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Abstract

In this paper, we analyze the harmonic curvature conditions of AW(k)-
type (1 ≤ k ≤ 3) semi-real quaternionic curves and semi-real quaternionic
Bertrand curves with k 6= 0 and r 6= 0 in E3

1 and we give some theorems and
results on these curves.
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1 Introduction

The quaternion was introduced by Hamilton. His initial attempt to generalize
the complex numbers by introducing a three-dimensional objects failed in the sense
that the algebra he constructed for these three-dimensional object did not have
the desired properties. On the 16th October 1843 Hamilton discovered that the
appropriate generalization is one in which the scalar(real) axis is left unchanged
whereas the vector(imaginary) axis is supplemented by adding two further vector
axis. Besides, there are three different types of quaternions, namely real, complex
and dual quaternions. A real quaternion is defined as q = q0 + q1e1 + q2e2 +
q3e3 is composed of four units (1, e1, e2, e3) where e1, e2, e3 are orthogonal unit
spatial vectors, qi (i = 0, 1, 2, 3) are real numbers and this quaternion may be
written as a linear combination of a real part(scalar) and vectorial part(a spatial
vector). Quaternions find uses in both theoretical and applied mathematics, in
particular for calculations involving three-dimensional rotations such as in three-
dimensional computer graphics and computer vision. They can be used alongside
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other methods, such as Euler angles and matrices, or as an alternative to them
depending on the application. Baharathi and Nagaraj represented the curves by
unit quaternions in E3 and E4 and called these curves quaternionic curves [11].
They studied the differential geometry of space curves and introduced Frenet
frames and formulae by using quaternions. After them, many mathematicians
have studied quaternionic curves. Another issue we study in this paper is AW(k)-
type curves. In [7], K. Arslan and A. West defined the notion of AW(k)-type
submanifolds. Since then, many works have been done related to AW(k)-type
submanifolds [8, 9, 10]. In [9], K. Arslan and the C. Özgür studied curves and
surfaces of AW(k)-type. Further, many interesting results on curves of AW(k)-type
have been obtained by many mathematicians (see [3, 4, 12, ?]). For example, in
[3], Özgür and Gezgin studied a Bertrand curve of AW(k)-type and furthermore,
they showed that there was no such Bertrand curve of AW(1)-type and was of
AW(3)-type if and only if it was a right circular helix. In addition they studied
weak AW(2)-type and AW(3)-type conical geodesic curves in E3. Besides, in [4],
Yoon studied curves of AW(k)-type in the Lie group G with a bi-invariant metric
and he also characterized general helices in terms of AW(k)-type curve in the Lie
group G. Finally, in [12], the curves of AW(k)- type in 3-dimensional null cone
were investigated by Külahç i, Bektaş and Ergüt and in [14], Kızıltuğ and Yaylı
studied quaternionic Mannheim curves of AW(k)-type in E3.

In this paper, we have done a study on semi-real quaternionic Bertrand curves
of AW(k)-type. Firstly, basic notions and properties of a quaternionic curve are
reviewed. Later, we study quaternionic curves of AW(k)-type and quaternionic
Bertrand curves of AW(k)-type in E3

1 , respectively.

2 Preliminaries

In this section, we give the basic elements of the theory of real and semi-
real quaternions and quaternionic curves. First we recall the real quaternions.
Let Q denotes the set of all real quaternions. A real quaternion is defined by
q = a

→
e1+b

→
e2+c

→
e3+d where a, b, c, d are real numbers and

→
e1,
→
e2,
→
e3 are orthogonal

unit spatial vectors in three dimensional space such that

→
e1 ×

→
e2 =

→
e3 = −→e2 ×

→
e1

→
e2 ×

→
e3 =

→
e1 = −→e3 ×

→
e2

→
e3 ×

→
e1 =

→
e2 = −→e1 ×

→
e3

e21 + e22 + e23 = 1

and we can write a real quaternion as a linear combination of scalar part Sq = d

and vectorial part Vq = a
→
e1 + b

→
e2 + c

→
e3. Using these basic products we can now

expand the product of two quaternions as

p× q = SpSq −
〈
→
Vp,

→
Vq

〉
+ Sp

→
Vq + Sq

→
Vp +

→
Vp ∧

→
Vq for every p, q ∈ Q,
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where 〈, 〉 and ∧ are inner product and cross product on E3, respectively.

The conjugate of quaternion q is denoted by γq. In that case γq = −a→e1 −
b
→
e2 − c

→
e3 + d for every q ∈ Q which is called the “Hamiltonian conjugation”.

The h-inner product of two quaternions is defined by

h(p, q) =
1

2
(p× γq + q × γp) for every p, q ∈ Q,

where h is the symmetric, non-degenerate, real valued and bilinear form [9, 6].
Now we can give the definition of the norm for every quaternion. The norm of
any q real quaternion is denoted

‖q‖2 = h(q, q) = q × γq = a2 + b2 + c2 + d2.

In this paper, we will study the semi-real spatial quaternionic curve in E3
1 . A

semi-real quaternion is defined by q = a
→
e1 + b

→
e2 + c

→
e3 + d such that

ei × ei = −ε(ei) 1 6 i 6 3,

ei × ej = ε(ei)ε(ej)ek in E3
1 ,

where (ijk) is an even permutation of (123) .
Notice here that we denote the set of all semi-real quaternions by Qν where ν

is an index.

Qν =

{
q | q = a

→
e1 + b

→
e2 + c

→
e3 + d; a, b, c, d ∈ R,

→
e1,
→
e2,
→
e3 ∈ E3

1 , hν(ei, ei) = ε(ei), 1 6 i 6 3.

}

If ei is a spacelike or timelike vector, then ε(ei) = +1 or −1 respectively.

For p = Sp+
→
Vp and q = Sq+

→
Vq, the multiplication of two semi-real quaternions

p and q is defined as follows

p× q = SpSq +

〈
→
Vp,

→
Vq

〉
+ Sp

→
Vq + Sq

→
Vp +

→
Vp ∧

→
Vq for every p, q ∈ Qν ,

where we have used the scalar and cross products in E3
1 . Let symbol γ denotes

the conjugate of a quaternion, γq = −a→e1 − b
→
e2 − c

→
e3 + d for every q ∈ Qν . This

helps to define the symmetric, non-degenerate, bilinear form hν as follows.

hν : Qν ×Qν −→ R,

h1 (p, q) =
1

2
[ε(p)ε(γq) (p× γq) + ε(q)ε(γp) (q × γp)] for E3

1 ,

the norm of semi-real quaternion q is denoted by

‖q‖2 = |hν(q, q)| = |ε(q) (q × γq)| =
∣∣−a2 − b2 + c2 + d2

∣∣
for p, q ∈ Qν , where if hν (p, q) = 0 then p and q are called h−orthogonal. Also,
q is called a spatial quaternion whenever q + γq = 0 [2].
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The three-dimensional semi-Euclidean space E3
1 is identified with the space of

spatial quaternions {q ∈ Qν : q + γq = 0} in an obvious manner. Let I = [0, 1] be
an interval in real line R and s ∈ I be parameter along the regular curve

α : I ⊂ R→ Qν , s→ α (s) =

3∑
i=1

αi (s)
→
ei

chosen such that the tangent α′(s) is unit, i.e., ‖α′(s)‖ = 1 for all s. Then α (s)
is called semi-real spatial quaternionic curve [11].

The Serret–Frenet formulas for semi-real quaternionic curves in E3
1 are as

follows:

Theorem 1. Let α (s) be an arc-lengthed semi-real quaternionic curve with nonzero
curvatures {k, r} and {t(s), n(s), b(s)} denotes the Frenet frame of the curve α.
Then Frenet formulas are given by t

′

n
′

b
′

 =

 0 εnk 0
−εtk 0 εnr

0 −εbr 0

 t
n
b

 , (1)

where k is the principal curvature, r is torsion of α and h(t, t) = εt, h(n, n) = εn,
h(b, b) = εb [1].

Definition 1. Let α : I ⊂ R −→ E3
1 be a regular semi-real spatial quaternionic

curve in E3
1 with arc length parameter s and {k(s), r(s)} are non-zero curvatures

at the point α(s) of the curve α. In that case, harmonic curvature function of the
curve α is [5]

H : I −→ R

H(s) =
εnr(s)

εtk(s)
.

3 Quaternionic Curves of AW(k)-type in E3
1

Let α : I → Qν be an arc-lenght parametrized semi-real spatial quaternionic
curve in E3

1 . The curve α is called a Frenet curve of osculating order 3 if its deriva-
tives α

′
(s), α

′′
(s), α

′′′
(s) are linearly independent and α

′
(s), α

′′
(s), α

′′′
(s), α

′′′′
(s)

are no longer linearly independent for all s ∈ I. Each Frenet curve of order 3
is associated with an orthonormal 3−frame t(s), n(s), b(s) along α(s) (such that

α
′
(s) =

→
t (s)) known as the Frenet frame as well as the functions k, r : I → R

known as Frenet curvatures.

In this section, we consider quaternionic curves of AW(k)-type in E3
1 . First,

we give definitions of weak AW(k)-type and AW(k)-type semi-real quaternionic
curves and we obtain some results.
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Proposition 1. Let α : I ⊂ R −→ E3
1 be a regular semi-real spatial quaternionic

curve given by arc-length parameter s, thus we have

α
′
(s) =

→
t (s)

α
′′

(s) = εnk
→
n(s)

α
′′′

(s) = −εtεnk2
→
t (s) + εnk

′→
n(s) + εtεnk

2H
→
b (s)

α
′′′′

(s) = (−3εtεnkk
′
)
→
t (s) + (−εtk3 + εnk

′′ − εbk3H2)
→
n(s)

+ (k
′
r + εtεn(2kk

′
H + k2H

′
))
→
b (s).

where H is harmonic curvature function of the curve α(s).

Notation 1. Let us write

N1(s) = εnk
→
n(s), (2)

N2(s) = εnk
′→
n(s) + εtεnk

2H
→
b (s), (3)

N3(s) = (−εtk3 + εnk
′′ − εbk3H2)

→
n(s) (4)

+ (k
′
r + εtεn(2kk

′
H + k2H

′
))
→
b (s).

Remark 1. α
′
(s), α

′′
(s), α

′′′
(s), α

′′′′
(s) are linearly dependent if and only if N1(s), N2(s), N3(s)

are linearly dependent.

Definition 2. Semi-real spatial quaternionic curves in E3
1 are

(i) of type weak AW(2) if they satisfy

N3(s) = h(N3(s), N
∗
2 (s))N∗2 (s), (5)

(ii) of type weak AW(3) if they satisfy

N3(s) = h(N3(s), N
∗
1 (s))N∗1 (s) (6)

where

N∗1 (s) =
N1(s)

‖N1(s)‖
, N∗2 (s) =

N2(s)− h(N2(s), N
∗
1 (s))N∗1 (s)

‖N2(s)− h(N2(s), N∗1 (s))N∗1 (s)‖
(7)

(see, [9]).

Proposition 2. Let α(s) be a semi-real spatial quaternionic curve in E3
1 . If α is

of type weak AW(2) then

εnk
′′ − εtk3 − εbk3H2 = 0. (8)

Proposition 3. Let α(s) be a semi-real spatial quaternionic curve in E3
1 . If α is

of type weak AW(3) then

k
′
r + εtεn(2kk

′
H + k2H

′
) = 0. (9)
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Definition 3. Semi-real spatial quaternionic curves in E3
1 are [9]

(i) of type AW(1) if they satisfy

N3(s) = 0; (10)

(ii) of type AW(2) if they satisfy

‖N2(s)‖2N3(s) = h(N3(s), N2(s))N2(s); (11)

(iii) of type AW(3) if they satisfy

‖N1(s)‖2N3(s) = h(N3(s), N1(s))N1(s). (12)

Proposition 4. Let α(s) be a semi-real spatial quaternionic curve. Thus, α(s) is
AW(1)-type curve if and only if

εnk
′′ − εtk3 − εbk3H2 = 0 (13)

and
k

′
r + εtεn(2kk

′
H + k2H

′
) = 0. (14)

Proof. Let α(s) be an AW(1)-type semi-real spatial quaternionic curve. So, we
get equations (13) and (14) directly by equations (4) and (10) taking into account

the linear independence of
→
n and

→
b . The converse statement is trivial. Hence,

this proof is complete.

Corollary 1. Let α(s) be a semi-real spatial quaternionic curve. Thus, α(s) is
AW(1)-type curve if and only if α is of type weak AW(2) and weak AW(3).

Proof. If α(s) is AW(1)-type curve, then equations (13) and (14) hold. So, it
is seen that α provides conditions of type weak AW(2) and weak AW(3). The
converse statement is trivial.

Proposition 5. Let α(s) be a semi-real spatial quaternionic curve. Thus, α(s) is
AW(2)-type curve if and only if

εtεnk
3H2

(
3
(
k

′
)2
− kk′′

)
+ k7H2

(
1 + εtεbH

2
)

+ εtεnk
4k

′
HH

′
= 0 (15)

and

εtεnkk
′
H

(
3
(
k

′
)2
− kk′′

)
+ k5k

′
H
(
1 + εtεbH

2
)

+ εtεnk
2
(
k

′
)2
H

′
= 0. (16)

Proof. Let α(s) be an AW(2)-type semi-real spatial quaternionic curve. From
eq.(11), we have((

k
′
)2

+ k4H2

)
N3(s) =

[
εnk

′
(
−εtk3 + εnk

′′ − εbk3H2
)

+εtεnk
2H
(
k

′
r + εtεn(2kk

′
H + k2H

′
) ]
N2(s)

and herefrom we obtain equations (15) and (16) . The converse statement is trivial.
This proof is complete.
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A curve α : I → E3
1 with k(s) 6= 0 is called a general helix if the tangent

lines of α make a constant angle with a fixed direction. α is also called cylindrical
helix. It has been known that the curve α(s) is a cylindrical helix if and only if

r(s)

k(s)
= const. (17)

If both k(s) 6= 0 and r(s) are constant, it is called a circular helix [13].

Corollary 2. Let α(s) be a semi-real spatial quaternionic curve. If α is quater-
nionic cylindrical helix and α is of type AW(2) then

εtεn

(
3
(
k

′
)2
− kk′′

)
+ k4

(
1 + εtεbc

2
)

= 0

where c = r(s)
k(s) is constant.

Theorem 2. Let α(s) be a semi-real spatial quaternionic curve. Thus, α(s) is
AW(3)-type curve if and only if

3k3k
′
H + k4H

′
= 0. (18)

Proof. Let α(s) be an AW(3)-type semi-real spatial quaternionic curve. So, from
eq.(12), we have

k2N3(s) =
(
kk

′′ − εtεnk4 − εnεbk4H2
)
N1(s)

which implies eq.(18). The converse statement is trivial. This proof is complete.

Corollary 3. Let α be a general helix of osculating order 3. Then α is of type
AW(3) if and only if α is a circular helix.

Proof. Suppose that α is a general helix of type AW(3). Combining equations
(17) and (18) we find k(s) and r(s) are nonzero constants. Thus, α is circular
helix. The converse statements is trivial.

Corollary 4. Let α(s) be a semi-real spatial quaternionic curve with k(s) 6= 0
and r(s) 6= 0. Then, α is of type AW(3) if and only if α is of type weak AW(3).

Proof. If equations (9) and (18) are arranged under conditions of k(s) 6= 0 and
r(s) 6= 0, we find that equations (9) and (18) are equivalent. Thus the proof is
complete.

Corollary 5. Let α(s) be a semi-real spatial quaternionic curve with k(s) 6= 0
and r(s) 6= 0. If α is of type AW(1), then α is both of type AW(3) and type weak
AW(3).

Proof. If α is of type AW(1), then eq.(14) holds. This equation is equivalent
to (9) and (18) under conditions of k(s) 6= 0 and r(s) 6= 0. Thus the proof is
complete.
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4 Quaternionic Bertrand Curves of AW(k)-type in E3
1

This section characterizes the curvatures of AW(k)-type semi-real spatial quater-
nionic Bertrand curves in E3

1 . We provided theorems and a conclusion for some
AW(k)-type semi-real quaternionic Bertrand curves in E3

1 .

Definition 4. A curve α : I → E3
1 with k(s) 6= 0 is called a Bertrand curve if

there exists a curve
∼
α : I → E3

1 such that the principal normal lines of α and
∼
α

at s ∈ I are equal. In this case
∼
α is called a Bertrand mate of α.

Theorem 3. The distance between the corresponding points of the semi-real spa-
tial quaternionic Bertrand curves α and

∼
α is constant in E3

1 .

Proof. Suppose that α is a Bertrand curve. Then by the definition we can assume
that

∼
α(s) = α(s) + λ(s)

→
n(s) (19)

for some function λ(s). By taking the derivative of (19) with respect to s and
applying equations (1), we have

t̃(
∼
s)
d
∼
s

ds
= (1− λ(s)εtk)

→
t (s) + λ

′
(s)
→
n(s) + λ(s)εnr

→
b (s)

where s and
∼
s are respectively arc-length parameter of curves α and

∼
α. Since

∼
n(s)

is coincident with n(s) in direction, we have h
(
t̃(s),

→
n(s)

)
= 0. Then, we get

λ
′
(s) = 0.

This means that λ (s) is a nonzero constant. On the other hand, from the distance
function between two points, we have

d
(∼
α(s), α(s)

)
=
∥∥∥α(s)− ∼

α(s)
∥∥∥ =

∥∥∥λ→n(s)
∥∥∥ = |λ| .

Namely, d
(∼
α(s), α(s)

)
= constant. Hence, the proof is completed.

Theorem 4. Let α : I → Q be a semi-real spatial quaternionic curve with arc
lenght parameter s. If

∼
α with arc length parameter

∼
s is a Bertrand mate of α, then

angle measurement between tangent vectors of curves α and
∼
α at corresponding

points is constant.

Proof. To prove this theorem, we must show that
(
h
(
t̃(s), t(s)

))′
= 0.(

h
(
t̃(s), t(s)

))′
= h

((
t̃(s)

)′
, t(s)

)
+ h

(
t̃(s), (t(s))

′
)

= h

(
εn
∼
k (s)

∼
n (s) , t(s)

)
+ h

(
t̃(s), εnk (s)n (s)

)
= εn

∼
k (s)h

(∼
n (s) , t(s)

)
+ εnk (s)h

(
t̃(s), n (s)

)
,
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since
∼
n (s) is parallel to

→
n(s) and

→
t (s) ⊥ →n(s), then

h
(∼
n (s) , t(s)

)
= 0.

Also, since
∼
n (s) is parallel to

→
n(s) and

∼
t (s) ⊥ ∼n(s), then

h
(
t̃(s), n (s)

)
= 0.

Thus, we have (
h
(
t̃(s), t(s)

))′
= 0

and the proof is completed.

Theorem 5. Let α : I → Q be unit speed semi-real spatial quaternionic curve
with k(s) 6= 0. α is a Bertrand curve if and only if there exists a linear relation

λεtk (s) + µεtk (s)H = 1 (20)

where λ, µ are non-zero constants and k (s) , H(s) are the curvature functions of
α.

Proof. Let {t(s), n(s), b(s)} and {
∼
t (
∼
s),
∼
n(
∼
s),
∼
b(
∼
s)} denote the Frenet frames of the

curve α and
∼
α, respectively and θ be angle between t(s) and

∼
t (
∼
s). As

{∼
n(
∼
s), n(s)

}
is a linearly dependent set, we can write

∼
t (
∼
s) = cosh θt(s) + sinh θb(s). (21)

If we take derivative of eq.(21) and consider that
{∼
n(
∼
s), n(s)

}
is a linearly de-

pendent set we can easily see that θ is a constant. Since α and
∼
α are Bertrand

curve mate we have
∼
α(
∼
s) = α(s) + λn(s). (22)

If we take derivative of eq.(22) with respect to s, we get

∼
t (
∼
s)
d
∼
s

ds
= (1− λεtk (s)) t(s) + λεtk (s)Hb(s). (23)

Thus, from equations (21) and (23) we have

1− λεtk (s)

cosh θ
=
λεtk (s)H

sinh θ

and from here we obtain

coth θλεtk (s)H + λεtk (s) = 1.

If we take coth θλ = µ, we get

λεtk (s) + µεtk (s)H = 1.

The converse statement is trivial. This proof is complete.
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Corollary 6. α is a semi-real quaternionic Bertrand curve with k(s) 6= 0 and
r(s) 6= 0 if and only if there exists a nonzero real number λ such that

k′H + kH
′ − λεtk2H

′
= 0. (24)

Proof. By the theorem 5, α is a Bertrand curve if and only if there exist real
numbers λ 6= 0 and µ such that λεtk (s) + µεtk (s)H = 1. This is equivalent to

the condition that there exists a real number λ 6= 0 such that 1−λεtk(s)
εtk(s)H

is constant.

If we take derivative both sides of the last equality, we have eq.(24) .

Theorem 6. Let α be a semi-real quaternionic Bertrand curve with k(s) 6= 0 and
r(s) 6= 0. If α is of AW(1)-type, then the following equation holds

2k′H + λεtk
2H

′
= 0 (25)

where λ is a non zero real number.

Proof. Since α is of AW(1), equations (13) and (14) hold and since α is a semi-
real quaternionic Bertrand curve, eq.(24) holds. If these equations are considered,
eq.(25) is obtained.

Theorem 7. Let α be a semi-real quaternionic Bertrand curve with k(s) 6= 0 and
r(s) 6= 0. Then α is of AW(2)-type if and only if there is a non zero real number
λ such that

k
′
H

′
(3λεtk − 2)− k′′

H + εtεnk
3H
(
1 + εtεbH

2
)

= 0 (26)

Proof. Since α is of type AW(2), equations (15) and (16) hold and since α is
a semi-real quaternionic Bertrand curve, eq.(24) holds. If these equations are
considered, eq.(26) is obtained.

Theorem 8. Let α be a semi-real quaternionic Bertrand curve with k(s) 6= 0 and
r(s) 6= 0. Then α is of AW(3)-type if and only if

2k′H + λεtk
2H

′
= 0. (27)

Proof. Since α is of type AW(3), eq.(18) holds and since α is a semi-real spatial
quaternionic Bertrand curve, eq.(24) holds. If eq.(18) is substituted in (24), then
(27) is obtained. The converse statement is trivial. Thus, this proof is complete.

Theorem 9. Let α be a semi-real spatial quaternionic Bertrand curve with k(s) 6=
0 and r(s) 6= 0. If α is of weak AW(2)-type, then the following equation holds

εnk
3H
(
εt + εbH

2
)

+ (1− λεtk)
(
kH

′′
+ 2k

′
H

′
)

= 0 (28)
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Proof. Since α is of type weak AW(2), eq.(8) holds and since α is a semi-real
spatial quaternionic Bertrand curve, eq.(24) holds. Arranging eq.(8), we have

εnk
′′

= εtk
3 + εbk

3H2 (29)

If we take derivative of (24), we get

k
′′
H + kH

′′
+ 2k

′
H

′
(1− λεtk)− λεtk2H

′′
= 0 (30)

If eq.(29) is substituted in (30), then (28) is obtained. Thus the proof is completed.

Theorem 10. Let α be a semi-real spatial quaternionic Bertrand curve with
k(s) 6= 0 and r(s) 6= 0. If α is of weak AW(3)-type, then following equation
holds

2k′H + λεtk
2H

′
= 0 (31)

Proof. Since α is of type weak AW(3), eq. (9) holds and since α is a semi-real
spatial quaternionic Bertrand curve, eq.(24) holds. If eq.(9) is substituted in (24),
then (31) is obtained. Thus the proof is completed.

Corollary 7. Let α be a semi-real spatial quaternionic Bertrand curve with k(s) 6=
0 and r(s) 6= 0. Thus, if α is of type AW(1), then α is both of type AW(3) and
type weak AW(3).

Proof. If α is a semi-real spatial quaternionic Bertrand curve of AW(1) type, then
eq.(25) holds. This equation is equivalent to (27) and (31) under conditions of
k(s) 6= 0 and r(s) 6= 0. Thus the proof is complete.
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normal sections are W-curves, Far East J. Math. Sci. 5(4) (1997), 537-544.

[11] Bharathi, K. and Nagaraj, M., Quaternion valued function of a real Serret-
Frenet formulae. Indian J. Pure Appl. Math., 16 (1985), 741-756.

[12] Külahcı, M., Bektas, K. and Ergüt, M., Curves of AW(k)-type in 3-
dimensional null cone, Physics Letters A, 371 (2007), 275-277.

[13] Izumiya, S. and Takeuchi, N., Generic properties of helices and Bertrand
curves, Journal of Geometry, 74 (2002), 97–109.
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