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Abstract

In this paper, we survey an interpolation on polynomials with Hermite

conditions on the zeros of ultraspherical polynomials at interval [-1,1]. Our

aim is to demonstrate the existence, uniqueness, explicit representation and

convergence theorem of the interpolatory polynomials, which are the zeros

of the polynomials P
(k)
n (x) and P

(k+1)
n−1 (x) respectively, where P

(k)
n (x) is the

ultraspherical polynomial of degree n.
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1 Introduction:

In 1959, R.B. Sexna [6] modified the (0,2) interpolation problem of [1] including

the conditions Rn
′′′(+1) and Rn

′′′(−1) on knots [6](2.1). She considered a

interpolatory polynomial f2n+1(x) of degree at most 2n+1, which satisfied the

conditions [6](2.2) on the zeros of the polynomial Π(x)=(1− x2)Pn−1
′(x). Later,

L.Szili [10] studied the above problem of (0,2) interpolation on the roots of all

classical orthogonal polynomials with respect to its existence, uniqueness and

explicit form. His problem [10] was studied by M. Lenard [5] including additional

interpolatory conditions.

Further, R. Srivastava and Y. Singh [9] investigated the problem of (0;1)

interpolation on the knots [9](1) with interpolatory conditions [9](2)-(5) on the

zeros of polynomials P
(k+1)
n−1

′
(x) and P

(k+1)
n−1 (x) respectively. Later, the authors

[8], [7] extended the above problem at the zeros of ultraspherical polynomials
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including the hermite conditions.

The convergence of this interpolation process was studied by Xie [12], if f ∈
Cr[−1, 1] for x ∈ [−1, 1], then

|f(x)− R2n+1(x; f)| = O
(
n−r+1

)
ω

(
f (r);

1

n

)
. (1.1)

For k ≥ 1 Lenard [3] proved that if f ∈ Cr[−1, 1] for x ∈ [−1, 1] ,then

|f(x)− Rm(x; f)| = O
(
nk−r+ 1

2

)
ω

(
f (r);

1

n

)
. (1.2)

For k ≥ 0 Lenard [4] proved that if f ∈ Cr[−1, 1] for x ∈ [−1, 1] , then

|f ′(x)− R′
m(x; f)| = O

(
nk−r+ 5

2

)
ω

(
f (r);

1

n

)
, (1.3)

that is, if f ∈ Ck+2[−1, 1] , fk+2 ∈ Lipα , α >
1

2
, then Rm(x; f) and R′

m(x; f)

uniformly converges to f(x) and f ′(x) respectively on [-1,1] , where ω(f (r), .)

denotes the modulus of continuity of the rth derivative of the function f(x).

The aim of this paper is to extend the study of problem [7] to the case of

(0,1,2;0) interpolation with Hermite-type boundary conditions at interval [−1, 1].

The following problem is given.

Problem:

Let the set of knots be given by

−1 = x∗n < xn < x∗n−1 < xn−1 < ..... < x∗1 < x1 < x∗0 = 1, n ≥ 2, (1.4)

where {xi}ni=1 and {x∗i }
n−1
i=1 are the roots of ultraspherical polynomials P

(k)
n (x)

and P
(k+1)
n−1 (x) respectively, then on the nodal points (1.4) there exists a unique

polynomial Rm(x) of degree at most m=4n + 2k + 1 satisfying the following

interpolation conditions i.e

Rm(xi) = yi (i = 1, 2, ..., n), (1.5)

R′
m(xi) = yi

′ (i = 1, 2, ..., n), (1.6)

R′′
m(xi) = yi

′′ (i = 1, 2, ..., n), (1.7)

Rm(x∗i ) = y∗i (i = 1, 2, ..., n− 1), (1.8)

with (Hermite) boundary conditions

R(l)
m (1) = αl (l = 0, 1, ..., k), (1.9)
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R(l)
m (−1) = βl (l = 0, 1, ...k + 1), (1.10)

where yi, yi
′, yi

′′, y∗i , αl and βl are arbitrary real numbers and k is a fixed

non-negative integer. In section 2 and section 3, we give some preliminaries

and prove explicit representation respectively. Existence and uniqueness of the

interpolational polynomial are proved in section 4. Furthermore, the estimation

of the fundamental polynomials and convergence theorem are proved in section 5.

2 Preliminaries:

Let P
(k)
n (x)=P

(k,k)
n (x) (k > −1, n ≥ 0) denote the ultraspherical polynomial of

degree n. We refer to [11] (4.2.1).

(1− x2)P (k)
n

′′
(x)− 2x(k + 1)P (k)

n

′
(x) + n(n+ 2k + 1)P (k)

n (x) = 0, (2.1)

P (k)
n

′
(x) =

(n+ 2k + 1)

2
P

(k+1)
n−1 (x), (2.2)

|P (k)
n (x)| = O(nk), x ∈ [−1, 1], (2.3)

(1− x2)
k
2
+ 1

4 |P (k)
n (x)| = O(

1√
n
), (2.4)

The fundamental polynomials of Lagrange interpolation are given by:

l∗j (x) =
P

(k+1)
n−1 (x)

P
(k+1)
n−1

′
(x∗j )(x− x∗j )

(2.5)

and

lj(x) =
P

(k)
n (x)

P
(k)
n

′
(xj)(x− xj)

=
h̃
(k)
n

(1− x2j ){P
(k)
n

′
(xj)}2

n−1∑
ν=0

1

h
(k)
ν

P (k)
ν (xj)P

(k)
ν (x), (2.6)

where

h̃(k)n =
22kΓ2 (n+ k + 1)

Γ (n+ 1)Γ (n+ 2k + 1)
∼ ω1, (2.7)

h(k)ν =
22k+1

(2ν + 2k + 1)

Γ2 (ν + k + 1)

Γ (ν + 1)Γ (ν + 2k + 1)

{
∼ 1

ν (ν > 0),

= ω2 (ν = 0),
(2.8)

where the constants ω1 and ω2 depend on k.

lj(xi) = δij =

{
0 if i ̸= j

1 if i = j
, (2.9)
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l∗j (x
∗
i ) = δij =

{
0 if i ̸= j

1 if i = j
, (2.10)

lj
′(xi) =


P

(k)
n

′
(xi)

P
(k)
n

′
(xj)(xi−xj)

, when i ̸= j

xj(k+1)

(1−x2
j )
, when i = j,

(2.11)

lj
′′(xj) =

4x2j (k + 1)(k + 2)

3(1− xj2)2
−
{
n(n+ 2k + 1)− 2(k + 1)

3(1− xj2)

}
. (2.12)

If x1 > x2 > ..... > xn are the roots of P
(k)
n (x), then the following relations hold

[8].

(1− x2j ) ∼


j2

n2 (xj ≥ 0),

(n−j)2

n2 (xj < 0),

(2.13)

|P (k)
n

′
(xj)| ∼


nk+2

jk+
3
2

(xj ≥ 0),

nk+2

(n−j)k+
3
2

(xj < 0).

(2.14)

3 Explicit representation of interpolatory polynomials:

The polynomial Rm(x) can be explicitly written as

Rm(x) =
n∑

j=1

Ăj(x)yj +
n∑

j=1

B̆j(x)yj
′ +

n∑
j=1

C̆j(x)yj
′′ +

n−1∑
j=1

D̆j(x)y
∗
j

+
k∑

j=0

Ĕj(x)αj +
k+1∑
j=0

F̆j(x)βj , (3.1)

which satisfies the conditions (1.5) - (1.10), where Ăj(x) and D̆j(x) are the

fundamental polynomials of first kind, B̆j(x) and C̆j(x) are the fundamental

polynomials of second kind and third kind respectively. Ĕj(x) and F̆j(x) are

the fundamental polynomials which correspond to the boundary conditions each

of degree ≤ 4n+ 2k + 1, uniquely determined by the following conditions, which

shown in following tables.
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Table 1: Interpolatory conditions for first kind of fundamental

polynomials Ăj(x)

For j=1,2...,n

Ăj(xi) = δji

Ă′
j(xi) = 0 i = 1, 2..., n

Ă′′
j (xi) = 0

Ăj(x
∗
i ) = 0 i = 1, 2..., n− 1

Ă
(l)
j (1) = 0 l = 0, 1..., k

Ă
(l)
j (−1) = 0 l = 0, 1..., k + 1

Table 2: Interpolatory conditions for second kind of fundamental

polynomials B̆j(x)

For j=1,2...,n

B̆j(xi) = 0

B̆′
j(xi) = δji i = 1, 2..., n

B̆′′
j (xi) = 0

B̆j(x
∗
i ) = 0 i = 1, 2..., n− 1

B̆
(l)
j (1) = 0 l = 0, 1..., k

B̆
(l)
j (−1) = 0 l = 0, 1..., k + 1

Table 3: Interpolatory conditions for third kind of fundamental

polynomials C̆j(x)

For j=1,2...,n

C̆j(xi) = 0

C̆′
j(xi) = 0 i = 1, 2..., n

C̆′′
j (xi) = δji

C̆j(x
∗
i ) = 0 i = 1, 2..., n− 1

C̆
(l)
j (1) = 0 l = 0, 1..., k

C̆
(l)
j (−1) = 0 l = 0, 1..., k + 1
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Table 4: Interpolatory conditions for first kind of fundamental

polynomials D̆j(x)

For j=1,2...,n-1

D̆j(xi) = 0

D̆′
j(xi) = 0 i = 1, 2..., n

D̆′′
j (xi) = 0

D̆j(x
∗
i ) = δji i = 1, 2..., n− 1

D̆
(l)
j (1) = 0 l = 0, 1..., k

D̆
(l)
j (−1) = 0 l = 0, 1..., k + 1

Table 5: Interpolatory conditions for the fundamental polynomials Ĕj(x)

which correspond to boundary conditions

For j=0,1...,k

Ĕj(xi) = 0

Ĕ′
j(xi) = 0 i = 1, 2..., n

Ĕ′′
j (xi) = 0

Ĕj(x
∗
i ) = 0 i = 1, 2..., n− 1

Ĕ
(l)
j (1) = δjl l = 0, 1..., k

Ĕ
(l)
j (−1) = 0 l = 0, 1..., k + 1

Table 6: Interpolatory conditions for the fundamental polynomials F̆j(x)

which correspond to boundary conditions

For j=0,1...,k+1

F̆j(xi) = 0

F̆′
j(xi) = 0 i = 1, 2..., n

F̆′′
j (xi) = 0

F̆j(x
∗
i ) = 0 i = 1, 2..., n− 1

F̆
(l)
j (1) = 0 l = 0, 1..., k

F̆
(l)
j (−1) = δjl l = 0, 1..., k + 1
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The explicit forms are given in the following Lemmas.

Lemma 3.1. The fundamental polynomials Ăj(x), for j=1, 2, ..., n satisfying the

interpolatory conditions (Table 1.) are given by:

Ăj(x) = {C̃1 + C̃2(x− xj)}(1− x2)k+2{lj(x)}3P (k+1)
n−1 (x) + C̃3B̆j(x), (3.2)

where

C̃1 =
1

(1− xj2)k+2P
(k+1)
n−1 (xj)

, (3.3)

C̃2 =
C̃1

xj(3k + 1)

{
(n2 + 2nk + n− k)− xj

2(k + 1)(5k + 1)

(1− xj2)

}
, (3.4)

C̃3 = − 1

(3k + 1)

{
(n2 + 2nk + n− k)

xj
+

4xjk
2

(1− xj2)

}
(3.5)

and B̆j(x) are given in Lemma 3.2.

Lemma 3.2. The fundamental polynomials B̆j(x), for j=1, 2, ..., n satisfying the

interpolatory conditions (Table 2.) are given by:

B̆j(x) =C̃4(1 + x)(1− x2)k+1P (k)
n (x)P

(k+1)
n−1 (x){lj(x)}2

+ C̃5C̆j(x),
(3.6)

where

C̃4 =
(n+ 2k + 1)

2(1 + xj)(1− xj2)k+1{P (k)
n

′
(xj)}2

, (3.7)

C̃5 = −2

{
(1− xj) + 3xj(k + 1)

(1− xj2)

}
(3.8)

and C̆j(x) are given in Lemma 3.3.

Lemma 3.3. The fundamental polynomials C̆j(x), for j=1, 2, ..., n satisfying the

interpolatory conditions (Table 3.) are given by:

C̆j(x) =
(n+ 2k + 1)(1 + x)(1− x2)k+1{P (k)

n (x)}2P (k+1)
n−1 (x)lj(x)

4(1 + xj)(1− xj2)
k+1{P (k)

n

′
(xj)}3

. (3.9)

Lemma 3.4. The fundamental polynomials D̆j(x), for j=1, 2, ..., n−1 satisfying

the interpolatory conditions (Table 4.) are given by:

D̆j(x) =
(1 + x)(1− x2)k+1{P (k)

n (x)}3l∗j (x)

(1 + x∗j )(1− x∗j
2)k+1{P (k)

n (x∗j )}3
. (3.10)
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Lemma 3.5. The fundamental polynomials Ĕj(x), for j=0, 1, ..., k which correspond

to the boundary conditions, satisfying the interpolatory conditions (Table 5.) are

given by:

Ĕj(x) = (1− x)j(1 + x)k+2{P (k)
n (x)}3P (k+1)

n−1 (x)p̃j(x), (3.11)

where p̃j(x) is a uniquely determined polynomial of degree ≤ k − j.

Lemma 3.6. The fundamental polynomials F̆j(x), for j=0, 1, ..., k + 1 which

correspond to the boundary conditions, satisfying the interpolatory conditions

(Table 6.) are given by:

For j=0, 1..., k

F̆j(x) = (1 + x)j(1− x)k+1{P (k)
n (x)}3P (k+1)

n−1 (x)q̃j(x), (3.12)

where q̃j(x) is a uniquely determined polynomial of degree ≤ k + 1− j,

for j=k + 1

F̆k+1(x) =
(1− x2)k+1{P (k)

n (x)}3P (k+1)
n−1 (x)

2k+1(k + 1)!{P (k)
n (−1)}3P (k+1)

n−1 (−1)
. (3.13)

Proof of Lemma 3.1. - Lemma 3.6.

Proof. We consider D̆j(x) = C̃6(1 + x)(1 − x2)k+1{P (k)
n (x)}3l∗j (x) which satisfies

the conditions (Table 4.). Now, we can see that when i ̸= j, then D̆j(x
∗
i ) = 0,

when i = j, then

D̆j(x
∗
j ) = C̃6(1 + x∗j )(1− x∗j

2)k+1{P (k)
n (x∗j )}3l∗j (x∗j ) = 1,

by using (2.10), we find that

C̃6 =
1

(1 + x∗j )(1− x∗j
2)k+1{P (k)

n (x∗j )}3
,

then we get Lemma 3.4. In similar way, we can also prove Lemma 3.3, which

satisfies the conditions (Table 3). Next, we assume that

B̆j(x) =C̃4(1 + x)(1− x2)k+1P (k)
n (x)P

(k+1)
n−1 (x){lj(x)}2

+ C̃5C̆j(x),

from Table 2, we see that B̆′
j(x)|x=xi = 0, when i ̸= j.

If i=j and by using (2.9), we have

B̆′
j(x)|x=xj = C̃4(1 + xj)(1− xj

2)k+1P (k)
n

′
(xj)P

(k+1)
n−1 (xj) = 1, (3.14)
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then we get the value of C̃4 (3.7). Furthermore, if i ̸= j then B̆′′
j (xi) = 0 and if

i=j, we find it

B̆′′
j (xj) = C̃4(1− xj

2)k+1{2P (k)
n

′
(xj)P

(k+1)
n−1 (xj) + 2(1 + xj)P

(k)
n

′
(xj)P

(k+1)
n−1

′
(xj)

+ (1 + xj)P
(k+1)
n−1 (xj)P

(k)
n

′′
(xj)}+ C̃5 = 0,

(3.15)

by using (2.9), (2.11) and table 3.( C̆′′
j (xj)=1).

Now, from (2.1) and (2.2), we have

P (k)
n

′′
(xj) =

2xj(k + 1)P
(k)
n

′
(xj)

(1− xj2)
(3.16)

and

P
(k+1)
n−1

′
(xj) =

2xj(k + 1)P
(k+1)
n−1 (xj)

(1− xj2)
. (3.17)

Substituting the value of C4, value of (3.16) and (3.17) in equation (3.15), then

we obtain the value of C̃5 (3.8). Hence, finally we obtain Lemma 3.2. As using the

above process, we can also find Lemma 3.1. Next, from Table 5. Ĕj(x) satisfies

the interpolatory conditions. It is clear that Ĕ
(l)
j (1)=0 for l = 0, ...j − 1. Now, we

write the polynomial p̃j(x) from (3.11) in the form

p̃j(x) = ã
(j)
0 + ã

(j)
1 (1− x) + ...+ ã

(j)
k−j(1− x)k−j .

The coefficients of the polynomial p̃j(x) are determined by the system

Ĕ
(l)
j (1) =

dl

dxl
[(1− x)j(1 + x)k+2{P (k)

n (x)}3P (k+1)
n−1 (x)p̃j(x)]x=1

= δjl (l = j, j + 1, ..., k).

Similar to above process, we can also prove Lemma 3.6.

4 Existence and uniqueness

Theorem 4.1. If {yi}ni=1 , {yi′}ni=1, {yi′′}ni=1, {y∗i }
n−1
i=1 , {αl}kl=0 and {βl}k+1

l=0 are

given real numbers, k ≥ 0, n ≥ 2 are arbitrary fixed integers, then on the nodal

points (1.4) there exists a unique polynomial Rm(x) (can see in (3.1) ) of degree

at most 4n+ 2k + 1 satisfying the conditions (1.5) - (1.10).

Proof. By Lemma 3.1 to Lemma 3.6, we can see that polynomial Rm(x) in (3.1)

satisfies the conditions (1.5) - (1.10), which proves the existence of interpolational

polynomial Rm(x). For the uniqueness we assume that there is another polynomial

R∗
m(x) of degree at most m=4n+2k+1 which also satisfies the conditions. Then

the polynomial Qm(x) = Rm(x)− R∗
m(x) satisfies the equations

Qm(xi) = 0, Q′
m(xi) = 0, Q′′

m(xi) = 0 (i = 1, 2..., n), (4.1)
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Qm(x∗i ) = 0 (i = 1, 2..., n− 1), (4.2)

Q(l)
m (1) = 0 (l = 0, 1..., k) (4.3)

and

Q(l)
m (−1) = 0 (l = 0, 1, ...k + 1), (4.4)

so it can be written in the form

Qm(x) = (1− x2)k+1P (k)
n (x)P

(k+1)
n−1 (x)g2n(x), (4.5)

where g2n(x) is a polynomial of degree at most 2n. Now, we can see that the

conditions Qm(xi) = 0 and Qm(x∗i ) = 0 satisfy in (4.5). Furthermore,

Q′
m(xi) = (1− xi

2)k+1P (k)
n

′
(xi)P

(k+1)
n−1 (xi)g2n(xi) = 0, i.e g2n(xi) = 0 (4.6)

and

Q′′
m(xi) = 2(1− xi

2)k+1P (k)
n

′
(xi)P

(k+1)
n−1 (xi)g2n

′(xi) = 0 (4.7)

that is

g2n
′(xi) = 0, for i = 1, 2..., n. (4.8)

It is possible in that case when g2n
′(x) ≡ 0, so g2n(x) ≡ a, hence

Qm(x) = a(1− x2)k+1P (k)
n (x)P

(k+1)
n−1 (x), (4.9)

from equation (4.4) and (4.9), we find it

Q(k+1)
m (−1) = a2k+1(k + 1)!P (k)

n (−1)P
(k+1)
n−1 (−1) = 0

=⇒ a = 0,

therefore Qm(x) ≡ 0, which proves the uniqueness.

5 Estimation of the fundamental polynomials.

Theorem 5.1. If k > 0 , n ≥ 2 , for the first derivative of the first kind

fundamental polynomials {D̆j(x)}n−1
j=1 on [-1,1] holds

n−1∑
j=1

(1− x∗j
2)|D̆′

j(x)| = O(n2k+4). (5.1)

Proof. From equation (2.1) and (2.2), we have

P (k)
n (x∗j ) = −

(1− x∗j
2)P

(k+1)
n−1

′
(x∗j )

2n
. (5.2)
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Differentiating (3.10), we have

n−1∑
j=1

(1− x∗j
2)|D̆′

j(x)| = η1 + η2 + η3,

where we use the decomposition (2.5) in η1 for l∗j (x) and from (5.2), we get

η1 ≤
n−1∑
j=1

8n3(1− x∗j )(1 + x){1− x+ 2x(k + 1)}(1− x2)
k
2
+ 1

4 |P (k)
n (x)|3 × h̃

(k+1)
n−1

(1− x∗j
2)

3k
2
+ 23

4 |P (k+1)
n−1

′
(x∗j )|5

×

{
γ1 +

n−2∑
ν=1

1

h
(k+1)
ν

(1− x∗j
2)

k
2
+ 3

4 |P (k+1)
ν (x∗j )|(1− x2)

k
2
+ 3

4 |P (k+1)
ν (x)|

}
,

where γ1 is a constant, independent of n, by (2.3), (2.4), (2.8), (2.13) and (2.14),

we have

η1 = O(n2k+2).

Again use the decomposition (2.5) in η2 for l∗j (x), we get

η2 ≤
n−1∑
j=1

12n3(n+ 2k + 1)(1− x∗j )(1 + x)(1− x2)
k
2
+ 1

4 |P (k)
n (x)|2|P (k+1)

n−1 (x)|h̃(k+1)
n−1

(1− x∗j
2)

3k
2
+ 23

4 |P (k+1)
n−1

′
(x∗j )|5

×

{
γ2 +

n−2∑
ν=1

(1− x∗j
2)

k
2
+ 3

4

h
(k+1)
ν

|P (k+1)
ν (x∗j )|(1− x2)

k
2
+ 3

4 |P (k+1)
ν (x)|

}
,

where γ2 is a constant, independent of n, by (2.3), (2.4), (2.8), (2.13) and (2.14),

we find

η2 = O(n2k+4).

As such, to use the decomposition (2.5) in η3 for l∗j (x), we obtain

η3 = O(n2k+3).

Hence, the theorem is proved.

Theorem 5.2. If k > 0 , n ≥ 2 , for the first derivative of the third kind

fundamental polynomials {C̆j(x)}nj=1 on [-1,1] holds

n∑
j=1

|C̆′
j(x)| = O(n2k+3). (5.3)

Proof. Taking derivative and applying the sum (for j = 1 to j = n) in (3.9), we

have
n∑

j=1

|C̆′
j(x)| = ζ1 + ζ2 + ζ3 + ζ4,
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where we use the decomposition (2.6) in ζ1 for lj(x), we have

ζ1 ≤
n∑

j=1

(n+ 2k + 1)(1− xj)(1 + x){1− x+ 2x(k + 1)}(1− x2)
k
2
+ 1

4 |P (k)
n (x)|2

4(1− x2j )
3k
2
+ 13

4 |P (k)
n

′
(xj)|5

× (1− x2)
k
2
+ 3

4 |P (k+1)
n−1 (x)|h̃(k)n

{
γ3 +

n−1∑
ν=1

1

h
(k)
ν

(1− x2j )
k
2
+ 1

4 |P (k)
ν (xj)|P (k)

ν (x)|

}
,

where γ3 is a constant, independent of n, by (2.3), (2.4), (2.8), (2.13) and (2.14),

we obtain

ζ1 = O(n2k).

Further use the decomposition (2.6) in ζ2 for lj(x), we have

ζ2 ≤

≤
n∑

j=1

(n+2k+1)2(1−xj)(1+x)(1−x2)
k
2
+1

4 |P (k)
n (x)|(1−x2)

k
2
+3

4 |P (k+1)
n−1 (x)|2h̃(k)n

4(1−x2j )
3k
2
+13

4 |P (k)
n

′
(xj)|5

×

{
γ4 +

n−1∑
ν=1

1

h
(k)
ν

(1− x2j )
k
2
+ 1

4 |P (k)
ν (xj)||P (k)

ν (x)|

}
,

where γ4 is a constant, independent of n, by using (2.3), (2.4), (2.8), (2.13)

and (2.14), we obtain

ζ2 = O(n2k+2),

similarly using the decomposition on ζ3 and ζ4, we have

ζ3 = O(n2k+3) and ζ4 = O(n2k+2).

Hence, the theorem is proved.

Theorem 5.3. If k > 0 , n ≥ 2 , for the first derivative of the second kind

fundamental polynomials {B̆j(x)}nj=1 on [-1,1] holds

n∑
j=1

|B̆′
j(x)| = O(n2k+4). (5.4)

Proof. Differentiating (3.6), using (3.7) and (3.8), we have

n∑
j=1

|B̆′
j(x)| = ξ1 + ξ2 + ξ3 + ξ4 + ξ5,
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where ξ1 is used in decomposition (2.6) for lj(x), we have

ξ1 ≤
n∑

j=1

1

2{(1− x2j )
k
3
+ 3

4 |P (k)
n

′
(xj)|}6

· (n+ 2k + 1)(1− xj)(1 + x)

× {1− x+ 2x(k + 1)}(1− x2)
k
2
+ 1

4 |P (k)
n (x)|(1− x2)

k
2
+ 3

4 |P (k+1)
n−1 (x)|{h̃(k)n }2

×

{
γ5 +

n−1∑
ν=1

n−1∑
ν=1

1

{h(k)ν }2
{(1− x2j )

k
2
+ 1

4 |P (k)
ν (xj)|}2|P (k)

ν (x)|2
}
,

where γ5 is a constant, independent of n,

by using (2.3), (2.4), (2.8), (2.13) and (2.14), we obtain

ξ1 = O(n2k+1).

In such a way, ξ2 is also used in decomposition (2.6), we get

ξ2 ≤
n∑

j=1

(n+ 2k + 1)(1− xj)(1 + x)(1− x2)
k
2
+ 3

4 |P (k+1)
n−1 (x)||P (k)

n

′
(x)|{h̃(k)n }2

2{(1− x2j )
k
3
+ 3

4 |P (k)
n

′
(xj)|}6

×

{
γ6 +

n−1∑
ν=1

n−1∑
ν=1

1

{h(k)ν }2
{(1− x2j )

k
2
+ 1

4 |P (k)
ν (xj)|}2(1− x2)

k
2
+ 1

4 |P (k)
ν (x)|2

}
,

where γ6 is a constant, independent of n, by (2.2), (2.3), (2.4), (2.8), (2.13)

and (2.14), we obtain

ξ2 = O(n2k+3),

similarly using the decomposition on ξ3 and ξ4 for lj(x), we have

ξ3 = O(n2k+4) , ξ4 = O(n2k+3)

and

ξ5 =
n∑

j=1

|C5|C̆′
j(x)|,

from (3.8) and (5.3), we obtain

ξ5 = O(n2k+3).

Hence, the theorem is proved.

Theorem 5.4. If k > 0 , n ≥ 2 , for the first derivative of the first kind

fundamental polynomials {Ăj(x)}nj=1 on [-1,1] holds

n∑
j=1

(1− x2j )|Ă′
j(x)| = O(n2k+6). (5.5)
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Proof. Differentiating (3.2), using (3.3), (3.4) and (3.5), we have

n∑
j=1

(1− x2j )|Ă′
j(x)| = ς1 + ς2 + ς3 + ς4,

where we use the decomposition (2.6) in ς1 for lj(x), we have

ς1 ≤
n∑

j=1

b(n+ 2k + 1)(1− x2)(1− x2)
k
2
+ 3

4 |P (k+1)
n−1 (x)|{h̃(k)n }3

2(1− x2j )
5k
2
+ 19

4 |P (k)
n

′
(xj)|7

×

{
γ7 +

n−1∑
ν=1

n−1∑
ν=1

n−1∑
ν=1

1

{h(k)ν }3
{(1− x2j )

k
2
+ 1

4 |P (k)
ν (xj)|}3(1− x2)

k
2
+ 1

4 |P (k)
ν (x)|3

}
,

where γ7 is a constant, independent of n and

b =
1

xj(3k + 1)

{
(n2 + 2nk + n− k)− xj

2(k + 1)(5k + 1)

(1− xj2)

}
, (5.6)

by using (2.3), (2.4), (2.8), (2.13), (2.14) and (5.6), we obtain

ς1 = O(n2k+4).

Now, next part of partial sum is

ς2 =
n∑

j=1

(n+ 2k + 1){1 + b(x− xj)}

2(1− x2j )
k+2|P (k)

n

′
(xj)|

{2x(k + 2)|P (k+1)
n−1 (x)|+ (1− x2)|P (k+1)

n−1

′
(x)|}

×(1− x2)k+1|lj(x)|3, (5.7)

by using the decomposition in ς2 for lj(x), we find it

ς2 ≤
n∑

j=1

{
2x(k + 2)(1− x2)

k
2
+ 3

4 |P (k+1)
n−1 (x)|+ 1

2(n+ 2k + 2)(1− x2)
k
2
+ 7

4 |P (k+2)
n−2 (x)|

}
2(1− x2j )

5k
2
+ 19

4 |P (k)
n

′
(xj)|7

× (n+ 2k + 1){1 + b(x− xj)}{h̃(k)n }3

×

{
γ8 +

n−1∑
ν=1

n−1∑
ν=1

n−1∑
ν=1

1

{h(k)ν }3
{(1− x2j )

k
2
+ 1

4 |P (k)
ν (xj)|}3(1− x2)

k
2
+ 1

4 |P (k)
ν (x)|3

}
,

where γ8 is a constant, independent of n, by using (2.3), (2.4), (2.8), (2.13), (2.14)

and (5.6), we obtain

ς2 = O(n2k+5).

Similarly in a way, using the decomposition (2.6) in ς3, we have

ς3 = O(n2k+6)
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and

ς4 =

n∑
j=1

|C3|(1− x2j )|B̆′
j(x)|,

by (2.13), (3.5) and (5.4), we obtain

ς4 = O(n2k+6).

Hence, the theorem is proved.

Main Theorem:

Let k ≥ 0 be a fixed integer, m=4n+2k+1 and let the knots {xi}ni=1 and {x∗i }
n−1
i=1

be the roots of the ultraspherical polynomials P
(k)
n (x) and P

(k+1)
n−1 (x) respectively.

If f ∈ Cr[−1, 1] (r ≥ k+ 1, 2n ≥ 2r− k+ 2), then the interpolational polynomial

Rm(x; f) =

n∑
i=1

Ăi(x)f(xi) +

n∑
i=1

B̆i(x)f
′(xi) +

n∑
i=1

C̆i(x)f
′′(xi) +

n−1∑
i=1

D̆i(x)f(x
∗
i )

+
k∑

j=0

Ĕj(x)f
(j)(1) +

k+1∑
j=0

F̆j(x)f
(j)(−1),

(5.8)

satisfies (5.9) for x ∈ [−1, 1]

|f ′(x)− R′
m(x; f)| = ω(f (r);

1

n
)O(n2k+6−r), (5.9)

where the fundamental polynomials Ăi(x), B̆i(x), C̆i(x), D̆i(x), Ĕi(x) and F̆i(x)

are given in Lemma 3.1 - Lemma 3.6.

Proof

For k=0 we refer to (1.1) , proved by Xie and Zhou [13]. Let f ∈ Cr[−1, 1], by the

theorem of Gopengauz [2] for every m ≥ 4r + 5 there exists a polynomial pm(x)

of degree at most m such that for s = 0, ...., r

|f (s)(x)− p(s)m (x)| ≤ Mr,s

(√
1− x2

m

)r−s

ω

(
f (r);

√
1− x2

m

)
, (5.10)

where ω(f (r); .) denotes the modulus of continuity of the function f (r)(x) and the

constants Mr,s depend only on r and j. Furthermore,

f (s)(±1) = p(s)m (±1) (s = 0, ...., r).
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By the uniqueness of the interpolational polynomials Rm(x; f) it is clear that

Rm(x; pm)=pm(x). Hence for x ∈ [−1, 1]

|f ′(x)− R′
m(x; f)| ≤ |f ′(x)− p′m(x)|+ |R′

m(x; pm)− R′
m(x; f)|

≤ |f ′(x)− p′m(x)|+
n∑

i=1

|f(xi)− pm(xi)||Ă′
i(x)|

+
n∑

i=1

|f ′(xi)− p′m(xi)||B̆′
i(x)|+

n∑
i=1

|f ′′(xi)− p′′m(xi)||C̆′
i(x)|

+
n−1∑
i=1

|f(x∗i )− pm(x∗i )||D̆′
i(x)|,

by using (5.8) and (5.10). Furthermore, applying the estimates (5.1), (5.3), (5.4),

(5.5) and using (2.13), we obtain (5.9) which is statement of the theorem. By

Main Theorem and (1.2) we can state the conclusion of the above theorem.

Conclusion

Let k ≥ 0 be a fixed integer, m=4n+2k+1 , 2n ≥ k+4, let {xi}ni=1 and {x∗i }
n−1
i=1 be

the roots of the ultraspherical polynomials P
(k)
n (x) and P

(k+1)
n−1 (x) respectively. If

f ∈ C2k+6[−1, 1] , f2k+6 ∈ Lipα , α > 1
2 , then Rm(x; f) and R′

m(x; f) uniformly

converge to f(x) and f ′(x), respectively on [-1,1] as n → ∞ .
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