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THE UNIT BALL OF BILINEAR FORMS ON R2 WITH A
ROTATED SUPREMUM NORM

Sung Guen KIM1

Abstract

Let 0 ≤ θ < π
2 and l2∞,θ be the plane with the rotated supremum norm

∥(x, y)∥∞,θ = max
{
|(cosθ)x+ (sinθ)y|, |(sinθ)x− (cosθ)y|

}
.

We devote to the description of the sets of extreme, exposed and smooth
points of the closed unit balls of L(2l2∞,θ) and Ls(

2l2∞,θ), where L(2l2∞,θ) is

the space of bilinear forms on l2∞,θ, and Ls(
2l2∞,θ) is the subspace of L(

2l2∞,θ)

consisting of symmetric bilinear forms. Let F = L(2l2∞,θ) or Ls(
2l2∞,θ). First

we classify the extreme and exposed points of the closed unit ball of F. We
also show that every extreme point of the closed unit ball of F is exposed. It
is shown that extBLs(2l2∞,θ)

= extBL(2l2∞,θ)
∩Ls(

2l2∞,θ) and expBLs(2l2∞,θ)
=

expBL(2l2∞,θ)
∩ Ls(

2l2∞,θ). We classify the smooth points of the closed unit

ball of F. It is shown that smBL(2l2∞,θ)
∩Ls(

2l2∞,θ) ⊊ smBLs(2l2∞,θ)
. As corol-

lary we extend the results of [18, 35].
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1 Introduction

Throughout the paper, we let n,m ∈ N, n,m ≥ 2. We write BE for the closed
unit ball of a real Banach space E and the dual space of E is denoted by E∗. An
element x ∈ BE is called an extreme point of BE if y, z ∈ BE with x = 1

2(y + z)
implies x = y = z. An element x ∈ BE is called an exposed point of BE if there
is f ∈ E∗ so that f(x) = 1 = ∥f∥ and f(y) < 1 for every y ∈ BE \ {x}. It is easy
to see that every exposed point of BE is an extreme point. An element x ∈ BE is
called a smooth point of BE if there is unique f ∈ E∗ so that f(x) = 1 = ∥f∥. We
denote by extBE , expBE and smBE the set of extreme points, the set of exposed
points and the set of smooth points of BE , respectively. A mapping P : E → R is
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a continuous n-homogeneous polynomial if there exists a continuous n-linear form
T on the product E × · · · ×E such that P (x) = T (x, · · · , x) for every x ∈ E. We
denote by P(nE) the Banach space of all continuous n-homogeneous polynomials
from E into R endowed with the norm ∥P∥ = sup∥x∥=1 |P (x)|. We denote by
L(nE) the Banach space of all continuous n-linear forms on E endowed with the
norm ∥T∥ = sup∥xk∥=1 |T (x1, · · · , xn)|. Ls(

nE) denotes the closed subspace of all
continuous symmetric n-linear forms on E. Notice that L(nE) is identified with

the dual of n-fold projective tensor product
⊗̂

π,nE. With this identification, the

action of a continuous n-linear form T as a bounded linear functional on
⊗̂

π,nE
is given by 〈 k∑

i=1

x(1),i ⊗ · · · ⊗ x(n),i, T
〉
=

k∑
i=1

T
(
x(1),i, · · · , x(n),i

)
.

Notice also that Ls(
nE) is identified with the dual of n-fold symmetric projec-

tive tensor product
⊗̂

s,π,nE. With this identification, the action of a continuous

symmetric n-linear form T as a bounded linear functional on
⊗̂

s,π,nE is given by〈 k∑
i=1

1

n!

(∑
σ

xσ(1),i ⊗ · · · ⊗ xσ(n),i
)
, T

〉
=

k∑
i=1

T
(
x(1),i, · · · , x(n),i

)
,

where σ goes over all permutations on {1, . . . , n}. For more details about the
theory of polynomials and multilinear mappings on Banach spaces, we refer to
[8].

Let us introduce the history of classification problems of the extreme points,
the exposed points and the smooth points of the unit ball of continuous n-
homogeneous polynomials on a Banach space.

We let lnp = Rn for every 1 ≤ p ≤ ∞ equipped with the lp-norm. Choi et
al. [3, 4, 5] initiated and classified extBP(2l2p)

for p = 1, 2. Choi and Kim [7]

classified expBP(2l2p)
for p = 1, 2,∞. Grecu [12] classified extBP(2l2p)

for 1 < p < 2

or 2 < p < ∞. Kim et al. [46] showed that if E is a separable real Hilbert space
with dim(E) ≥ 2, then, extBP(2E) = expBP(2E). Kim [17] classified expBP(2l2p)

for 1 ≤ p ≤ ∞. Kim [19, 21] characterized extBP(2d∗(1,w)2), where d∗(1, w)
2 = R2

with the octagonal norm ∥(x, y)∥w = max
{
|x|, |y|, |x|+|y|

1+w

}
for 0 < w < 1. Kim [26]

classified expBP(2d∗(1,w)2) and showed that expBP(2d∗(1,w)2) ̸= extBP(2d∗(1,w)2).
Kim [31, 34, 45] classified extBP(2R2

h( 12 )
), expBP(2R2

h( 12 )
) and smBP(2R2

h( 12 )
), where

R2
h( 1

2
)
= R2 with the hexagonal norm ∥(x, y)∥h( 1

2
) = max

{
|y|, |x|+ 1

2 |y|
}
.

Parallel to the classification problems of extBP(nE), expBP(nE) and smBP(nE),
it seems to be very natural to study the classification problems of the extreme
points, the exposed points and the smooth points of the unit ball of continuous
(symmetric) multilinear forms on a Banach space.

Kim [18] initiated and classified extBLs(2l2∞), expBLs(2l2∞) and smBLs(2l2∞).
It was shown that extBLs(2l2∞) = expBLs(2l2∞). Kim [20, 22, 23, 25] classi-
fied extBLs(2d∗(1,w)2), extBL(2d∗(1,w)2), expBLs(2d∗(1,w)2), and expBL(2d∗(1,w)2).
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Kim [29, 30] also classified extBLs(2l3∞) and expBLs(3l2∞). It was shown that
extBLs(2l3∞) = expBLs(2l3∞) and extBLs(3l2∞) = expBLs(3l2∞). Kim [35] classi-
fied extBL(2l2∞), expBL(2l2∞) and smBL(2l2∞). Kim [33] characterized extBL(2ln∞)

and extBLs(2ln∞), and showed that expBL(2ln∞) = extBL(2ln∞) and expBLs(2ln∞) =
extBLs(2ln∞). Kim [36] characterized extBL(2l3∞) and expBL(2l3∞). Kim [37] char-
acterized smBLs(nl2∞). Kim [38] studied extBL(2l∞). Cavalcante et al. [2] charac-
terized extBL(nlm∞). Kim [41] classified extBL(nl2∞) and extBLs(nl2∞). It was shown

that | extBL(nl2∞)| = 2(2
n) and | extBLs(nl2∞)| = 2n+1, and that expBL(nl2∞) =

extBL(nl2∞) and expBLs(nl2∞) = extBLs(nl2∞).Kim [40, 43] characterize extBLs(nlm∞),
extBL(nlm∞), expBLs(mlm∞), expBL(nlm∞), smBLs(nlm∞) and smBL(nlm∞) for every
n,m ≥ 2. Kim [44] characterize extBL(nRm

∥·∥)
, extBLs(nRm

∥·∥)
, expBL(nRm

∥·∥)
,

expBLs(nRm
∥·∥)

, where Rm
∥·∥ is Rm with a norm ∥ · ∥ such that | extBRm

∥·∥
| = 2m for

m ≥ 2. It is shown that every extreme point is exposed.
We refer to [1–7, 9–15, 17–55] and references therein) for some recent work

about extremal properties of homogeneous polynomials and multilinear forms on
Banach spaces.

Let 0 ≤ θ < π
2 and l2∞,θ be the plane with the rotated supremum norm

∥(x, y)∥∞,θ = max
{
|(cosθ)x+ (sinθ)y|, |(sinθ)x− (cosθ)y|

}
.

Notice that if θ = 0, then l2∞,0 = l2∞ = R2 with the supremum norm. In this paper,
we devote to the description of the sets of extreme, exposed and smooth points
of the closed unit balls of L(2l2∞,θ) and Ls(

2l2∞,θ). Let F = L(2l2∞,θ) or Ls(
2l2∞,θ).

First we classify the extreme and exposed points of the closed unit ball of F.
We also show that every extreme point of the closed unit ball of F is exposed.
It is shown that extBLs(2l2∞,θ)

= extBL(2l2∞,θ)
∩ Ls(

2l2∞,θ) and expBLs(2l2∞,θ)
=

expBL(2l2∞,θ)
∩ Ls(

2l2∞,θ). We classify the smooth points of the closed unit ball

of F. It is shown that smBLs(2l2∞,θ)
= smBL(2l2∞,θ)

∩ Ls(
2l2∞,θ). As corollary we

extend the results of [18, 35] when θ = 0.

2 The extreme points of the unit balls of L(2l2∞,θ) and
Ls(

2l2∞,θ)

Throughout the paper we let 0 ≤ θ < π
2 and l2∞,θ be the plane with the rotated

supremum norm

∥(x, y)∥∞,θ = max
{
|(cosθ)x+ (sinθ)y|, |(sinθ)x− (cosθ)y|

}
.

If T ∈ L(2l2∞,θ), then

T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 + cx1y2 + dx2y1

for some a, b, c, d ∈ R. For simplicity, we denote T = (a, b, c, d).
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Let S be a non-empty subset of a real Banach space E. Let

conv(S) :=
{ k∑

j=1

tjaj : 0 ≤ tj ≤ 1, t1+· · ·+tk = 1, aj ∈ S for k ∈ N and 1 ≤ j ≤ k
}
.

We call conv(S) the convex hull of S. Recall that the Krein-Milman Theorem [46]
say that every nonempty compact convex subset of a Hausdorff locally convex
space is the closed convex hull of its set of extreme points.

Let A := (cosθ − sinθ, cosθ + sinθ) and B := (cosθ + sinθ, − cosθ + sinθ).
Notice that

extBl2∞,θ
= {±A,±B}.

By the Krein-Milman Theorem,

Bl2∞,θ
= conv

(
{±A,±B}

)
.

The following presents an explicit formula for the norm of T ∈ L(2l2∞,θ).

Theorem 1. Let T = (a, b, c, d) ∈ L(2l2∞,θ) for some a, b, c, d ∈ R. Then,

∥T∥ = max
{∣∣∣(1− sin2θ)a+ (1 + sin2θ)b+ (cos2θ)(c+ d)

∣∣∣,∣∣∣(1 + sin2θ)a+ (1− sin2θ)b− (cos2θ)(c+ d)
∣∣∣,∣∣∣(cos2θ)(a− b)− (1− sin2θ)c+ (1 + sin2θ)d
∣∣∣,∣∣∣(cos2θ)(a− b) + (1 + sin2θ)c− (1− sin2θ)d
∣∣∣}.

Proof. Let X1, X2 ∈ Bl2∞,θ
. By the Krein-Milman Theorem, there exist t

(j)
1 , t

(j)
2 ∈

R such that

|t(j)1 |+ |t(j)2 | ≤ 1 and Xj = t
(j)
1 A+ t

(j)
2 B (j = 1, 2).

By the bilinearity of T , it follows that

|T (X1, X2)| =
∣∣∣T(t(1)1 A+ t

(1)
2 B, t

(2)
1 A+ t

(2)
2 B

)∣∣∣
≤

∑
1≤jk≤2,1≤k≤2

|t(1)j1
||t(2)jn

| max{ |T (A,A)|, |T (A,B)|, |T (B,A)|, |T (B,B)| }

= max{ |T (A,A)|, |T (A,B)|, |T (B,A)|, |T (B,B)| }

= max
{∣∣∣(1− sin2θ)a+ (1 + sin2θ)b+ (cos2θ)(c+ d)

∣∣∣,∣∣∣(1 + sin2θ)a+ (1− sin2θ)b− (cos2θ)(c+ d)
∣∣∣,∣∣∣(cos2θ)(a− b)− (1− sin2θ)c+ (1 + sin2θ)d
∣∣∣,∣∣∣(cos2θ)(a− b) + (1 + sin2θ)c− (1− sin2θ)d
∣∣∣} ≤ ∥T∥,

which completes the proof.
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Notice that if θ = π
4 and T = (a, b, c, d) ∈ L(2l2∞,π

4
), then

∥T∥π
4
= 2max

{
|a|, |b| , |c|, |d|

}
.

Theorem 2. Let 0 ≤ θ < π
2 and T = (a, b, c, d) ∈ L(2l2∞,θ) with ∥T∥ = 1. Then,

T ∈ extBL(2l2∞,θ)
if and only if

1 = |T (A,A)| = |T (B,B)| = |T (A,B)| = |T (B,A)|.

Proof. (⇒). Suppose that T ∈ extBLs(2l2∞,θ)
. Assume the assertion is not true.

We have three cases.

Case 1. |T (A,A)| < 1.

Let θ = π
4 .

Since
1 > |T (A,A)| = |T ((0,

√
2), (0,

√
2))| = 2|b|,

there is N ∈ N such that

∥T ±
(
0,

1

N
, 0, 0

)
∥ = 1.

Let

T± := T ±
(
0,

1

N
, 0, 0

)
.

Hence, T is not extreme. This is a contradiction.
Suppose that θ ̸= π

4 . Let

T± := T ±
((1− sin2θ)2

n(cos2θ)2
,
1

n
,
1− sin2θ

ncos2θ
,
1− sin2θ

ncos2θ

)
for a sufficiently large n ∈ N so that ∥T±∥ = 1 for j = 1, 2. Hence, T is not
extreme. This is a contradiction.

Case 2. |T (B,B)| < 1.

Let θ = π
4 .

Since
1 > |T (B,B)| = |T ((

√
2, 0), (

√
2, 0))| = 2|a|,

there is N ∈ N such that

∥T ±
( 1

N
, 0, 0, 0

)
∥ = 1.

Hence, T is not extreme. This is a contradiction.
Suppose that θ ̸= π

4 . Let

T± := T ±
(
− (1 + sin2θ)

ncos2θ
, − cos2θ

n(1 + sin2θ)
,
1

n
,
1

n

)
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for a sufficiently large n ∈ N so that ∥T±∥ = 1 for j = 1, 2. Hence, T is not
extreme. This is a contradiction.

Case 3. |T (A,B)| < 1.

Let θ = π
4 .

Since

1 > |T (A,B)| = |T ((0,
√
2), (

√
2, 0))| = 2|d|,

there is N ∈ N such that

∥T ±
(
0, 0, 0,

1

N

)
∥ = 1.

Hence, T is not extreme. This is a contradiction.

Suppose that θ ̸= π
4 .

Let

T± := T ±
( 1

n
, − 1

n
,
1 + 3sin2θ

ncos2θ
, − 1 + sin2θ

ncos2θ

)
for a sufficiently large n ∈ N so that ∥T±∥ = 1 for j = 1, 2. Hence, T is not
extreme. This is a contradiction.

Case 4. |T (B,A)| < 1.

Let θ = π
4 .

Since

1 > |T (B,A)| = |T ((
√
2, 0), (0,

√
2))| = 2|c|,

there is N ∈ N such that

∥T ±
(
0, 0,

1

N
, 0

)
∥ = 1.

Hence, T is not extreme. This is a contradiction.

Suppose that θ ̸= π
4 .

Let

T± := T ±
( 1

n
, − 1

n
,
1 + 3sin2θ

ncos2θ
,
−1 + sin2θ

ncos2θ

)
for a sufficiently large n ∈ N so that ∥T±∥ = 1 for j = 1, 2. Hence, T is not
extreme. This is a contradiction. Therefore, the assertion is true.

(⇐). Suppose that 1 = |T (A,A)| = |T (B,B)| = |T (A,B)| = |T (B,A)|.
Let R1, R2 ∈ L(2l2∞,θ) be defined by

R1 = T + (ϵ, δ, ρ, t) and R2 = T − (ϵ, δ, ρ, t)

for some ϵ, δ, ρ, t ∈ R be such that ∥Rj∥ = 1 for j = 1, 2.

Claim. ϵ = δ = ρ = t = 0.
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By Theorem 1, it follows that

1 ≥ max{|T1(A,A)|, |T2(A,A)|}
= |T (A,A)|+ |(ϵ, δ, ρ, t)(A,A)|
= 1 + |(ϵ, δ, ρ, t)(A,A)|,

which shows that

0 = (ϵ, δ, ρ, t)(A,A) = (1− sin2θ)ϵ+ (1 + sin2θ)δ + (cos2θ)ρ+ (cos2θ)t. (∗)

By Theorem 1, it follows that

1 ≥ max{|T1(B,B)|, |T2(B,B)|}
= |T (B,B)|+ |(ϵ, δ, ρ, t)(B,B)|
= 1 + |(ϵ, δ, ρ, t)(B,B)|,

which shows that

0 = (ϵ, δ, ρ, t)(B,B) = (1 + sin2θ)ϵ+ (1− sin2θ)δ − (cos2θ)ρ− (cos2θ)t. (∗∗)

By Theorem 1, it follows that

1 ≥ max{|T1(A,B)|, |T2(A,B)|}
= |T (A,B)|+ |(ϵ, δ, ρ, t)(A,B)|
= 1 + |(ϵ, δ, ρ, t)(A,B)|,

which shows that

0 = (ϵ, δ, ρ, t)(A,B) = (cos2θ)ϵ− (cos2θ)δ− (1− sin2θ)ρ+ (1+ sin2θ)t. (∗ ∗ ∗)

By Theorem 1, it follows that

1 ≥ max{|T1(B,A)|, |T2(B,A)|}
= |T (B,A)|+ |(ϵ, δ, ρ, t)(B,A)|
= 1 + |(ϵ, δ, ρ, t)(B,A)|,

which shows that

0 = (ϵ, δ, ρ, t)(B,A) = (cos2θ)ϵ− (cos2θ)δ+(1+ sin2θ)ρ− (1− sin2θ)t. (∗∗∗∗)

Solving the equations of (∗)− (∗ ∗ ∗∗), we get ϵ = δ = ρ = t = 0. Therefore, T is
extreme. We complete the proof.

Theorem 3. Let 0 ≤ θ < π
2 and T = (a, b, c, c) ∈ Ls(

2l2∞,θ) with ∥T∥ = 1. Then,
T ∈ extBLs(2l2∞,θ)

if and only if

1 = |T (A,A)| = |T (B,B)| = |T (A,B)|.
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Proof. (⇒). Suppose that T ∈ extBLs(2l2∞,θ)
. Assume the assertion is not true.

We have three cases.

Case 1. |T (A,A)| < 1.

Let θ = π
4 .

Since

1 > |T (A,A)| = |T ((0,
√
2), (0,

√
2))| = 2|b|,

there is N ∈ N such that

∥T ±
(
0,

1

N
, 0, 0

)
∥ = 1.

Let

T± := T ±
(
0,

1

N
, 0, 0

)
.

Hence, T /∈ extBLs(2l2∞,θ)
. This is a contradiction.

Suppose that θ ̸= π
4 . Let

T± := T ±
((1− sin2θ)2

n(cos2θ)2
,
1

n
,
1− sin2θ

ncos2θ
,
1− sin2θ

ncos2θ

)
for a sufficiently large n ∈ N so that ∥T±∥ = 1 for j = 1, 2. Hence, T /∈
extBLs(2l2∞,θ)

. This is a contradiction.

Case 2. |T (B,B)| < 1.

Let θ = π
4 .

Since

1 > |T (B,B)| = |T ((
√
2, 0), (

√
2, 0))| = 2|a|,

there is N ∈ N such that

∥T ±
( 1

N
, 0, 0, 0

)
∥ = 1.

Hence, T /∈ extBLs(2l2∞,θ)
. This is a contradiction.

Suppose that θ ̸= π
4 . Let

T± := T ±
(
− (1 + sin2θ)

ncos2θ
, − cos2θ

n(1 + sin2θ)
,
1

n
,
1

n

)
for a sufficiently large n ∈ N so that ∥T±∥ = 1 for j = 1, 2. Hence, T /∈
extBLs(2l2∞,θ)

. This is a contradiction.

Case 3. |T (A,B)| < 1.

Let θ = π
4 .

Since

1 > |T (A,B)| = |T ((0,
√
2), (

√
2, 0))| = 2|d|,
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there is N ∈ N such that

∥T ±
(
0, 0,

1

N
,

1

N

)
∥ = 1.

Hence, T /∈ extBLs(2l2∞,θ)
. This is a contradiction.

Suppose that θ ̸= π
4 .

Let

T± := T ±
( 1

n
, − 1

n
,
tan2θ

n
,
tan2θ

n

)
for a sufficiently large n ∈ N so that ∥T±∥ = 1 for j = 1, 2. Hence, T /∈
extBLs(2l2∞,θ)

. This is a contradiction. Therefore, the assertion is true.

(⇐). Suppose that 1 = |T (A,A)| = |T (B,B)| = |T (A,B)|. Since T is symmet-
ric, |T (B,A)| = 1. By Theorem 2, T ∈ extBL(2l2∞,θ)

. Hence, T ∈ extBLs(2l2∞,θ)
.

Theorem 4. Let 0 ≤ θ < π
2 . Then,

extBL(2l2∞,θ)

=
{

±
(1
2
(1 + cos2θ),

1

2
(1− cos2θ),

1

2
sin2θ,

1

2
sin2θ

)
,

±
(1
2
(1− cos2θ),

1

2
(1 + cos2θ),−1

2
sin2θ,−1

2
sin2θ

)
,

±
(1
2
(cos2θ + sin2θ),−1

2
(cos2θ + sin2θ),

1

2
(−cos2θ + sin2θ),

1

2
(−cos2θ + sin2θ)

)
,

±
(1
2
(cos2θ − sin2θ),−1

2
(cos2θ − sin2θ),

1

2
(cos2θ + sin2θ),

1

2
(cos2θ + sin2θ)

)
,

±
(1
2
sin2θ,−1

2
sin2θ,

1

2
(1− cos2θ),

1

2
(1 + cos2θ)

)
,

±
(1
2
sin2θ,−1

2
sin2θ,−1

2
(1 + cos2θ),

1

2
(1− cos2θ)

)
,±

(1
2
,
1

2
,−1

2
,
1

2

)
,

±
(1
2
,
1

2
,
1

2
,−1

2

) }
.

Proof. By Theorem 2, it follows.

Theorem 5. Let 0 ≤ θ < π
2 . Then, extBLs(2l2∞,θ)

= extBL(2l2∞,θ)
∩ Ls(

2l2∞,θ).

Proof. By Theorems 2 and 3, it follows.
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Theorem 6. Let 0 ≤ θ < π
2 . Then,

extBLs(2l2∞,θ)

=
{

±
(1
2
(1 + cos2θ),

1

2
(1− cos2θ),

1

2
sin2θ,

1

2
sin2θ

)
,

±
(1
2
(1− cos2θ),

1

2
(1 + cos2θ),−1

2
sin2θ,−1

2
sin2θ

)
,

±
(1
2
(cos2θ + sin2θ),−1

2
(cos2θ + sin2θ),

1

2
(−cos2θ + sin2θ),

1

2
(−cos2θ + sin2θ)

)
,

±
(1
2
(cos2θ − sin2θ),−1

2
(cos2θ − sin2θ),

1

2
(cos2θ + sin2θ),

1

2
(cos2θ + sin2θ)

) }
.

Notice that
∣∣∣ extBL(2l2∞,θ)

\ extBLs(2l2∞,θ)

∣∣∣ = 8 =
∣∣∣ extBLs(2l2∞,θ)

∣∣∣.
3 The exposed points of the unit balls of L(2l2∞,θ) and

Ls(
2l2∞,θ)

The following presents an explicit formulae for the norm of f ∈ L(2l2∞,θ)
∗.

Theorem 7. Let 0 ≤ θ < π
2 and f ∈ L(2l2∞,θ)

∗ be such that α := f(x1x2), β :=
f(y1y2), γ := f(x1y2), ρ := f(x2y1). Then,

∥f∥ =
1

2
max

{ ∣∣∣(1 + cos2θ)α+ (1− cos2θ)β + (sin2θ)γ + (sin2θ)ρ
∣∣∣,∣∣∣(1− cos2θ)α+ (1 + cos2θ)β − (sin2θ)γ − (sin2θ)ρ

∣∣∣,∣∣∣(cos2θ + sin2θ)α− (cos2θ + sin2θ)β + (−cos2θ + sin2θ)γ

+(−cos2θ + sin2θ)ρ
∣∣∣,∣∣∣(cos2θ − sin2θ)α− (cos2θ − sin2θ)β + (cos2θ + sin2θ)γ

+(cos2θ + sin2θ)ρ
∣∣∣,∣∣∣(sin2θ)α− (sin2θ)β + (1− cos2θ)γ + (1 + cos2θ)ρ

∣∣∣,∣∣∣(sin2θ)α−(sin2θ)β−(1 + cos2θ)γ+(1− cos2θ)ρ
∣∣∣,|α+ β|+ |γ − ρ|

}
.

Proof. It follows from Theorem 4 and the fact that

∥f∥ = sup
T∈extB

L(2l2∞,θ
)

|f(T )|.
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Notice that if ∥f∥ = 1, then

|α| ≤ 1 + sin2θ, |β| ≤ 1 + sin2θ, |γ| ≤ 1 + sin2θ, |ρ| ≤ 1 + sin2θ.

Theorem 8. ([23]) Let E be a real Banach space such that extBE is finite. Sup-
pose that x ∈ extBE satisfies that there exists an f ∈ E∗ with f(x) = 1 = ∥f∥
and |f(y)| < 1 for every y ∈ extBE\{±x}. Then x ∈ expBE.

Theorem 9. expBL(2l2∞,θ)
= extBL(2l2∞,θ)

for 0 ≤ θ < π
2 .

Proof. It suffices to show that if T ∈ extBL(2l2∞,θ)
, then T is exposed. Let T ∈

extBL(2l2∞,θ)
. We define f ∈ L(2l2∞,θ)

∗ by

f =
1

4

(
sign(T (A,A))δA,A + sign(T (B,B))δB,B + sign(T (A,B))δA,B

+sign(T (B,A))δB,A

)
,

where δA,A(S) := S(A,A) for S ∈ L(2l2∞,θ). By Theorem 7, f(T ) = 1 = ∥f∥.

Claim. if S ∈ extBL(2l2∞,θ)
such that |f(S)| = 1, then S = T or S = −T.

Obviously,(
S(A,A) = T (A,A), S(B,B) = T (B,B), S(A,B) = T (A,B),

S(B,A) = T (B,A)
)
or

(
S(A,A) = −T (A,A), S(B,B) = −T (B,B),

S(A,B) = −T (A,B), S(B,A) = −T (B,A)
)
.

Since {A,B} is a basis for l2∞,θ, S = T or S = −T, respectively. By Theorem 8,
T is exposed. We complete the proof.

Theorem 10. expBLs(2l2∞,θ)
= extBLs(2l2∞,θ)

for 0 ≤ θ < π
2 .

Proof. By Theorems 5 and 9,

extBLs(2l2∞,θ)
= extBL(2l2∞,θ)

∩ Ls(
2l2∞,θ) = expBL(2l2∞,θ)

∩ Ls(
2l2∞,θ).

Let T ∈ extBLs(2l2∞,θ)
. Then, T ∈ expBL(2l2∞,θ)

. Then there is f ∈ L(2l2∞,θ)
∗ such

that f(T ) = 1 = ∥f∥ and f(S) < 1 for all S ∈ BL(2l2∞,θ)
\{T}. Let f1 := f |Ls(2l2∞,θ)

.

Obviously, f1(T ) = 1 = ∥f1∥ and f1(R) < 1 for all R ∈ BLs(2l2∞,θ)
\{T}. Hence,

T ∈ expBLs(2l2∞,θ)
.

Theorem 11. expBLs(2l2∞,θ)
= expBL(2l2∞,θ)

∩ Ls(
2l2∞,θ) for 0 ≤ θ < π

2 .

Proof. It follows from Theorems 5, 9 and 10.
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4 The smooth points of the unit balls of L(2l2∞,θ) and
Ls(

2l2∞,θ)

The main result about smooth points is known as ”the Mazur density theorem.”
Recall that the Mazur density theorem [16, p. 171] says that the set of all the
smooth points of a solid closed convex subset of a separable Banach space is a
residual subset of its boundary.

Theorem 12. Let 0 ≤ θ < π
2 and T = (a, b, c, d) ∈ L(2l2∞,θ) with ∥T∥ = 1. Then,

T ∈ smBL(2l2∞,θ)
if and only if there is unique X ∈ {(A,A), (B,B), (A,B), (B,A)}

such that |T (X)| = 1 and |T (Y )| < 1 for every Y ∈ {(A,A), (B,B), (A,B), (B,A)}
\{X}.

Proof. (⇒). Assume the assertion is not true.
Suppose that |T (A,A)| = 1, |T (B,B)| = 1. Let f1 = sign(T (A,A))δA,A and

f2 = sign(T (B,B))δB,B be elements of L(2l2∞,θ)
∗. Notice that

f1 ̸= f2, ∥fj∥ = 1 = fj(T ) for j = 1, 2.

Hence, T is not a smooth point. This is a contradiction. Similarly, we conclude
that the other cases reach a contradiction. Therefore, the assertion is true.

(⇐). Let f ∈ L(2l2∞,θ)
∗ be such that 1 = ∥f∥ = f(T ) with α := f(x1x2), β :=

f(y1y2), γ := f(x1y2) and ρ := f(x2y1).

Case 1. |T (A,A)| = 1, |T (B,B)| < 1, |T (A,B)| < 1, |T (B,A)| < 1.

Without loss of generality we may assume that T (A,A) = 1. Let θ = π
4 . We

will show that α = γ = ρ = 0, β = 2. Since

T (A,A) = 1, |T (B,B)| < 1, |T (A,B)| < 1, |T (B,A)| < 1

we have

b =
1

2
, |a| < 1

2
, |c| < 1

2
, |d| < 1

2
.

By Theorem 1, there is N ∈ N such that

1 =
∥∥∥T ±

( 1

N
, 0, 0, 0

)∥∥∥ =
∥∥∥T ±

(
0, 0,

1

N
, 0

)∥∥∥ =
∥∥∥T ±

(
0, 0, 0,

1

N

)∥∥∥.
It follows that

1 ≥ max
{ ∣∣∣f(T ±

( 1

N
, 0, 0, 0

))∣∣∣, ∣∣∣f(T ±
(
0, 0,

1

N
, 0

))∣∣∣,∣∣∣f(T ±
(
0, 0, 0,

1

N

))∣∣∣ }
= max{ 1 +

∣∣∣f(( 1

N
, 0, 0, 0

))∣∣∣, 1 +
∣∣∣f((0, 0,

1

N
, 0

))∣∣∣,
1 +

∣∣∣f((0, 0, 0,
1

N

))∣∣∣ }
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which shows that

0 = f
(( 1

N
, 0, 0, 0

))
= f

((
0, 0,

1

N
, 0

))
= f

((
0, 0, 0,

1

N

))
.

Hence, α = γ = ρ = 0. Since

1 = f(T ) = aα+ bβ + cγ + dρ =
1

2
β,

we have β = 2. Hence, T is a smooth point.
Suppose that θ ̸= π

4 . Since T (A,A) = 1, |T (B,B)| < 1, |T (A,B)| < 1,
|T (B,A)| < 1, by Theorem 1, there is N ∈ N such that

1 =
∥∥∥T ±

( 1

N
,

−1 + sin2θ

N(1 + sin2θ)
, 0, 0

)∥∥∥,
1 =

∥∥∥T ±
( 1

N
, 0,

−1 + sin2θ

Ncos2θ
, 0

)∥∥∥,
1 =

∥∥∥T ±
( 1

N
, 0, 0,

−1 + sin2θ

Ncos2θ

)∥∥∥.
It follows that

1 ≥ max
{∣∣∣f(T ±

( 1

N
,

−1 + sin2θ

N(1 + sin2θ)
, 0, 0

))∣∣∣,∣∣∣f(T ±
( 1

N
, 0,

−1 + sin2θ

Ncos2θ
, 0

)∣∣∣,∣∣∣f(T ±
( 1

N
, 0, 0,

−1 + sin2θ

Ncos2θ

))∣∣∣ }
= max

{
|f(T )|+

∣∣∣f(( 1

N
,

−1 + sin2θ

N(1 + sin2θ)
, 0, 0

))∣∣∣,
|f(T )|+

∣∣∣f(( 1

N
, 0,

−1 + sin2θ

Ncos2θ
, 0

))∣∣∣,
|f(T )|+

∣∣∣f(( 1

N
, 0, 0,

−1 + sin2θ

Ncos2θ

))∣∣∣}
= max

{
1 +

∣∣∣f(( 1

N
,

−1 + sin2θ

N(1 + sin2θ)
, 0, 0

))∣∣∣,
1 +

∣∣∣f(( 1

N
, 0,

−1 + sin2θ

Ncos2θ
, 0

))∣∣∣,
1 +

∣∣∣f(( 1

N
, 0, 0,

−1 + sin2θ

Ncos2θ

))∣∣∣ },
which shows that

0 = f
(( 1

N
,

−1 + sin2θ

N(1 + sin2θ)
, 0, 0

))
= f

(( 1

N
, 0,

−1 + sin2θ

Ncos2θ
, 0

))
= f

(( 1

N
, 0, 0,

−1 + sin2θ

Ncos2θ

))
.

Hence,

β =
(1 + sin2θ

1− sin2θ

)
α, γ =

( cos2θ

1− sin2θ

)
α, ρ =

( cos2θ

1− sin2θ

)
α.
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It follows that

1 = f(T ) = aα+ bβ + cγ + dρ

= α
(
a+

(1 + sin2θ

1− sin2θ

)
b+

( cos2θ

1− sin2θ

)
c+

( cos2θ

1− sin2θ

)
d
)

=
α

1− sin2θ

(
(1− sin2θ)a+ (1 + sin2θ)b+ (cos2θ)c+ (cos2θ)d

)
=

α

1− sin2θ
T (A,A) =

α

1− sin2θ
,

which shows that

α = 1− sin2θ, β = 1 + sin2θ, γ = ρ = cos2θ.

Since f is unique, T is a smooth point.

Case 2. |T (B,B)| = 1, |T (A,A)| < 1, |T (A,B)| < 1, |T (B,A)| < 1.

Without loss of generality we may assume that T (B,B) = 1. Let θ = π
4 . By

analogous arguments in the case 1, α = 2, β = γ = ρ = 0. Hence, T is a smooth
point.

Suppose that θ ̸= π
4 . By analogous arguments in the case 1,

α = 1 + sin2θ, β = 1− sin2θ, γ = ρ = −cos2θ.

Hence, T is a smooth point.

Case 3. |T (A,B)| = 1, |T (A,A)| < 1, |T (B,B)| < 1, |T (B,A)| < 1.

Notice that if θ = π
4 , then α = β = γ = 0, ρ = 2.

Suppose that θ ̸= π
4 .Without loss of generality we may assume that T (A,B) =

1. Since T (A,B) = 1, |T (A,A)| < 1, |T (B,B)| < 1, |T (B,A)| < 1, by Theorem
1, there is N ∈ N such that

1 =
∥∥∥T ±

( 1

N
,

1

N
, 0, 0

)∥∥∥,
1 =

∥∥∥T ±
( 1

N
, 0,

cos2θ

N(1− sin2θ)
, 0

)∥∥∥,
1 =

∥∥∥T ±
( 1

N
, 0, 0, − cos2θ

N(1 + sin2θ)

)∥∥∥.
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It follows that

1 ≥ max
{∣∣∣f(T ±

( 1

N
,

1

N
, 0, 0

))∣∣∣, ∣∣∣f(T ±
( 1

N
, 0,

cos2θ

N(1− sin2θ)
, 0

))∣∣∣,
|f
(
T ±

( 1

N
, 0, 0, − cos2θ

N(1 + sin2θ)

))∣∣∣ }
= max

{
|f(T )|+

∣∣∣f(( 1

N
,

1

N
, 0, 0

))∣∣∣,
|f(T )|+

∣∣∣f(( 1

N
, 0,

cos2θ

N(1− sin2θ)
, 0

))∣∣∣,
|f(T )|+

∣∣∣f( 1

N
, 0, 0, − cos2θ

N(1 + sin2θ)

)∣∣∣ }
= max

{
1 +

∣∣∣f(( 1

N
,

1

N
, 0, 0

))∣∣∣, 1 +
∣∣∣f(( 1

N
, 0,

cos2θ

N(1− sin2θ)
, 0

))∣∣∣,
1 +

∣∣∣f(( 1

N
, 0, 0, − cos2θ

N(1 + sin2θ)

))∣∣∣ },
which shows that

0 = f
(( 1

N
,

1

N
, 0, 0

))
= f

(( 1

N
, 0,

cos2θ

N(1− sin2θ)
, 0

))
= f

(( 1

N
, 0, 0, − cos2θ

N(1 + sin2θ)

))
.

Hence,

β = −α, γ =
(−1 + sin2θ

cos2θ

)
α, ρ =

(1 + sin2θ

cos2θ

)
α.

It follows that

1 = f(T ) = aα+ bβ + cγ + dρ

= α
(
a− b+

(−1 + sin2θ

cos2θ

)
c+

(1 + sin2θ

cos2θ

)
d
)

=
α

cos2θ

(
cos2θ(a− b) + (−1 + sin2θ)c+ (1 + sin2θ)d

)
=

α

cos2θ
T (A,B) =

α

cos2θ
,

which shows that

α = −β = cos2θ, γ = −1 + sin2θ, ρ = 1 + sin2θ.

Hence, T is a smooth point.

Case 4. |T (B,A)| = 1, |T (A,A)| < 1, |T (B,B)| < 1, |T (A,B)| < 1.

By analogous arguments in the case 1, if θ = π
4 , then α = β = ρ = 0, γ = 2

and if θ ̸= π
4 , then

α = −β = cos2θ, γ = 1 + sin2θ, ρ = −1 + sin2θ.

Hence, T is a smooth point. We complete the proof.
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Theorem 13. Let 0 ≤ θ < π
2 and T = (a, b, c, c) ∈ Ls(

2l2∞,θ) with ∥T∥ = 1. Then,
T ∈ smBLs(2l2∞,θ)

if and only if there is unique X ∈ {(A,A), (B,B), (A,B)} such

that |T (X)| = 1 and |T (Y )| < 1 for every Y ∈ {(A,A), (B,B), (A,B)}\{X}.

Proof. We follow analogous arguments in the proof of Theorem 12.

(⇒) follows by the same argument in the proof (⇒) of Theorem 12.

(⇐). Let g ∈ Ls(
2l2∞,θ)

∗ be such that g(T ) = 1 = ∥g∥ and α = g(x1x2), β =
g(y1y2), γ = g(x1y2 + x2y1).

Case 1. |T (A,A)| = 1, |T (B,B)| < 1, |T (A,B)| < 1.

Without loss of generality we may assume that T (A,A) = 1. Let θ = π
4 . We

will show that α = γ = 0, β = 2. Since

T (A,A) = 1, |T (B,B)| < 1, |T (A,B)| < 1

we have

b =
1

2
, |a| < 1

2
, |c| < 1

2
.

By Theorem 1, there is N ∈ N such that

1 =
∥∥∥T ±

( 1

N
, 0, 0, 0

)∥∥∥ =
∥∥∥T ±

(
0, 0,

1

N
,

1

N

)∥∥∥.
It follows that

1 ≥ max
{ ∣∣∣f(T ±

( 1

N
, 0, 0, 0

))∣∣∣, ∣∣∣f(T ±
(
0, 0,

1

N
,

1

N

))∣∣∣,
= max{ 1 +

∣∣∣f(( 1

N
, 0, 0, 0

))∣∣∣, 1 +
∣∣∣f((0, 0,

1

N
,

1

N

))∣∣∣ }
which shows that

0 = f
(( 1

N
, 0, 0, 0

))
= f

((
0, 0,

1

N
,

1

N

))
.

Hence, α = γ = 0. Since

1 = f(T ) = aα+ bβ + cγ =
1

2
β,

we have β = 2. Hence, T is a smooth point.

Suppose that θ ̸= π
4 . Since T (A,A) = 1, |T (B,B)| < 1, |T (A,B)| < 1,

|T (B,A)| < 1, by Theorem 1, there is N ∈ N such that

1 =
∥∥∥T ±

( 1

N
,

−1 + sin2θ

N(1 + sin2θ)
, 0, 0

)∥∥∥,
1 =

∥∥∥T ±
( 1

N
, 0,

−1 + sin2θ

2Ncos2θ
,
−1 + sin2θ

2Ncos2θ

)∥∥∥.
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It follows that

1 ≥ max
{∣∣∣f(T ±

( 1

N
,

−1 + sin2θ

N(1 + sin2θ)
, 0, 0

))∣∣∣,∣∣∣f(T ±
( 1

N
, 0,

−1 + sin2θ

2Ncos2θ
,
−1 + sin2θ

2Ncos2θ

))∣∣∣,
= max

{
|f(T )|+

∣∣∣f(( 1

N
,

−1 + sin2θ

N(1 + sin2θ)
, 0, 0

))∣∣∣,
|f(T )|+

∣∣∣f(( 1

N
, 0,

−1 + sin2θ

2Ncos2θ
,
−1 + sin2θ

2Ncos2θ

))∣∣∣}
= max

{
1 +

∣∣∣f(( 1

N
,

−1 + sin2θ

N(1 + sin2θ)
, 0, 0

))∣∣∣,
1 +

∣∣∣f(( 1

N
, 0,

−1 + sin2θ

2Ncos2θ
,
−1 + sin2θ

2Ncos2θ

))∣∣∣ },
which shows that

0 = f
(( 1

N
,

−1 + sin2θ

N(1 + sin2θ)
, 0, 0

))
= f

(( 1

N
, 0,

−1 + sin2θ

2Ncos2θ
,
−1 + sin2θ

2Ncos2θ

))
.

Hence,

β =
(1 + sin2θ

1− sin2θ

)
α, γ =

( 2cos2θ

1− sin2θ

)
α.

It follows that

1 = f(T ) = aα+ bβ + cγ

= α
(
a+

(1 + sin2θ

1− sin2θ

)
b+

( 2cos2θ

1− sin2θ

)
c
)

=
α

1− sin2θ

(
(1− sin2θ)a+ (1 + sin2θ)b+ 2(cos2θ)c

)
=

α

1− sin2θ
T (A,A) =

α

1− sin2θ
,

which shows that

α = 1− sin2θ, β = 1 + sin2θ, γ = 2cos2θ.

Since g is unique, T is a smooth point.

Case 2. |T (B,B)| = 1, |T (A,A)| < 1, |T (A,B)| < 1.

Without loss of generality we may assume that T (B,B) = 1. Let θ = π
4 . By

analogous arguments in the case 1, α = 2, β = γ = 0. Hence, T is a smooth point.
Suppose that θ ̸= π

4 . By analogous arguments in the case 1,

α = 1 + sin2θ, β = 1− sin2θ, γ = −2cos2θ.

Hence, T is a smooth point.

Case 3. |T (A,B)| = 1, |T (A,A)| < 1, |T (B,B)| < 1.
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Notice that if θ = 0, then α = −β = 1, γ = 0 and that if θ = π
4 , then

α = β = 0, γ = 2.
Suppose that θ ̸= 0 and θ ̸= π

4 . Without loss of generality we may assume
that T (A,B) = 1. Since T (A,B) = 1, |T (A,A)| < 1, |T (B,B)| < 1, by Theorem
1, there is N ∈ N such that

1 =
∥∥∥T ±

( 1

N
,

1

N
, 0, 0

)∥∥∥,
1 =

∥∥∥T ±
( 1

N
, 0,

−cos2θ

2Nsin2θ
,

−cos2θ

2Nsin2θ

)∥∥∥.
It follows that

1 ≥ max
{∣∣∣f(T ±

( 1

N
,

1

N
, 0, 0

))∣∣∣, ∣∣∣f(T ±
( 1

N
, 0,

−cos2θ

2Nsin2θ
,
−cos2θ

2Nsin2θ

))∣∣∣}
= max

{
|f(T )|+

∣∣∣f(( 1

N
,

1

N
, 0, 0

))∣∣∣,
|f(T )|+

∣∣∣f(( 1

N
, 0,

−cos2θ

2Nsin2θ
,

−cos2θ

2Nsin2θ

))∣∣∣}
= max

{
1 +

∣∣∣f(( 1

N
,

1

N
, 0, 0

))∣∣∣, 1 + ∣∣∣f(( 1

N
, 0,

−cos2θ

2Nsin2θ
,

−cos2θ

2Nsin2θ

))∣∣∣}
which shows that

0 = f
(( 1

N
,

1

N
, 0, 0

))
= f

(( 1

N
, 0,

−cos2θ

2Nsin2θ
,

−cos2θ

2Nsin2θ

))
.

Hence,

β = −α, γ =
(2sin2θ
cos2θ

)
α.

It follows that

1 = f(T ) = aα+ bβ + cγ

= α
(
a− b+

(2sin2θ
cos2θ

)
c
)

=
α

cos2θ

(
cos2θ(a− b) + (2sin2θ)c

)
=

α

cos2θ
T (A,B) =

α

cos2θ
,

which shows that
α = −β = cos2θ, γ = 2sin2θ.

Hence, T is a smooth point.

Theorem 14. Let 0 ≤ θ < π
2 . Then, smBL(2l2∞,θ)

∩ Ls(
2l2∞,θ) ⊊ smBLs(2l2∞,θ)

.

Proof. From Theorems 12 and 13, smBL(2l2∞,θ)
∩ Ls(

2l2∞,θ) is a subset of

smBLs(2l2∞,θ)
. Let T0 ∈ smBLs(2l2∞,θ)

be such that

|T0(A,B)| = 1, |T0(A,A)| < 1, |T0(B,B)| < 1.

Since |T0(B,A)| = 1, by Theorem 12, T0 /∈ smBL(2l2∞,θ)
∩Ls(

2l2∞,θ). We complete

the proof.
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[9] J.L. Gámez-Merino, G.A. Muñoz-Fernández, V.M. Sánchez, and J.B. Seoane-
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