
Bulletin of the Transilvania University of Braşov

Series III: Mathematics and Computer Science, Vol. 2(64), No. 1 - 2022, 193-196

https://doi.org/10.31926/but.mif.2022.2.64.1.13

SHORTEST PATHS IN A DIGRAPH WITH AN
UNDERESTIMATED ARC WEIGHT

Laura CIUPALĂ1, Adrian DEACONU2 and Luciana MAJERCSIK3

Abstract

There are many real world problems that can be modeled and solved as
shortest path problems. Among them, single-pair shortest path problems
appear most frequently. Sometimes the weighted digraph, in which a short-
est path problem is stated, suffers a minor data change (for instance, an arc
weight might increase by a given amount a) due to the changes occurring
in the corresponding real life problem. In this case, one needs to solve a
shortest path problem in the modified digraph. If shortest paths are already
determined in the initial digraph, these can be used as a starting point when
determining shortest paths in the modified digraph or a known shortest path
algorithm can be applied, from scratch, in the modified digraph. We will
describe an algorithm that determines shortest paths from a given source
node s in the new weighted digraph starting from the already known short-
est paths in the original weighted digraph.

2000 Mathematics Subject Classification: 90B10, 90C90.
Key words: graph algorithms, shortest paths, incremental algorithms.

1 Introduction

The literature on graph algorithms is extensive([1], [2], [3]) and one of the
reasons is the fact that graphs have widespread and diverse applications, such
as reallocation of housing, assortment of steel beams, the paragraph problem,
compact book storage in libraries, the money-changing problem, cluster analysis,
concentrator location on a line, the personnel planning problem, single-duty crew
scheduling, equipment replacement, asymmetric data scaling with lower and up-
per bounds, DNA sequence alignment, determining minimum project duration,

1Department of Mathematics and Computer Science, Faculty of Mathematics and Computer
Science, Transilvania University of Braşov, Romania, e-mail: laura ciupala@yahoo.com

2Department of Mathematics and Computer Science, Faculty of Mathematics and Computer
Science, Transilvania University of Braşov, Romania, e-mail: a.deaconu@unitbv.ro

3Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Romania,
e-mail: luciana.majercsik@gmail.com



194 Laura Ciupală, Adrian Deaconu and Luciana Majercsik

just-in-time scheduling, dynamic lot sizing etc. ([1]). Around 1960, researchers
designed independently several shortest path algorithms: the first label-setting
algorithm was developed by Dijkstra in 1959, by Dantzig in 1960 and by Whiting
and Hillier also in 1960.

Shortest paths are extensively studied because they arise both when modeling
and solving real world problems and as subproblems in more complex optimization
problems, such as determining a maximum flow, a minimum flow or a minimum
cost flow.

Let G = (N,A) be a digraph, defined by a set N of n nodes and a set A of m
arcs. The weight function w : A → R+ associates to each arc (x, y) ∈ A a weight
w(x, y), that can represent its length, cost, time, penalty etc. So, G = (N,A,w)
is a weighted digraph.

In the weighted digraph G = (N,A,w), the single-source shortest path prob-
lem is to determine a shortest path from the given source node s to every node in
N .

There are two types of algorithms that solve the single-source shortest path
problem: label-setting algorithms and label-correcting algorithms. Both types are
based on the notion of distance labels. During each iteration of any shortest path
algorithm, there is a numerical value, named the distance label assigned to each
node. If this value is infinite, it means that a path from the source node to that
node is still to be found; otherwise, this represents the weight of some path from
the source node to that node. The aim of the shortest path algorithms is to reduce
the distance labels values to minimum, i.e. to the shortest paths weights.

The shortest path algorithms are based on the following optimality conditions:

Theorem 1. [1](Shortest Path Optimality Conditions) For every node y ∈ N , let
d[y] denote the length of some directed path from the source node s to y. Then
the numbers d[y] represent the shortest path distances if and only if they satisfy
the following shortest path conditions:

d[y] ≤ d[x] + w(x, y), for all arcs (x, y) ∈ A.

2 Single-source shortest path problem in a digraph
with an underestimated arc weight

In addition to being subproblems when dealing with more complex network
optimization problems, the shortest paths problems arise when modeling and
solving real life situations. In this case, data may slightly vary. This slight change
in data implies small variation in the weighted digraph in which the problem is
modeled and solved as a shortest path problem. For instance, a common change
in a practical problem may cause an increase of an arc weight in the corresponding
weighted digraph. If shortest paths from the source node to the other nodes in
the original weighted digraph are already determined, then they can be used as a
starting point when computing shortest paths in the modified digraph, instead of
starting from scratch. We adopt this approach because it is the most efficient.



Shortest Paths in a Digraph with an Underestimated Arc Weight 195

Let G = (N,A,w) be the initial weighted digraph in which shortest paths
from the source node s to the other nodes are already determined, let d be the
array containing shortest paths weights and let p be the array containing the
predecessors in the shortest paths. Let Ĝ = (N,A, ŵ) be the weighted digraph
that differs from G only by the weight of a given arc (k, l), which is larger than
the initial weight of (k, l). So, ŵ(x, y) = w(x, y), for each (x, y) ∈ A\{(k, l)} and
ŵ(k, l) = w(k, l) + a, where a is a given positive amount.

There are two possible cases:

Case 1: p[l] ̸= k. In this case, the shortest paths in G are, obviously, shortest
paths in Ĝ, too, and they have the same weights as in G.

Case 2: p[l] = k. In this case, in the modified digraph it is possible to have
different shortest paths than in the initial digraph. These modified shortest paths
can be only from the source node to node l and to the descendents of l in the
predecessor subgraph G′ = (N,A′) of G, where A′ = {(p[x], x)|p[x] ̸= 0}. We
refer to these nodes towards which it is possible to have different shortest paths
as affected nodes. They can be determined by applying the following recursive
function with the effective parameter {l}.

Function affectedNodes(X)

Begin

if X = ∅ then

return ϕ;

Y = ∅;
for x ∈ X do

Y = Y ∪ adjacentList[x];

return Y ∪ affectedNodes(Y );

end;

Suppose that we already know the array d with the shortest paths weights and
the predecessor array p. All we have to do is to search for shorter paths towards
the affected nodes. Because the weight function has positive values, we can use
an approach similar to Dijkstra’s algorithm. It may start with the set W of nodes
towards which we are still looking for shortest paths containing all the affected
nodes, instead of starting with W = N as Dijkstra’s algorithm does. The affected
node set is generally a subset of the node set N , which implies that our algorithm
performs less iterations than Dijkstra’s algorithm.

The algorithm that solves the single-pair shortest path problem in the modi-
fied weighted digraph Ĝ starting with the known arrays d and p is the following:

UnderestimatedArc Algorithm;

Begin

W = {l}∪affectedNodes({l});
while W ̸= ∅ do



196 Laura Ciupală, Adrian Deaconu and Luciana Majercsik

begin
select a node x from W such that d[x] = min{d[y]|y ∈ W};
W = W\{x};
for y ∈ adjacentList[x] ∩W do

if d[y] > d[x] + w(x, y) then
begin

d[y] = d[x] + w(x, y);
p[y] = x;

end;
end;

end.

Theorem 2. The UnderestimatedArc algorithm solves the single-pair shortest
path problem in the modified weighted digraph Ĝ with an underestimated arc weight
O(m+ n log n) time.

Proof. The only shortest paths in Ĝ that can differ from the shortest paths in
G are those whose destination nodes are in the set of affected nodes. This set is
determined by calling the recursive function affectedNodes for the effective param-
eter {l}. The recursive function determines in O(m) time the set of descendents
of the nodes in the set given as parameter. Then, the algorithm recomputes the
values of the arrays d and p corresponding to the affected nodes in a way similar
to Dijkstra’s algorithm. Because in the worst case, the set of affected nodes con-
tains O(n) nodes, it follows that the time complexity of the UnderestimatedArc
algorithm is the same as Dijkstra’s algorithm, which is O(m+ n log n) when im-
plemented efficiently with Fibonacci heaps.

Remark 1. Although the UnderestimatedArc algorithm has the same time com-
plexity as Dijkstra’s algorithm, O(m+n log n), it is more efficient than Dijkstra’s
algorithm because it does not compute the distance labels or the predecessors for
the nodes that cannot be affected by the increase in the weight of the arc (k, l).
This implies that our algorithm performs less iterations than Dijkstra’s algorithm
and it is more efficient in practice.

References

[1] Ahuja, R., Magnanti, T., Orlin, J., Network Flow. Theory, Algorithms and
Applications, Prentice Hall, New Jersey, 1993.

[2] Bang-Jensen, J., Gutin, G., Digraphs, Theory, Algorithms and Applications,
Springer-Verlag, London, 2001.

[3] Cormen, T., Leiserson, C., Rivest, R., Stein, C., Introduction to Algorithms,
MIT Press, 2009.


