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GENERALIZED ENTROPY FOR RANDOM WALKS IN
REGULAR NETWORKS AND GRAPHS AS A SUPER

DIFFUSION
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Abstract

In this paper, the entropy of the stochastic processes created by the move-
ment of a walker in a graph is investigated. The Shannon-Khinchin entropy
has four axioms that ignore one of them can make the generalized entropy.
Here, we investigate the number of different finite paths asymptotically, for
determining a generalized entropy. Then, we will study the regular infinite
networks and graphs with finite nodes, with two different types of motion.
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1 Introduction

The Shannon entropy can measure the uncertainty of a random process. In
probability theory, entropy is introduced by Shannon [19]. The entropy of a
random variable X by distribution P taking values from a finite set E is defined
by him as

H(X) = −EX logP (X) = −
∑
i∈E

pi log pi, (1)

with the convention 0 log 0 = 0.
Shannon and Khinchin considered four axioms that are the main features of

entropy. In the rest of this paper, we will express the generalized entropies based
on these four axioms. Now, we briefly review the Shannon-Khinchin axioms.

Let ∆W be defined by the W-dimensional simplex

∆W = {(p1, ..., pW )|pi ≥ 0,

W∑
i=1

pi = 1}, (2)
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and consider S1(p1, ..., pW ) to be the measure of uncertainty about the system.
The Shannon-Khinchin axioms [16], [20] are expressed as follows:
[SK1] Continuity: for any W ∈ N, the function S1(p1, ..., pW ) is continuous

with respect to (p1, ..., pW ) ∈ ∆W .
[SK2] Maximality: for a given W ∈ N and for (p1, ..., pW ) ∈ ∆W , the function

S1(p1, ..., pW ) takes its largest value for pi =
1

W
for i = 1, ...,W , i.e.,

S1(p1, ..., pW ) ≤ S1(
1

W
, ...,

1

W
), (3)

for any (p1, ..., pW ) ∈ ∆W .
[SK3] Expandability:

S1(p1, ..., pW ; 0) = S1(p1, ..., pW ). (4)

[SK4] Separability: If a system composed of two systems A and B that are
statistically dependent, then the entropy of the composed system S1(AB) =
S1(A) + S1(B|A) is the entropy of system A plus the entropy of system B condi-
tional on A.

A variety of generalized entropic functionals have been introduced to phe-
nomenologically extend statistical mechanics to specific non-ergodic or strongly
interacting systems, both within and outside the realm of physics including net-
works [4], anomalous diffusive processes [5], time series analysis [6] and artificial
neural networks [10].

The diversity of proposed entropic functionals reflects the conceptual diversity
behind the assumptions all leading, in weakly correlated systems, to the same
mathematical form of the Shannon entropy. In particular, arguments relying on
thermodynamics, statistical mechanics, dynamical systems, information theory,
and statistics all provide means to derive Shannon entropy as a useful measure,
and they all provide different means to generalize it [2][12][17].

With the recent surge of interest in complex networks in various fields including
statistical physics and mathematical physics, many quantities have been proposed
to characterize the structural properties of graphs [8]. The study of a graph
invariant in one field may also be a result of relevant importance in other areas of
physics. This is because graphs are nowadays ubiquitous in many areas of physics
such as in problems associated with the Ising, Potts and Hubbard models, in the
solution of Feynman integrals in perturbative field theory, in quantum information
theory such as quantum error correcting codes (graph states) or arrangements
of interacting quantum mechanical particles (spin networks) and in many other
fields [11]. Among various graph invariants, a special role has been played by
the concept of entropy. Dehmer and Mowshowitz [7] have used entropy measures
for graphs for a long time in different fields. Inspired by connections between
quantum information and graph theory, Passerini and Severini [18] have defined
the von Neumann entropy for graphs, which in general depends on the regularity,
the number of connected components, the shortest-path distance and nontrivial
symmetries in the graph.
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Here, we define graph entropies based on walks in a graph. Walks in graphs
play a fundamental role in the analysis of the structure and dynamical processes
in networks [9]. The walk entropies thereby characterize the spread of a walk
among the vertices or edges of the graph.

Before proceeding, we summarize a few definitions which are necessary to
make this paper self-contained. Let us consider here simple graphs G = (V,E)
with |V | = n nodes and |E| = m edges. A walk of length k is a sequence of (not
necessarily distinct) nodes v0, v1, ..., vk such that for each i = 1, 2, ..., k there is a
link from vi−1 to vi. The number of walks of length N from node p to node q is
given by [AN ]pq (the element of row p and column q of matrix AN ), where A is
the adjacency matrix of the graph G. The degree of the node p , denoted by pk ,
is the number of edges incident to it.

In order to define graph entropies based on the walks, we consider a random
walker which walks from one node to another by using the edges of the graph.

This paper is organized as follows: Section 2 discusses extensive or generalized
entropies that one can see more details in [14]. In this section, the four axioms of
Khinchin, whose unique result is Shannon’s entropy, are outlined. By ignoring the
fourth axiom, one can obtain the general form of extensive entropies that depend
on two parameters (c, d). Section 3 contains four examples. In this section, we
examine two different types of motion in ZD and graphs. In the first case, at each
step there is a choice of a new direction for the walker, while in the second case,
after selecting a direction for walking , the change of direction is not possible for
a finite number of next steps.

2 Review of generalized entropies

Shannon and Khinchin showed that, assuming four information theoretic ax-
ioms, the entropy must be of the Boltzmann-Gibbs type, S = −

∑
i pi log pi, in

the following uniqueness theorem.

Theorem 1. : Let S1(p1, ..., pW ) be a function defined for any integer W ∈ N and
for any (p1, ..., pW ) ∈ ∆W . If for any W ∈ N this function satisfies the properties
[SK1]-[SK4], then

S1(p1, ..., pW ) = −k
W∑
i=1

pi log pi, (5)

where k is a positive constant.

Proof. The proof of this uniqueness theorem is given in [16].

There are entropies that do not necessarily satisfy all Shannon and Khinchin
axioms. These results were previously proven in [1]. These entropic forms are
called generalized entropies and usually assume trace form, e.g. in [21]

Sg(p) =
W∑
i

g(pi) (6)
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where W is the number of states. For example the Tsallis entropy with the
following formula is one of the generalized entropies[21].

Sq(p) =
1 −

∑
i p

q
i

1 − q
, (7)

where, we can assume that g(pi) =
pi − pqi
1 − q

.

Obviously not all generalized entropic forms are of this type. Renyi entropy
is of the form, G(

∑W
i g(pi)), with G a monotonic function. We use trace forms

Equation (6) for simplicity. Renyi forms can be studied in exactly the same way,
as will be shown, however, at more technical cost.

As mentioned, if all of Shannon and Khinchin axioms hold, the only possi-
ble entropy is the Boltzmann-Gibbs-Shannon (BGS) entropy. The generalized
entropy for (large) admissible statistical systems (all of Shannon and Khinchin
axioms except separability axiom hold) is derived from two hitherto unexplored
fundamental scaling laws of extensive entropies [12]. Both scaling laws are char-
acterized by exponents c and d, respectively, which allow one to uniquely define
equivalence classes of entropies, meaning that two entropies are equivalent in the
thermodynamic limit if their exponents (c, d) coincide. Each admissible system
belongs to one of these equivalence classes (c, d), [12]. In terms of exponents (c, d),
Hanel and Thurner [12] showed that all generalized entropies have the form

S(c,d) ∝
W∑
i=1

Γ(d + 1, 1 − c log pi) (8)

with

Γ(µ, t) =

∫ ∞

t
yµ−1e−ydy =

∫ e−t

0
(− lnx)µ−1dx. (9)

Also, Γ(µ, t) named the incomplete Gamma-function and µ is a complex param-
eter, such that the real part of µ is positive.

2.1 Determining the exponents, c and d

Consider a system with N elements. The number of system configurations
(microstates) as a function of N is denoted by W (N). In [13], Hanel and Thurner
proved that:

1

1 − c
= lim

N→∞
N

W ′(N)

W (N)
(10)

and

d = lim
N→∞

[
W (N)

NW ′(N)
+ c− 1

]
logW (N) (11)

Here, W ′ means the derivative with respect to N .
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3 Some different random walks in graphs

A lattice path L in ZD of length k with steps in S is a sequence v0, v1, ..., vk ∈
ZD such that each consecutive difference vi − vi−1 lies in S. Now we consider S
as a set of (x1, x2, ..., xD) ∈ ZD such that exactly one of xis is 1 or -1 and others
are 0, i.e.

S = {(1, 0, ..., 0), (−1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 0,−1)}. (12)

3.1 Random walks in ZD uniformly

Suppose that a walker can choose one member of S as a direction for walk in
each step. If the transition probability of this process is

Pr(vi = k|vi−1 = j) =

{
1
2D k − j ∈ S
0 k − j /∈ S,

(13)

then, there are W (N) ∼ (2D)N difference paths with length N .

Proposition 1. For random walk on ZD, with transition probability uniformly
(13), the parameters (c, d) = (1, 1).

Proof. In this case using (10) and (11), we can obtain

1

1 − c
= limN→∞N log(2D) = ∞ ⇒ c = 1,

d = lim
N→∞

N log(2D)(
1

N log(2D)
+ c− 1) = 1.

(14)

So, this random walk has Shannon entropy. Note that this process is a Marko-
vian process. Interestingly the continuum limit of such processes is well defined.

3.2 Random walks in ZD as a super diffusion

Now we study super diffusion in ZD as a non Markovian process. The partic-
ular case of D = 1 is discussed in [13]. Consider a walker choose a member of S as
a direction for moving in step N(N being the total number of steps the walker has
taken so far). He has to follow this direction by ⌈Nβ⌉ consecutive steps, where ⌈⌉
means rounded to the next higher integer (the ceil operator) and 0 ≤ β < 1. In
other words, if after N timesteps, a walker choses a node from S, this selection
will be kept for the next ⌈Nβ⌉ − 1 steps. At timestep N + ⌈Nβ⌉ the next free
decision is possible. For example, consider β = 0.5. At step N = 1 the random
walker decides to go one of 2D possible directions, e.g. w(1) = (1, 0, ..., 0) ∈ S.
He has to continue to go in this direction for ⌈10.5⌉ = 1 steps. At N = 2 he freely
decides to go in another direction, e.g. w(2) = (0, 1, ..., 0) ∈ S. He now has to
continue to go in this direction for ⌈20.5⌉ = 2 steps, i.e. w(3) = w(2) = (0, 1, ..., 0).
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At N = 4 he can decide again, and so on. After N steps the walker is at position
xβ(N) =

∑N
n=1w(n). Clearly, the number of decision grows like N1−β, and the

number of possible sequences W (N) ∼ (2D)N
1−β

. Consequently the associated
extensive entropy is of class (c, d) = (1, 1

1−β ) because,

Proposition 2. For super diffusion in ZD, as described above, the parameters
(c, d) = (1, 1

1−β ).

Proof. Proof of this proposition is possible with relations (10) and (11). we have

1

1 − c
= limN→∞(1 − β)N1−β log(2D) = ∞ ⇒ c = 1,

d = lim
N→∞

N1−β log(2D)(
1

(1 − β)N1−β log(2D)
+ c− 1) =

1

1 − β
.

(15)

3.3 Random walk in Graph G(V,E)

We now focus our discussion on random walks in undirected graphs with uni-
form edge weights, with no multiedges or self loops. At each node, the random
walk is equally likely to take any connected edges. Assume the graph G = (V,E)
with |V | = n nodes and |E| = m edges, is connected. On the other hand, since
the graph G is connected, one can find an integer k such that all of entries Ak are
positive, where A is the adjacency matrix of the graph. We know the number of
walks of length N i.e. W (N) from node p to node q is given by [AN ]pq.

Proposition 3. For random walks in undirected graphs, as described above, , the
parameters (c, d) = (1, 1).

Proof. It is necessary to express spectral representation of matrices and Perron-
Frobenius theorem. We use the spectral representation [15] of the matrix A. Since
aij ≥ 0, and there is an integer k such that [Ak]ij > 0, the Perron-Frobenius
theorem [3] applies. So there exists a real eigenvalue λ1 with algebraic geometric
multiplicity one such that λ1 > 0, and λ1 > |λj | for any other eigenvalue λj .
Moreover the left eigenvector l1 and the right eigenvector r1 associated with λ1

can be chosen positive and such that l1r
t
1 = 1.

Let λ2, λ3, ..., λm be the eigenvalues of the A other than λ1 ordered in such a
way that λ1 > |λ2| ≥ |λ3| ≥ ... ≥ |λm| and we know that the vectors r1 and l1
are real-valued with nonnegative components. The matrix spectral representation
yields

AN = λN
1 (rt1l1) + |λ2|N (rt2l2) ⇒ AN = λN

1 (rt1l1) + o(|λ2|N ). (16)

We can consider

|λ2|N (rt2l2) = o(|λ2|N ), λN
1 (rt1l1) = o(λN

1 ), (17)
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so

AN = λN
1 (rt1l1)

(
1 + o

(
|λ2|N

λN
1

))
. (18)

Now we know the number of walks of length N from node p to node q is given

by [AN ]pq, so W (N) ∼ λN
1 (rt1l1)pq(1 + o(ρ)) where ρ = ( |λ2|N

λN
1

) < 1. One can

obtain

1

1 − c
= limN→∞N log λ1 = ∞ ⇒ c = 1,

d = lim
N→∞

[N log λ1 + log(rt1l1)pq(1 + o(ρ))](
1

N log λ1
+ c− 1) = 1.

(19)

So (c, d) = (1, 1) and this random walk in graphs has Shannon entropy.

3.4 Random walk in Graph G(V,E) with self loop

We now focus our discussion on random walks in undirected graphs with uni-
form edge weights. At each node, the random walk is equally likely to take any
edge. Now suppose the graph has self loop with probability weight zero. A super
diffusion walk in this graph is described as remaining in the same node for ⌈Nβ⌉
timesteps after selecting an edge in step N . In other words, the walker moves on
self loop without making any new decisions and the next free decision is possible
at timestep N + ⌈Nβ⌉. Clearly, the number of decision grows like N1−β, and the

number of possible sequences without considering self loops, is related to AN1−β
,

therefore

W (N) ∼ λN1−β

1 (rt1l1)pq(1 + o(ρ)), (20)

where here ρ = ( |λ2|N
1−β

λN1−β
1

) < 1.

Proposition 4. The associated extensive entropy, as described in this subsection,
is of class (c, d) = (1, 1

1−β ), because

Proof. using (10), (11) and (20), we can obtain

1

1 − c
= limN→∞(1 − β)N1−β log λ1 = ∞ ⇒ c = 1,

d = lim
N→∞

[N1−β log λ1 + (1 − β) log(rt1l1)pq(1 + o(ρ))]

×( 1
(1−β)N1−β log λ1

+ c− 1) = 1
(1−β) .

(21)
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4 Numerical example

Now, for the two graphs A and B shown in Figure 1, the walker movement
diagram on Graph A, with 100 and 10,000 time-steps, is shown in Figures 2 and
3, respectively. Similarly, Figures 4 and 5 correspond to Graph B.

Figure 1: Two graphs A and B

In each figure, the upper diagram is related to the simple walk, and the lower
diagram is related to the super diffusion walk.

Figure 2: The upper diagram is related to the simple walk, and the lower one is
related to the super diffusion walk for 100 time-steps on Graph A

It can be seen that these two types of movements are completely different. As
expected, we showed that their entropies are also different.

Conclusion

We studied the relationship between the volume of state space of a stochastic
process and its extensive (generalized) entropy. If the volume of state space Ω is
given as a function of system size, we are know how to determine the associated
generalized entropy by computing the parameters (c, d). We demonstrated in four



Generalized entropy for random walks 205

Figure 3: The upper diagram is related to the simple walk, and the lower one is
related to the super diffusion walk for 10000 time-steps on Graph A

Figure 4: The upper diagram is related to the simple walk, and the lower one is
related to the super diffusion walk for 100 time-steps on Graph B

Figure 5: The upper diagram is related to the simple walk, and the lower one is
related to the super diffusion walk for 10000 time-steps on Graph B
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concrete examples how statistical systems determine their own extensive entropies.
All four examples are simplifications of more general real-world situations. In the
first example, a walker moves in a D-dimensional network, where he can select
one of the nodes around himself in each step to move, uniformly. Sometimes, con-
ditions in a statistical system can limit mobility in Euclidean space. The second
example proposed a particular type of these conditions and calculated the param-
eters (c, d) for associated generalized entropy. This kind of random motion in
Euclidean space does not fall into the category of Markovian processes. The third
and fourth examples examine the motion of a walker in undirected and connected
graphs. In the third example, as in the first example, the walker selects the next
node for displacement, from set of the possible nodes, at any time-step uniformly.
In the fourth example, the walker selects a new node for movement and stays on
his new place for a certain number of time-steps moving on its self loop, meaning
that after several time-steps, the walker goes to another node. In the first and
third examples that the certain kind of the Markov chains were shown, we ob-
tained their generalized entropies as the same as the Shannon entropy. Whereas in
the second and fourth examples where non-Markovian processes were investigated,
their generalized entropies were not the Shannon entropy.

Many issues remain to be investigated. One interesting extension is the mutual
information for generalized entropies and another is the generalized entropy rate
of stochastic processes.
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