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Abstract

A probabilistic model has been developed for the retainment and redistri-
bution in domains where uncertainty is inherent. It has been shown that the
model has evident connection with the negation transformation developed
by Yager[7].
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1 Introduction

Retainment is a key concept in almost every institution or process human
beings are part of. How much to retain and how much to redistribute has been
key to major financial decisions that companies/governments have to focus on
from time to time. Even for salaried individuals, the amount they are able to re-
tain after spending on all financial obligations is very important for dealing with
financial uncertainties. At the conclusion of every fiscal cycle, whatever profits
companies have incurred can be utilized for a variety of purposes. One option
is that a portion of it is retained and the rest is distributed among the share-
holders/employees of the company. The retained portion is termed as retained
earnings which is generally reserved for reinvestment back into the business. We
consider an example. Mr. A owns a company that focuses on the development of
sustainable technologies. We assume that the company has been operating for the
last 6 years. During the first two years of operations, the company posted a net
profit of 50,000 dollars and did not pay any dividend to its stakeholders. Next two
years, the company made a profit of 80,000 dollars and paid out 10,000 dollars
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as dividend. Finally, in the last two years, the company made a profit of 100,000
dollars and paid out 20,000 dollars as dividend. The retention ratio for the first
two years is 100%, 87.5% for the next two years and finally 80% for the final two
years of operation under consideration. The retention ratio is going down but
the net profit is rising every two years with dividends rising by a proportionally
larger amount. Generally, companies/organizations which have been operating
for longer periods of time will normally post lower retention ratios and may opt
to pay investors consistent earnings. Once how much to retain has been agreed
upon, how to distribute the profit among various shareholders of the company is
another major concern. Profits can be distributed in accordance with the number
of shares held by a particular individual or by a resolution on the distribution of
profit. However, keeping the process of retainment and distribution free from any
bias can be a major challenge for any organization/company. Anyway, biasness is
inherent in behaviour, thinking and other attributes of individuals and organiza-
tions. Any workplace, that is free from any bias, signifies that everyone receives
a fair treatment in terms of incentives, opportunities and other attributes. Fair-
ness(unbiasness) distributions up a positive environment for both employee and
employer. Implementing an equitable (fair) working environment is essential, but
it has to be worked upon. Transparency in the hiring process(skill based hiring),
providing inclusive incentives to employees, empowering employee and many other
innovative practices may be needed for enabling a competitive but fair environ-
ment so that the companies and organizations end up with the right people in the
right places doing the right things. In order to maintain fairness in all operations,
an organization may have to rethink or reframe policies which may end up in the
redistribution of incentives/pay packages and other facilities. Many countries (not
all) focus a lot on the equitable redistribution of the income so that people get
identical opportunities for accumulating wealth(for e.g. some redistribute tax rev-
enues to ensure an equitable distribution of wealth). This concept of retainment
and redistribution correlates with negation transformation developed by Yager[7]
in many(if not all) ways. Yager developed the negation of a probability distribu-
tion keeping in mind that we can negate the happening of any uncertain event by
negating(opposing) its probability and redistribute its probability equally among
all the other possible outcomes(i.e without any bias). The Yager’s model suggests
that while negating any event, we should not retain anything and redistribute the
whole probability among other outcomes. However, a lot of situations and hap-
penings in life needs retainment. So we need a mathematical framework which
gives due weightage to both retainment and redistribution. In the present work,
we have developed a Retainment and Redistribution(RR) model which has many
similarities with the negation transformation developed by Yager[7]. The analysis
of the proposed model has been done from both the probabilistic and information
theoretical points of view. Results show that the model is unbiased in the sense
that no preference is given to any particular outcome regardless of whether we
retain or redistribute.
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2 Negation vs Retainment Redistribution(RR) model

Consider an n× n doubly stochastic matrix A = (aij) i.e. owe

n∑
i=1

aij =

n∑
j=1

aij = 1.

In particular if aii = 0 for all i = 1, 2, . . . , n and if aij = 1
n−1 for all i ̸= j;

i, j = 1, 2, . . . , n, then given a probability distribution P (n) = {p1, p2, . . . , pn}, its
negation[3],[4],[5],[7] is defined as P (n) = {p1, p2, . . . , pn}, where pi =

n∑
j=1

aijpj for

all i = 1, 2, . . . , n. We can further write

p1 =
1− p1
n− 1

= 0 · p1 +
1

n− 1
· p2 +

1

n− 1
· p3 + · · ·+ 1

n− 1
· pn

p2 =
1− p2
n− 1

=
1

n− 1
· p1 + 0 · p2 +

1

n− 1
· p3 + · · ·+ 1

n− 1
· pn

.

.

.

pn =
1− pn
n− 1

=
1

n− 1
· p1 +

1

n− 1
· p2 +

1

n− 1
· p3 + · · ·+ 0 · pn

which can be written in matrix form as

P (n) =



p1
p2
.
.
.
pn

 =



0 1
n−1 . . . 1

n−1
1

n−1 0 . . . 1
n−1

. . . . . .

. . . . . .

. . . . . .
1

n−1
1

n−1 . . . 0

 .



p1
p2
.
.
.
pn


.

Here the distribution P (n) = {p1, p2, . . . , pn} satisfies 0 ≤ pi ≤ 1; i ∈ {1, 2, 3, ..., n}
and

∑n
i=1 pi = 1. Consider the probability distribution P (5) =

{
1
2 ,

1
2 , 0, 0, 0

}
and

the corresponding negation P (5) =
{
1
8 ,

1
8 ,

1
4 ,

1
4 ,

1
4

}
. The first entry in P (5) comes

as a result of equal contribution(distribution) from the second entry in P (5). Sim-
ilarly, the second entry in P (5) comes as a result of equal contribution from the
first entry in P (5). Now the third entry 1

4 in P (5) comes as a result of equal
contributions from the first and second entries in P (5). Similar is the case with
the fourth and fifth entry in P (5) It is clear that the redistribution of probabilities
is totally UNBIASED i.e. no preference is given to any of alternatives. However,
Yager’s model is based on redistribution of probabilities only and it may not be
applicable in situations where how much to retain or how much to distribute is
crucial and directly affects the uncertainty in coming times. Suppose half of each
probability is retained and the remaining is equally distributed among the other
alternatives, then the revised probabilities are

p̃1 =
p1
2

+
p2 + p3 + · · ·+ pn

2(n− 1)
=

p1
2

+
p1
2
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Figure 1: Retainment and redistribution for α = 0.5

p̃2 =
p2
2

+
p1 + p3 + · · ·+ pn

2(n− 1)
=

p2
2

+
p2
2

.

.

.

p̃n =
pn
2

+
p1 + p2 + · · ·+ pn−1

2(n− 1)
=

pn
2

+
pn
2
.

Here the distribution {p̃1, p̃2, . . . , p̃n} satisfies 0 ≤
∑n

i=1 p̃i ≤ 1 and
∑n

i=1 p̃i = 1.

In general, if we retain the (1−α) component of pi and distribute the remaining
equally among the others, then

p̃i = (1− α)pi + αpi ; 0 ≤ α ≤ 1

. Further we can write

p̃1 = (1− α)p1 +
α

n−1p2 +
α

n−1p3 + · · ·+ α
n−1pn = (1− α)p1 + αp1

p̃2 =
α

n−1p1 + (1− α)p1 +
α

n−1p3 + · · ·+ α
n−1pn = (1− α)p2 + αp2

.

.

.

p̃n = α
n−1p1 +

α
n−1p2 +

α
n−1p3 + · · ·+ (1− α)pn = (1− α)pn + αpn,

which can be written in matrix form as



Retainment and redistribution - An information theoretical approach 213

P̃ (n) =



p̃1
p̃2
p̃3
.
.
.
p̃n


=



1− α α
n−1

α
n−1 . . . α

n−1
α

n−1 1− α α
n−1 . . . α

n−1
α

n−1
α

n−1 1− α . . . α
n−1

. . . . . . .

. . . . . . .

. . . . . . .
α

n−1
α

n−1
α

n−1 . . . 1− α





p1
p2
p3
.
.
.
pn


.

Also
0 ≤ pi ≤ 1 for all i ⇒ 0 ≤ 1−pi

n−1 ≤ 1
n−1 for all i

⇒ 0 ≤ pi ≤ 1
n−1 for all i

⇒ 0 ≤ (1− α)pi + αpi ≤ (1− α) + α
n−1

⇒ 0 ≤ p̃i ≤ (1− α) + α
n−1 for all i. Also

∑n
i=1 p̃i = 1. Therefore, the distribution

P̃ (n) = {p̃1, p̃2, . . . , p̃n} characterizes the RR Model, with entries representing the
convex combination of retained and redistributed terms. In the next section, we
will compare the uncertainties embedded in P (n), P (n) and P̃ (n).

3 Uncertainty and information

3.1 Jensen inequality

Theorem 3.1 [6] Let f : G → R be convex such that G is an interval in R
and x1, x2, ..., xn are in G. For non-negative real numbers ζ1, ζ2, ..., ζn satisfying∑n

i=1 ζi = 1, we have

f(ζ1x1 + ζ2x2 + ...+ ζnxn) ≤ ζ1f(x1) + ζ2f(x2) + ...+ ζnf(xn). (1)

If f is a concave function, then the above inequality will be reversed. Here the
term ζ1x1 + ζ2x2 + ... + ζnxn represents a convex combination of x1, x2, ..., xn
(
∑n

i=1 ζi = 1). From

p̃i = (1− α)pi + αpi ; 0 ≤ α ≤ 1,

it is clear that every entry of the distribution {p1, p2, ..., pn} can be written as
the convex combination of (n − 1) entries of the distribution {p1, p2, ..., pn} with
weights not all equal. We consider

p̃1 = (1− α).p1 +

(
α

n− 1

)
p2 +

(
α

n− 1

)
p3 + ...+

(
α

n− 1

)
pn.

Now replacing x1, x2, x3, ..., xn by p1, p2, p3, ..., pn , respectively and ζ1, ζ2, ζ3, ..., ζn
by 1− α, α

n−1 ,
α

n−1 , ...,
α

n−1 in (1), we obtain

f
(
(1− α)p1 +

αp2
n−1 + αp3

n−1 + ...+ αpn
n−1

)
≤ (1− α) f(p1)+

(
α

n−1

)
f(p2)+

(
α

n−1

)
f(p3)+

...+
(

α
n−1

)
f(pn)

⇒ f(p̃1) ≤ (1− α) f(p1) +

(
α

n− 1

)
[f(p2) + f(p3) + ...+ f(pn)] .
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Similarly

f(p̃2) ≤ (1− α) f(p2) +

(
α

n− 1

)
[f(p1) + f(p3) + ...+ f(pn)]

.

.

.

f(p̃n) ≤
(

α

n− 1

)
[f(p1) + f(p2) + ...+ f(pn−1)] + (1− α) f(pn).

Adding the above inequalities, we obtain

n∑
i=1

f(p̃i) ≤ (1− α)
n∑

i=1

f(pi) + α
n∑

i=1

f(pi)

which finally gives
n∑

i=1

f(p̃i) ≤
n∑

i=1

f(pi). (2)

Also we can write p̃i = (1− α) pi + αpi
⇒ f(p̃i) = f ((1− α)pi + αpi) ≤ (1 − α)f(pi) + αf(pi) by virtue of convexity of
f . Finally, we obtain

n∑
i=1

f(p̃i) ≤ (1− α)
n∑

i=1

f(pi) + α
n∑

i=1

f(pi). (3)

Special Cases : (a) f(x) = −x log x ⇒ f
′′
(x) = −(1/x) .

Now (2) gives −
∑n

i=1 p̃i log p̃i ≥ −
∑n

i=1 pi log pi. Therefore the Shannon entropy
[1],[2] associated with RR model represented by P̃ is greater than the entropy
associated with P . Also from (3), we obtain

−
∑n

i=1 p̃i log p̃i ≥ −(1− α)
∑n

i=1 pi log pi − α
∑n

i=1 pi log pi.

which shows that uncertainty embedded in P̃ is greater than the convex combi-
nation of the uncertainties embedded in P and P .
(b) g(x) = log 1

x ⇒ g
′
(x) = x.

(−1
x2

)
. Again (2) gives

∑n
i=1 log

1
p̃i

≤
∑n

i=1 log
1
pi

⇒ −
n∑

i=1

log p̃i ≤ −
n∑

i=1

log pi.

Here the function − logα represents the information content of an event occurring
with probability α(0 ≤ α ≤ 1), and is generally known as the self information
of an event with probability α. The above inequality shows that the information
embedded in RR model about the occurrence of events is less than the information
contained in the original probability distribution. This is due to the fact that RR
model contains probabilities that are retained and redistributed. Also from (3),
we obtain
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−
∑n

i=1 log p̃i ≤ −(1− α)
∑n

i=1 log pi − α
∑n

i=1 log pi.

(c) f(x) = x log nx ⇒ g
′′
(x) = 1

nx > 0
From (2) we obtain

n∑
i=1

p̃i log
p̃i
1/n

≤
n∑

i=1

pi log
pi
1/n

⇒
n∑

i=1

p̃i log p̃i + log n ≤
n∑

i=1

pi log pi) + log n

⇒ log n−

(
−

n∑
i=1

p̃i log p̃i

)
≤ log n−

(
−

n∑
i=1

pi log pi

)
.

i.e. dissimilarity between
{

1
n ,

1
n , ...,

1
n

}
and {p1, p2, ..., pn} is greater than the dis-

similarity between
{

1
n ,

1
n , ...,

1
n

}
and {p̃1, p̃2, ..., p̃n}. The uniform distribution is

generally referred as the maximum entropy distribution since all the outcomes
are equally probable and any deviation from it can be viewed as biasness which
occurs due to decrease in uncertainty. Therefore , the distribution P̃ is less biased
than the actual probability distribution P . Also from (3), we obtain

log n− (−
∑n

i=1 p̃i log p̃i) ≤ log n− ((1− α)pi log pi + αpi log pi)

which again shows that the distribution P̃ is less biased than the convex combi-
nation of P and P . Table 1 gives the uncertainty values for P (3) = {p1, p2, p3},
P (3) = {p1, p2, p3} and P̃ (3) = {p̃1, p̃2, p̃3}. For simplicity, we have used the
uncertainty function H(P (n)) = 1 −

∑n
i=1 pi

2 used by Yager[6]. Table 2 gives
the uncertainty values for P̃ (3) = {p̃1, p̃2, p̃3} for different values of α. Evaluated
values clearly show that uncertainty embedded in P̃ is greater than the uncer-
tainty embedded in P and P . Also for α = 0.5, uncertainty in P̃ is maximum(as
expected) because the retained and redistributed amounts are equal in this case.

P (3) P (3) P̃ (3);α = 0.5 H(P (3)) = 1−∑
pi

2
H(P (3)) = 1−∑n

i=1 pi
2

H0.5( ˜P (3)) =
1−

∑n
i=1 p̃

2
i

(1, 0, 0) (0, 0.5, 0.5) (0.5, 0.25, 0.25) 0 0.5 0.62
(0.8, 0.1, 0.1)) (0.1, 0.45, 0.45) (0.45, 0.28, 0.28) 0.34 0.58 0.65
(0.6, 0.3, 0.1) (0.2, 0.35, 0.45) (0.4, 0.32, 0.28) 0.54 0.63 0.66
(0.5, 0.25, 0.25) (0.25, 0.38, 0.38) (0.37, 0.31, 0.31) 0.625 0.66 0.66
(0.45, 0.3, 0.25) (0.28, 0.35, 0.38) (0.36, 0.32, 0.31) 0.64 0.66 0.66
(0.33, 0.33, 0.33) (0.33, 0.33, 0.33) (0.33, 0.33, 0.33) 0.67 0.66 0.67

Table 1: Uncertainty embedded in P (3) = {p1, p2, p3}, P (3) = {p1, p2, p3} and
P̃ (3) = {p̃1, p̃2, p̃3}

3.2 Expectation

The Expectation of a discrete random variableX assuming values (x1, x2, . . . , xn)
with probabilities P (n) = {p1, p2, . . . , pn} is defined as
Ep̃(X) =

∑n
i=1 p̃ixi = x1p̃1 + x2p̃2 + ...+ xnp̃n
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P (3) H0.25(P̃ )(3) H0.5(P̃ )(3) H0.75(P̃ )(3) H1(P̃ )(3)

(1, 0, 0) 0.41 0.62 0.66 0.5

(0.8,0.1,0.1) 0.54 0.65 0.66 0.59

(0.6,0.3,0.1) 0.62 0.66 0.66 0.63

(0.5,0.25,0.25) 0.65 0.66 0.67 0.66

(0.45,0.3,0.25) 0.66 0.67 0.67 0.66

(0.33,0.33,0.33) 0.67 0.67 0.67 0.67

Table 2: Uncertainty embedded in P̃ (3) = {p̃1, p̃2, p̃3} for different values of α

= x1

(
(1− α)p1 +

α

n− 1
p2 +

α

n− 1
p3 + ...+

α

n− 1
pn

)
+

x2

(
α

n− 1
p1 + (1− α)p2 ++

α

n− 1
p3 + ...+

α

n− 1
pn

)
+

...+ xn

(
α

n− 1
p1 +

α

n− 1
p2 + ...+ (1− α)pn

)

= (1− α)
∑n

i=1 pixi +
α

n−1

∑n
i=1 xi − α

n−1

∑n
i=1 pixi

=
∑n

i=1 pixi

(
(1− α)− α

n−1

)
+ αn

n−1

∑n
i=1 xi

n

=
∑n

i=1 pixi − αn
n−1

∑n
i=1 pixi +

αn
n−1

∑n
i=1 xi

n

=
∑n

i=1 pixi.
Here the probability distribution P (n) is a unimodal symmetric distribution in
which the mean, mode and median all fall at the same point. Similarly P̃ (n)
is again unimodal and symmetric with mean, mode and median all falling at
the same point. It is clear that P̃ (n) has preserved the symmetry since the
probabilities are retained and redistributed among all the alternatives without
any bias.

4 Conclusion

In the present work, we have developed a mathematical framework which char-
acterizes the retainment and redistribution(RR) of probabilities and which can be
viewed as an extension of negation transformation proposed by Yager[7]. How-
ever, Yager’s negation and the RR Model have various similarities/dissimilarities
as far as their mathematical structure is concerned. We list them in the following
table.

Work on further extensions and generalizations of the proposed work is in
progress and will be communicated elsewhere.
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Yager’s Negation RR model

The vector P (n) is a probability
distribution with pi ∈ [0, 1] for

i = 1, 2, . . . , n and
n∑

i=1
pi = 1.

The vector P̃ (n) is a probability
distribution with p̃i ∈ [0, 1] for

i = 1, 2, . . . , n and
n∑

i=1
p̃i = 1.

The probabilities p1, p2, ..., pn are
the convex combinations of (n− 1)
elements of the distribution
{p1, p2, ..., pn} with equal
weights(Retainment not allowed).

The probabilities p̃1, p̃2, ..., p̃n are
the convex combinations of n
elements of the distribution
{p1, p2, ..., pn} with unequal
weights(Retainment allowed).

The matrix P (n) is doubly
stochastic(row and column sum one)
with diagonal entries zero and all
other entries equal.

The matrix P̃ (n) is doubly
stochastic(row and column sum one)
with identical diagonal entries and
all other entries also identical but
different from diagonal entries.

The model is unbiased in sense that
the probabilities are reallocated
without any bias.

The model is unbiased in sense that
the retained and redistributed
components are exactly identical for
all the components.

Table 3: Examples - Yager’s Negation vs RR Model
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