, where (U, (2%, 2% 2", y%)) is a

ozt
local chart on E. Moreover, there are the following maps which give to Jf;lw some
structures of fibered manifold:

tvFl . t . tvFl 't7F1 _
g m = My o™ (]x <I>) =z,
t7F1 .

LS Jf;lw — F; Wi’ﬁl (jf,;FlCI)) =d(x),

for jgtg’Fld) € Jlt;lw. They are the correspondent of maps 71, 71 from subsection
2.2.
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The maps
abf e — J}ITr; bl (j1<1>) = jt’F1<I>,

are well- deﬁned Indeed, from Proposition 4, the equality jl® = j1¥ implies

tF1<I> L1y Moreover, there are the following relations
ﬂi€IOWtF1_W10, (9)

t,Fy tF t,Fn 6 F
m T om” 7r1,7ro7r10 =m .

o . -, . t,F
From the similar reasons as in Proposition 2, the functions 7' , 7t are sur-
b

jective submersions.

3.4 A decomposition theorem for J'7

This subsection contains the main result of the paper, a diffeomorphism be-
tween the 1-jet manifold of 7w and the total space of the fibered product Jf;lw X B

J}17217T XE przﬂ
From the Propositions 1, 3 and 4, it results:

Proposition 5. Let &,V € ', (7) be two local sections of bundle w. Then the
following assertions are equivalent:

b) leQ@ F2\I/ ]tF1@ _]tFl\I/ andjl FQl(p 1F21\Il

Given a bundle (E, 7, M) over the Riemannian manifold (M, g) endowed with
a subfoliation (F1, F»), there are four bundles of first order jets of 7, with the base
space E: (J17r,7r170, ) (JF27T my OQ,E) (J};Qlﬂ' WI%I,E> and (JF T, 01,E>
respectively. The fibered product of the last three bundles has the total space

J%lﬂ XE J}pmﬁ XE Jll;27r =
:{<tF1¢ ]1F21\I/j Fzé-) ’ tF1 <j§:,F1q)):7T1F:201< 1F2 qj) ( lFQg)}
= { (s 1<I>,j;’F21\If,jéF25) (@) =¥ ()= f(sc)},

(10)
7F1 F21 lF2

.7t 1 l
and the projection map 7" Xg mj Xg 7y + Jpm™ Xg Jp, @ Xg Jpm = E

defined by
(7i6 xp iy xprie) (a7 @, b w, i) = @ (2) = W (x) = £(2).

If {(Ut’Fl, (aci,x“,x“, T zf‘))}, {(UFM, (aci,x“,x“, Yy, zg‘))} and
{(UZ’FQ, (xi,:ca,x“,yo‘, 23))} are atlases on the manifolds J} m, J}MW and J}QW,
respectively, then {(Ut’F1 x Uk x yhte, (xi,a:a,a:“,y ) 2§ ,za,zu))} is a C%
-atlas on J}lﬂ XE J},QIW XE J}}lﬂ. Now, we can give the main result of this paper:
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Theorem 1. The map
peJw = Jf;lﬂ' XE J}pmw XE J}:QTF,

defined by
u(jr0) = (70, jr e, i e ),

is a diffeomorphism between the 1-jet manifold J'm and J}lﬂ ) Jl{ﬂﬂw XE Jé;éﬂ'.

Proof: First of all, we have to remark that from Proposition 5, the map u
is well-defined and injective. We shall prove that it is surjective, too. For an
arbitrary triple <j;’F1<I>,j;’F21\IJ,ji’F2£) € J}IW X g J}zlﬂ X B J%QW, we search for
a local section Q € T', () transversal Fj-1-equivalent at x to ®, Fy;-1-equivalent
at « to ¥ and leafwise Fy-1-equivalent at x to &.

Ifwehave ® : U} - F,V :Uy — Fand £ : U3 — E withx € UyNUsNUs C M,
then we can define the local section Q : U — E, x € U C Uy NU3NUs, by its local
representation in (7r_1 U), (a;", x%, ", ya)):

'oQ=2za" z2%0Q=2% 2z"0Q=2"

9 (y*o V)

ron = (V@) @+t 2 @) ety

oxt Oz oz

# () 2 @+ T @) oy + 228 @) v,

and it is easy to see that it satisfies the required conditions. This proved that u
is a surjective map.

The map p is diffeomorfism. Indeed, if (Ul, 2t = (a:i, x® v y“, yg) k:ﬁ) is a

local chart around j.® € Jlm, and (Ut’F1 x Ut x Utz 5 = (2%, 2%, 2%, y®, 28, 28

)% 0 *a

u

za)>, is a local chart around p (j;@), then, for every (Ci, ¢4, ¢, ¢, (,?) €zl (Ul) C

R% X  ReTN X R x R x R™, we obtain
(ZOIUO(Zl)_l) (gzacavcuvcavcg) = (Cz’ca’gu’ga7<§z - t? (33) Cg - t?(l') 3745_
—t2(2)¢S, ), where (= (¢, (S, Cq) € P x Rr(@=a) x grim—az), O

4 First order jets of bundles over a big-tangent man-
ifold

An example of a manifold which admits a subfoliation is the big-tangent man-
ifold of a Riemannian manifold (M, g). Let us briefly recall some elementary
notions about the geometry of big-tangent manifold TM. For more see [17].

Let M be an n-dimensional smooth manifold and we consider the associated
big tangent bundle TM @ T* M. The total space of the big-tangent bundle, called
big-tangent manifold, is a 3n-dimensional smooth manifold denoted here by TM.
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The points of TM are triples (z,y,p), © € M, y € T,M, p € T;M, and
one has local coordinates (z¢,y*,p;), where i = 1,...,n = dim M, (z*) are local
coordinates on M, (y°) are vector coordinates and (p;) are covector coordinates.
The change rules of these coordinates are:

i _ oxt . _  0ad

T =727,y =5 jy ) Pi = 5D (1)

Also, for the big-tangent manifold TM we have the following projections
p:TM — M, p1:TM —TM, ps:TM —T*M

on M and on the total spaces of tangent and cotangent bundle, respectively.
As usual, we denote by V' = V(TM) the vertical bundle on the big-tangent
manifold TM and it has the decomposition

V=V &V, (2)

where Vi = p;(V(TM)), Vo = py,-(V(T*M)) and have the local frames {8 -1

{8%2_}, respectively. Since V', Vq, V5 are integrable bundles and V7, V5 are subbun-
dles of V', on the big tangent manifold TM there are two (n,2n)-codimensional
subfoliations: (V, V1) and (V, Va).
The subbundles V;, V5 are structural bundles of the vertical foliations V1, Vs
of TM by fibers of po, p1, respectively, and TM has a multi-foliate structure [17].
So, as usual, for tangent bundle and like in foliation theory, the geometry of the
big-tangent manifold TM may be developed by considering a horizontal bundle
H such that
T(TM)=HaV =HaV, ® V. (3)

According to subsection 2.1, I}, =V, QFy = H, F5, = V5, QFy = V7.

An adapted basis to subfoliation (V,V}) could be found considering ¢g a Rie-
mannian metric on M, see [17]. In this case, the Levi-Civita connection I' on M
with local coefficients F;k locally span a complement of the vertical distribution.
Then a horizontal bundle on TM has local bases

5 9 ) . 0

k
st~ aa Y Ty TP, W

corresponding to (5).
The adapted basis to subfoliation (V, V7)) is { < 5o By“ 3o
be its corresponding cobasis. Then, the formula

9% and let {dz*, dy*, dp; }

G = gij(x)dxi @ da? + gij(m)éyi ® 0y’ + gij(ﬂc)épi ® dpy, (5)

defines a metric on the big-tangent manifold TM, which is non degenerate on V
and called the Sasaki-type metric. Here (g (x)) denotes the inverse matrix of

(9i5(2))-
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The first equality of (3) produces a double grading of forms and multivectors
on TM of bidegree or type (p,q) that means H-degree p and V-degree q. The
exterior diferential admits the decomposition (2), which becames:

d=dyo+do1+do—1, do1=do1,0+dop1, (6)

where dp 1 means the exterior differential along the leaves of V.

Finaly, we consider the Riemannian manifold (TM, G) endowed with the sub-
foliation (V,V3) to be the base space of a bundle w. According to Theorem 1, the
1-jet manifold of 7 is diffeomorphic with the fiberd product

t 1 l
Jvﬂ' XM JV17T XTM JV27T.

In particular, let 7 be the trivial bundle (TM x R, 7, TM). Then, see Example
1, the maps

P2 : J\l/27r = V5 x R, 2(j572®@) = (do01®, 2(w)),

o1 Jbm = Vi x Ryo1(55V 2 @) = (do 0@, @(w)),

are diffeomorphisms, where V;* is the dual of V;, for i = 1,2, w = (z,y,p) € TM,
® a local section of w and ® = pre o @, with projection pro : TM x R — R.
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