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ON DISCRETE q-DERIVATIVES OF q-BERNSTEIN
OPERATORS
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Abstract

In the present paper we shall investigate the pointwise approximation
properties of the q analogue of the Bernstein operators and estimate the
rate of pointwise convergence of these operators to the functions f whose q-
derivatives are bounded variation on the interval [0, 1]. We give an estimate
for the rate of convergence of the operator (B n,qf) at those points x at

which the one sided q-derivatives D+
q f(x), D

−
q f(x) exist. We shall also

prove that the operators Bn,qf converge to the limit f. As a continuation of
the very recent study of the author on the q-Bernstein Durrmeyer operators
[10], the present study will be the first study on the approximation of q anal-
ogous of the discrete type operators in the space of DqBV .
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1 Introduction

The theory of quantum calculus (or q analysis) has attracted the attention
of several researchers (see [5], [12]-[15], [19]-[22] and the references therein), be-
cause of its potential for applications, since this theory can be used to investigate
black holes, quantum mechanics, nuclear and high energy physics, mathemati-
cal physics, functional analysis and especially in the last decades approximation
theory and so on. The subject of q−analysis concerns mainly the properties of
the q−special functions, which are the extensions of the classical special functions
based on a parameter, or the base, q.

Due to this relation, in the year 1997, Phillips [19] introduced the general-
ization of Bernstein polynomials based on q-integers to prove the approximation
(or superposition) problem of Weierstrass. It is useful to point out that, the first
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person to define the q−analog of the Bernstein operators was Lupaş [14], see also
[17].

Before getting onto the main subject, we first give definitions of q − number,
q − binomial coefficient and q − derivative, together with their properties of
q−calculus, which are required in this paper.

Let us recall the definition of q − integers. For any fixed real number q > 0
and non-negative integer r the q − integer of the number r is defined by

[r]q =

{
(1− qr)/(1− q) , q ̸= 1
r , q = 1

.

and the set of q − integers is defined as:

Nq = {[r]q; r ∈ N} =
{
0, 1, 1 + q, 1 + q + q2, 1 + q + q2 + q3, ...

}
.

It is clear that the set of q−integers Nq generalizes the set of non-negative integers
N, which we recover by putting q = 1.

The q − factorial is defined by

[r]q! =

{
[r]q[r − 1]q.....[1]q , r = 1, 2, 3, .....

1 , r = 0.
,

and q −Binomial coefficient is defined as[
n
r

]
q

=
[n]q!

[r]q![n− r]q!
,

for integers n ≥ r ≥ 0.

Phillips [18], [19] introduced the generalization of Bernstein polynomials as
follows. For a function defined on the interval [0, 1], the q-Bernstein operators
Bn,q(f), n ≥ 1 are defined by

(Bn,qf)(x) =
n∑

k=0

f

(
[k]q
[n]q

)
pn,k,q(x), 0 ≤ x ≤ 1 , n ≥ 1, (1)

where

pn,k,q(x) =

[
n
k

]
q

xk
n−k−1∏
s=0

(1− qsx)

or equivalently

pn,k,q(x) =

[
n
k

]
q

xk(1− x)n−k
q .

The operators (1) and their different modifications were studied by many re-
searchers (see e.g. [5], [10], [11] and [15] etc.).

It can be easily verified that in case q = 1, the operators defined by (1) reduce
to the well-known Bernstein operators.
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Actually several researchers have defined the q analogue of the only discrete
type operators. Here our aim is to study the q analogue of summation-integral
type operators. Here we estimate the rate of convergence of operators (Bn,qf)
which have derivative of bounded variation on the interval [0, 1]. At the point x,
which is a discontinuity of the first kind of the q − derivative, we shall prove
that the operator (Bn,qf) being defined in (1) converges to the limit f(x). To
the best of my knowledge, this study is the first study on the approximation of
q−Bernstein operators in this space.

Let q ∈ (0, 1) and let I be a real interval containing 0.

Definition 1. Let f : I → R be a function and let x ∈ I. The Jackson’s
q−derivative Dq (see [9]), or Jackson’s difference operator, of a function f at x is
given by

Dqf(x) =
f(x)− f(qx)

(1− q)x
, if x ̸= 0, Dqf(0) := lim

x→0
Dqf(x). (2)

Here Dqf(x) tends to f ′(x) as q tends to 1, provided f ′(x) exists.

Definition 2. Let f : I → R be a function with x ∈ I. The left (backward), right
(forward) and symmetric q−derivatives of a function f are given by, respectively,

D−
q f(x) :=

f(x)− f(qx)

(1− q)x
, (3)

D+
q f(x) :=

f
(
x
q

)
− f(x)

(1− q)x
(4)

and

Ds
qf(x) :=

f(qx)− f
(
x
q

)
(
q − 1

q

)
x

, (5)

provided that x ̸= 0. (See [10], [12] ).

Remark 1. Note that the Jackson’s q − derivative is sometimes called the left
(backward) q − derivative. Namely

Dqf(x) = D−
q f(x).

It is clear that if a function is f differentiable (in the classical sense) at x, then

lim
q→1−

D−
q f(x) = lim

q→1−
D+

q f(x) = f ′(x),

holds true, where the symbol f ′denotes the usual derivative.
The generalized form of the backward and forward q − derivatives and their

relations can be found in [16].

Remark 2. In view of the definition of the Jackson’s q−derivative, see Definition
1, high q−derivatives are defined as

D0f := f, Dnf := D
(
Dn−1f

)
(n = 1, 2, ....).
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We note that, a continuous function on an interval, which does not include zero,
is continuous q−differentiable (see [20]).

Remark 3. Although the q−difference operators convey the same idea, the right
choice of q-difference operators provides a lot of convenience during the establish-
ment and application of transformations such as Fourier, Laplace or Mellin, which
will be used in the solutions of the encountered q−differential equations ( see [[6],
p. 1797] and [[7], sections 2-3]).

Example 1. Let us consider a q−diffusion equation as;

Dq
t y(x, t) =

∂2

∂x2
y(x, t), (−∞ < x < ∞, t > 0)

with the initial condition

y(x, 0) = f(x).

The main question now is to choose an appropriate integral transform to remove
the q−derivative, namely how we can solve the aforementioned q−diffusion equa-
tion. In view of the positivity of the time variable, the two most natural choices
are the Laplace and the Mellin transform.

If one uses the Laplace transform of the q − derivatives given in (3), and trying
to solve this q−diffusion equation, then Ho [[7], sections 2] informed us that the
Laplace transform is not useful in solving equations involving q − derivatives.

Especially during the last two decades, some authors investigated the conver-
gence problems for linear positive operators for functions in BV (I) and DBV (I),
where I ⊂ R (See [1]-[4]).

Very recently, the author [10] estimated the rate of convergence of q-Bernstein-
Durrmeyer Operators for functions in DBV [0,∞). As a continuation of this study,
in the present paper we shall investigate the pointwise approximation properties of
the q analogue of the Bernstein operators and estimate the rate of pointwise con-
vergence of these operators to the functions f whose q− derivatives are bounded
variation on the interval [0, 1]. We give an estimate for the rate of convergence
of the operator (Bn,qf) at those points x at which the one sided q − derivatives
D+

q f(x), D
−
q f(x) exist. We shall also prove that the operators Bn,qf converge to

the limit f(x). To the best of my knowledge, the present study will be the first
study on the approximation of q-Bernstein operators in the space of DqBV .

Let DqBV [a, b] denote the class of real valued q − differentiable functions
defined on a set [a, b], whose q−derivatives are bounded variation on [a, b], which
can be written as

f(x) = C +

x∫
a

Ψ(t)dt, −∞ < a ≤ x ≤ b
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where C is a constant and Ψ ∈ BV [a, b]. It is clear that

DqBV [a, b] := {f : Dqf = Ψ ∈ BV [a, b]} .

The first theorem of this paper is stated as:

Theorem 1. Let f ∈ DqBV [0, 1]. Suppose that the right and left q-derivatives
exist at a fixed point x ∈ (0, 1) . Then at this point x ∈ (0, 1) , and n sufficiently
large, one has

|(Bn,qf) (x)− f(x)| ≤

∣∣∣∣∣D+
q f(x)−D−

q f(x)

2

∣∣∣∣∣√An,q(x) (6)

+
1√
[n]q

x+ 1−x√
[n]q∨

x− x√
[n]q

(Dqfx) +
1

[n]q

[
√

[n]q]∑
k=1

x+ 1−x
k∨

x−x
k

(Dqfx)

where

Dqfx(t) =


Dqf(t)−D+

q f(x) , x < t ≤ 1

0 , t = x
Dqf(t)−D−

q f(x) , 0 ≤ t < x
, (7)

b∨
a
(f) is the total variation (or Jordan Variation) of f on [a, b] and

An,q(x) :=
x(1− x)

[n]q
.

In view of Theorem 1 and Remark 2, we get:

Corollary 1. Let f ∈ C [0, 1]. Then for every x ∈ (0, 1) , and n sufficiently
large, we have

|(Bn,qf) (x)− f(x)| ≤ 1√
[n]q

x+ 1−x√
[n]q∨

x− x√
[n]q

(Dqfx) +
1

[n]q

[
√

[n]q]∑
k=1

x+ 1−x
k∨

x−x
k

(Dqfx).

2 Auxiliary results

In this section, we state some basic concepts concerning quantum calculus and
some lemmas about the aforementioned operators, which are necessary to prove
our theorems.

Let (Ω,F,P) be a probability space and Z : Ω → R be a random variable. The
mathematical expectation E of the random variable Z is defined as

E(Z) :=

∫
Ω

Z(ω)P(dω).
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If one considers a random variable Yn(q;x) having the probability distribution

P

(
Yn(q;x) =

[k]q
[n]q

)
= pn,k,q (x) ,

then obviously (Bn,qf) (x) = E(f(Yn(q;x))) holds true. Indeed;

(Bn,qf) (x) =
n∑

k=0

f

(
[k]q
[n]q

)
pn,k,q (x)

=
n∑

k=0

f (Yn(q;x))P (Yn(q;x))

= E(f(Yn(q;x))).

In view of the relations between the probability theory, the theory of Bernstein
polynomials and the theory of singular integrals, (Bn,qf) (x) may be written as a
Stieltjes integral in the variable t as follows:

(Bn,qf) (x) =

1∫
0

f(t)d (Kn,q(x, t)) ,

where

Kn,q(x, t) =


∑

[k]q≤[n]qt

pn,k,q(x) , 0 < t ≤ 1

0 , t = 0
, k = 0, 1, ..., n− 1. (8)

For q = 1, some detailed information about the kernel function can be found in
the classical book of Lorentz [13].

We can write also

(Bn,qf) (x) =

1∫
0

f(t)Hn,q(x, t)dt (9)

where

Hn,q(x, t) :=

n∑
k=0

pn,k,q (x) δ(t− [k]q/[n]q)(t). (10)

and δ is the Delta function.
Lemma 1 [15]. Using the definition of q−Bernstein polynomials, we obtain

(Bn,q1) (x) = 1, (Bn,qt) (x) = x

and (
Bn,qt

2
)
(x) = x2 +

X

[n]q
,

where X = x(1− x).
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Remark 4. By elementary computation, we get

(Bn,q(t− x)) (x) = 0, (11)(
Bn,q(t− x)2

)
(x) =

X

[n]q
:= An,q(x).

Lemma 2. For all x ∈ (0, 1) , and n sufficiently large, then for 0 < t < x, one
obtains

λn,q(x, t) =

t∫
0

Hn,q(x, u)du ≤ An,q(x)

(x− t)2
. (12)

Proof. Clearly

λn,q(x, t) =

t∫
0

Hn,q(x, u)du ≤
t∫

0

Hn,q(x, u)

(
x− u

x− t

)2

du

=
1

(x− t)2

t∫
0

Hn,q(x, u)(x− u)2du ≤
(
Bn,q(u− x)2

)
(x)

(x− t)2
.

By (11), one can easily obtain

λn,q(x, t) ≤
1

(x− t)2
An,q(x).

Remark 5. By Cauchy-Schwarz-Bunyakowsky inequality, one has

(Bn,q |t− x|) (x) ≤
((
Bn,q(t− x)2

)
(x)

) 1
2 ≤

√
An,q(x). (13)

3 Main results

Proof of Theorem 1. Since (Bn,q1) (x) = 1, in view of the Stieltjes repre-
sentation of the q−Bernstein operators (Bn,qf) defined by (9), then clearly

(Bn,qf) (x) =

1∫
0

f(x)Hn,q(x, t)dt.

So, we can write the difference between (Bn,qf) (x) and f(x) as follows

(Bn,qf) (x)− f(x) =
n∑

k=0

pn,k,q (x) f

(
[k]q
[n]q

)
− f(x)

=

1∫
0

[f(t)− f(x)]Hn,q(x, t)dt,
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where Kn,q(x, t) and Hn,q(x, t) being defined in (8) and (10), respectively.

Note that Dqf = Ψ ∈ BV [0, 1],

(Bn,qf) (x)− f(x) =

x∫
0

[f(t)− f(x)]Hn,q(x, t)dt+

1∫
x

[f(t)− f(x)]Hn,q(x, t)dt

= −
x∫

0

 x∫
t

Dqf(u) du

Hn,q(x, t) dt+

1∫
x

 t∫
x

Dqf(u) du

Hn,q(x, t)dt

= −E1,q(x) + E2,q(x),

here

E1,q(x) :=

x∫
0

 x∫
t

Dqf(u) du

Hn,q(x, t) dt (14)

and

E2,q(x) :=

1∫
x

 t∫
x

Dqf(u) du

Hn,q(x, t) dt. (15)

In view of the definitions (3)-(4) and (7), for any Dqf = Ψ ∈ BV [0, 1], we decom-
pose Dqf(t) as

Dqf(t) =
D+

q f(x) +D−
q f(x)

2
+Dqfx(t) +

D+
q f(x)−D−

q f(x)

2
sgn(t− x)

+δx(t)

[
Dqf(x)−

D+
q f(x) +D−

q f(x)

2

]
(16)

where

δx(t) =

{
1 , x = t
0 , x ̸= t.

.

If we use (16) in (14) and (15), then the following expressions hold true,

E1,q(x) =

x∫
0


x∫

t

D+
q f(x)+D−

q f(x)

2
+Dqfx(u)+

D+
q f(x)−D−

q f(x)

2
sgn(u− x)

+δx(u)

[
Dqf(x)−

D+
q f(x) +D−

q f(x)

2

]
du

}
Hn,q(x, t) dt

and

E2,q(x) =

1∫
x


t∫

x

D+
q f(x)+D−

q f(x)

2
+Dqfx(u) +

D+
q f(x)−D−

q f(x)

2
sgn(u− x)

+δx(u)

[
Dqf(x)−

D+
q f(x) +D−

q f(x)

2

]
du

}
Hn,q(x, t) dt.
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At first, we consider E1,q(x) :

E1,q(x) =
D+

q f(x) +D−
q f(x)

2

x∫
0

(x− t)Hn,q(x, t) dt

+

x∫
0

 t∫
x

Dqfx(u) du

Hn,q(x, t) dt

−
D+

q f(x)−D−
q f(x)

2

x∫
0

(x− t)Hn,q(x, t)dt

+

[
Dqf(x)−

D+
q f(x) +D−

q f(x)

2

] x∫
0

 t∫
x

δx(u) du

Hn,q(x, t) dt.

Since
t∫
x
δx(u) dqu = 0, one has

E1,q(x) =
D+

q f(x) +D−
q f(x)

2

x∫
0

(x− t)Hn,q(x, t)dt (17)

+

x∫
0

 t∫
x

Dqfx(u) dqu

Hn,q(x, t)dt

−
D+

q f(x)−D−
q f(x)

2

x∫
0

(x− t)Hn,q(x, t)dt.

Using a similar method, for evaluating E2,q(x), we find that

E2(x) =
D+

q f(x) +D−
q f(x)

2

1∫
x

(t− x)Hn,q(x, t) dt (18)

+

1∫
x

 t∫
x

Dqfx(u) du

Hn,q(x, t) dt

−
D+

q f(x)−D−
q f(x)

2

1∫
x

(t− x)Hn,q(x, t) dt.
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Collecting (17) and (18),

−E1,q(x) + E2,q(x) =
D+

q f(x) +D−
q f(x)

2

1∫
0

(t− x)Hn,q(x, t) dt

+
D+

q f(x)−D−
q f(x)

2

1∫
0

|t− x|Hn,q(x, t) dt (19)

−
x∫

0

 x∫
t

Dqfx(u) du

Hn,q(x, t) dt

+

1∫
x

 t∫
x

Dqfx(u) du

Hn,q(x, t)dt.

From (19), we can rewrite the difference between (Bn,qf) (x) and f(x),

(Bn,qf) (x)− f(x) =
D+

q f(x) +D−
q f(x)

2

1∫
0

(t− x)Hn,q(x, t)dt

+
D+

q f(x)−D−
q f(x)

2

1∫
0

|t− x|Hn,q(x, t)dt (20)

−
x∫

0

 x∫
t

Dqfx(u) du

Hn,q(x, t) dt

+

1∫
x

 t∫
x

Dqfx(u) du

Hn,q(x, t) dt.

On the other hand

1∫
0

|t− x|Hn,q(x, t) dt = (Bn,q |t− x|) (x) (21)

and

1∫
0

(t− x)Hn,q(x, t) dt = (Bn,q (t− x)) (x) = 0, (22)
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are valid, then using (21) and (22) in (20), we get

|(Bn,qf) (x)− f(x)| ≤

∣∣∣∣∣D+
q f(x) +D−

q f(x)

2

∣∣∣∣∣ |(Bn,q (t− x)) (x)|

+

∣∣∣∣∣D+
q f(x)−D−

q f(x)

2

∣∣∣∣∣ |(Bn,q |t− x|) (x)| (23)

+

∣∣∣∣∣∣−
x∫

0

 x∫
t

Dqfx(u) du

Hn,q(x, t) dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1∫

x

 t∫
x

Dqfx(u) du

Hn,q(x, t)dt

∣∣∣∣∣∣ .
From the definition λn,q(x, t), we write

x∫
0

 x∫
t

Dqfx(u) du

Hn,q(x, t) dt =

x∫
0

 x∫
t

Dqfx(u) du

D (λn,q(x, t)) dt. (24)

Using partial integration, the right hand side of (24), we obtain

x∫
0

 x∫
t

Dqfx(u) du

D (λn,q(x, t)) dt =

x∫
0

Dqfx(t)λn,q(x, t) dt.

Thus ∣∣∣∣∣∣−
x∫

0

 t∫
x

Dqfx(u) du

Hn,q(x, t) dt

∣∣∣∣∣∣ ≤
x∫

0

|Dqfx(t)| λn,q(x, t) dt

and ∣∣∣∣∣∣−
x∫

0

 t∫
x

Dqfx(u) du

Hn,q(x, t)dt

∣∣∣∣∣∣ ≤

x− x√
n∫

0

|Dqfx(t)| λn,q(x, t) dt

+

x∫
x− x√

n

|Dqfx(t)| λn,q(x, t) dt.

Since Dqfx(x) = 0 and λn,q(x, t) ≤ 1,

x∫
x− x√

[n]q

|Dqfx(t)| λn,q(x, t) dt =

x∫
x− x√

[n]q

|Dqfx(t)−Dqfx(x)| λn,q(x, t) dt

≤
x∫

x− x√
[n]q

x∨
t

(Dqfx) dt.
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Owing to (12), we get

x− x√
[n]q∫

0

|Dqfx(t)| λn,q(x, t) dt ≤ An,q(x)

x− x√
[n]q∫

0

|Dqfx(t)|
dt

(x− t)2

= An,q(x)

x− x√
[n]q∫

0

|Dqfx(t)−Dqfx(x)|
dt

(x− t)2

≤ An,q(x)

x− x√
[n]q∫

0

x∨
t

(Dqfx)
dt

(x− t)2
.

Make the change of variables t = x− x
u , then one has

x∫
x− x√

[n]q

x∨
t

(Dqfx) dt ≤
x∨

x− x√
[n]q

(Dqfx)

x∫
x− x√

[n]q

dt

=
x∨

x− x√
[n]q

(Dqfx)

x−

x− x√
[n]q


=

x√
[n]q

x∨
x− x√

[n]q

(Dqfx)

and

An,q(x)

x− x√
[n]q∫

0

x∨
t

(Dqfx)
dt

(x− t)2
= An,q(x)

√
[n]q∫

1

x∨
x− x

u

(Dqfx)

(
x
u2

)
du

(−x
u)

2

=
An,q(x)

x

√
[n]q∫

1

x∨
x− x

u

(Dqfx) du

=
An,q(x)

x

[
√

[n]q]∑
k=1

k+1∫
k

x∨
x− x

u

(Dqfx) du

≤ An,q(x)

x

[
√

[n]q]∑
k=1

x∨
x−x

k

(Dqfx).
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Consequently∣∣∣∣∣∣−
x∫

0

 x∫
t

Dqfx(u) du

Hn,q(x, t)dt

∣∣∣∣∣∣ ≤ x√
[n]q

x∨
x− x√

[n]q

(Dqfx)

+An,q(x)
1

x

[
√

[n]q]∑
k=1

x∨
x−x

k

(Dqfx) .

(25)

By the same way,

1∫
x

 t∫
x

Dqfx(u) du

Hn,q(x, t)dt ≤
1∫

x

|Dqfx(t)| D (λn,q(x, t)) dt

=

x+ 1−x√
[n]q∫

x

|Dqfx(t)| λn,q(x, t) dt+

1∫
x+ 1−x√

[n]q

|Dqfx(t)| λn,q(x, t) dt

≤

x+ 1−x√
[n]q∫

x

|Dqfx(t)| dt+An,q(x)

1∫
x+ 1−x√

[n]q

|Dqfx(t)|
dt

(x− t)2

=

x+ 1−x√
[n]q∫

x

|Dqfx(t)−Dqfx(x)| dt+An,q(x)

1∫
x+ 1−x√

[n]q

|Dqfx(t)−Dqfx(x)|
dt

(x−t)2

≤

x+ 1−x√
[n]q∨

x

(Dqfx)
1− x√
[n]q

+An,q(x)

1∫
x+ 1−x√

[n]q

t∨
x

(Dqfx)
dt

(x− t)2

Make the change of variables t = x+ 1−x
u , again from (12)

≤

x+ 1−x√
[n]q∨

x

(Dqfx)
1− x√
[n]q

+An,q(x)

1∫
√

[n]q

x∨
x+ 1−x

u

(Dqfx)
−
(
1−x
u2

)
du(

x−1
u

)2

=

x+ 1−x√
[n]q∨

x

(Dqfx)
1− x√
[n]q

+
An,q(x)

(1− x)

√
[n]q∫

1

x+ 1−x
u∨

x

(Dqfx) du
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≤

x+ 1−x√
[n]q∨

x

(Dqfx)
1− x√
[n]q

+
An,q(x)

(1− x)

[
√

[n]q]∑
k=1

k+1∫
k

x+ 1−x
u∨

x

(Dqfx) du

≤

x+ 1−x√
[n]q∨

x

(Dqfx)
1− x√
[n]q

+
An,q(x)

(1− x)

[
√

[n]q]∑
k=1

x+ 1−x
k∨

x

(Dqfx) .

Finally

1∫
x

 t∫
x

Dqfx(u) du

Hn,q(x, t) dt ≤

x+ 1−x√
[n]q∨

x

(Dqfx)
1− x√
[n]q

+
An,q(x)

(1− x)

[
√

[n]q]∑
k=1

x+ 1−x
k∨

x

(Dqfx) .

(26)

Combining (13), (25) and (26) in (23), we get the desired result (6).

Thus the proof is completed.

In order to obtain an approximation theorem, we introduce a new sequence with
the following properties. Let (qn) be a sequence of real numbers such that 0 <
qn < 1 and

lim
n→∞

qn = 1.

If we replace q by qn, we have immediately

[n]qn → ∞ (n → ∞).

It is worth mentioning that similar approaches can be found [22] and [11].

On convergence formaIly, Theorem 2 reads:

Theorem 2. Let (qn) be a sequence of real numbers such that 0 < qn < 1 and
lim
n→∞

qn = 1. Let f be a bounded function on [0, 1]. Suppose that the right and left

q-derivatives exist at a fixed point x ∈ (0, 1) . Then at this point x ∈ (0, 1) , and
n sufficiently large, we have

|(Bn,qnf) (x)− f(x)| ≤

∣∣∣∣∣D+
qnf(x)−D−

qnf(x)

2

∣∣∣∣∣√An,qn(x) +

+
1√
[n]qn

x+ 1−x√
[n]qn∨

x− x√
[n]qn

(Dqnfx) +
1

[n]qn

[
√

[n]qn ]∑
k=1

x+ 1−x
k∨

x−x
k

(Dqnfx).
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Here we note that

An,qn(x) → 0 (n → ∞).

In view of Theorem 2 and Remark 2, we get the following estimate:

Corollary 2. Let f ∈ C[0, 1]. Then for every x ∈ (0, 1) , and n sufficiently large,
we have

|(Bn,qnf) (x)− f(x)| ≤ 1√
[n]qn

x+ 1−x√
[n]qn∨

x− x√
[n]qn

(Dqnfx) +
1

[n]qn

[
√

[n]qn ]∑
k=1

x+ 1−x
k∨

x−x
k

(Dqnfx).

The proof of Theorem 2 is the same as Theorem 1, so we omit it.
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