Bulletin of the Transilvania University of Braşov Series III: Mathematics and Computer Science, Vol. 2(64), No. 1 - 2022, 41-56 https://doi.org/10.31926/but.mif.2022.2.64.1.4

SOME SPECTRAL SETS OF LINEAR OPERATOR PENCILS ON NON-ARCHIMEDEAN BANACH SPACES

Aziz BLALI¹, Abdelkhalek EL AMRANI² and Jawad ETTAYB^{*2}

Abstract

In this paper, we define the notions of trace pseudo-spectrum, ε −determinant spectrum and ε −trace of bounded linear operator pencils on non-Archimedean Banach spaces. Many results are proved about trace pseudo-spectrum, ε −determinant spectrum and ε −trace of bounded linear operator pencils on non-Archimedean Banach spaces. Examples are given to support our work.

2000 Mathematics Subject Classification: 47A10, 47A56, 47S10. Key words: non-Archimedean operators theory, linear operator pencils, spectrum, trace, determinant, pseudo-spectrum.

1 Introduction

The analysis of eigenvalues and eigenvectors had a great effect on mathematics, science, engineering, and many other fields. Then, there are countless applications for this type of analysis. The study of matrix pencils is by now a very thoughtful subject, with the notion of pseudospectrum playing a key role in the theory. However, matrix pencils play an important role in numerical linear algebra, perturbation theory, generalized eigenvalue problems, for more details, we refer to $[4]$ and $[11]$.

Throughout this paper, E_{ω} is a non-Archimedean (n.a) Hilbert space over a (n.a) non trivially complete valued field K with valuation $|\cdot|$, ([3], p 54), $\mathcal{L}(E_{\omega})$ denote the set of all bounded linear operators on E_{ω} , \mathbb{Q}_p is the field of p-adic numbers ($p \geq 2$ being a prime) equipped with p-adic valuation $|\cdot|_p$, \mathbb{Z}_p denotes the ring of p-adic integers of \mathbb{Q}_p , it is the unit ball of \mathbb{Q}_p . For more details and related issues, we refer to [3] and [10]. We denote the completion of algebraic

 1 École Normale Superieure, Department of Mathematics, Sidi Mohamed Ben Abdellah University, B. P. 5206 Bensouda-Fez, Morocco, e-mail: aziz.blali@usmba.ac.ma

²[∗] Corresponding author, Department of Mathematics and Computer Science, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Atlas Fez, Morocco, e-mail: abdelkhalek.elamrani@usmba.ac.ma, jawad.ettayb@usmba.ac.ma

closure of \mathbb{Q}_p under the *p*-adic absolute value $|\cdot|_p$ by \mathbb{C}_p (see [10]). A non-Archimedean Banach space X over $\mathbb K$ is said to be a free Banach space if there exists a family $(e_i)_{i\in I}$ of X such that each element $x \in X$ can be written uniquely as $x = \sum$ i∈I $x_i e_i$ and $||x|| = \sup_{i \in I} |x_i|| |e_i||$, $(e_i)_{i \in I}$ is called an orthogonal base for X, and if for all $i \in I$, $||e_i|| = 1$, then $(e_i)_{i \in I}$ is called an orthonormal base. For more

details, we refer to [2] and [3]. For $A \in \mathcal{L}(\mathbb{K}^n)$ can be written as a finite matrix. For more details see [3], p. 63.

In this paper, we study the problem of finding the eigenvalues of the generalized eigenvalue problem

$$
Ax = \lambda Bx
$$

for $\lambda \in \mathbb{K}$ and $x \in \mathbb{K}^n$ or $x \in E_\omega$. $\mathcal{M}_n(\mathbb{K})$ denote the algebra of all $n \times n$ (n.a) matrices, I denote the $n \times n$ identity matrix. Let $A \in \mathcal{M}_n(\mathbb{K})$, the trace, determinant of A are denoted by $Tr(A)$ and $det(A)$ respectively. For more details, we refer to see $[2]$, $[3]$, $[7]$ and $[8]$. We have the following definitions.

Definition 1. [6] Let X be a non-Archimedean Banach space. For a pair (A, B) of operators in $\mathcal{L}(X)$, the spectrum $\sigma(A, B)$ of linear operator pencil (A, B) or of the pair (A, B) defined by

$$
\sigma(A, B) = \{ \lambda \in \mathbb{K} : A - \lambda B \text{ is not invertible in } \mathcal{L}(X) \}
$$

=
$$
\{ \lambda \in \mathbb{K} : 0 \in \sigma(A - \lambda B) \}.
$$

The resolvent set $\rho(A, B)$ of linear operator pencil (A, B) is the complement of $\sigma(A, B)$ in K given by

$$
\rho(A, B) = \{ \lambda \in \mathbb{K} : R_{\lambda}(A, B) = (A - \lambda B)^{-1} \text{ exists in } \mathcal{L}(X) \}.
$$

 $R_{\lambda}(A, B)$ is called the resolvent of linear operator pencil (A, B) .

Definition 2. [6] Let X be a non-Archimedean Banach space, let $A, B \in \mathcal{L}(X)$ and $\varepsilon > 0$. The pseudospectrum of bounded linear operator pencil (A, B) on X is defined by

$$
\Sigma_{\epsilon}(A,B) = \sigma(A,B) \cup \{ \lambda \in \mathbb{K} : ||(A - \lambda B)^{-1}B|| > \epsilon^{-1} \}.
$$

By convention $||(A - \lambda B)^{-1}B|| = \infty$ if, and only if, $\lambda \in \sigma(A, B)$.

2 p-Adic spectral sets of matrix pencils

We introduce the following definition.

Definition 3. Let $A \in \mathcal{M}_n(\mathbb{K})$, The trace of A is

$$
Tr(A) = \sum_{k=1}^{n} a_{k,k},
$$

where for all $k \in \{1, \dots, n\}$, $a_{k,k} \in \mathbb{K}$ are diagonal coefficients of A.

We have the following proposition.

Proposition 1. Let $A, B \in \mathcal{M}_n(\mathbb{K})$, and $\lambda \in \mathbb{K}$. Then

- (i) $Tr(A + \lambda B) = Tr(A) + \lambda Tr(B),$
- (ii) $Tr(AB) = Tr(BA)$.

Furthermore, the map $Tr : \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ is a continuous linear functional with $|Tr(A)| \leq ||A||.$

Proof. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\lambda \in \mathbb{K}$ with $A = (a_{i,j})_{1 \leq i \leq n, 1 \leq j \leq n}$ and $B =$ $(b_{i,j})_{1\leq i\leq n, 1\leq j\leq n}$. Then

(i)

$$
Tr(A + \lambda B) = \sum_{k=1}^{n} \left(a_{k,k} + \lambda b_{k,k} \right)
$$

=
$$
\sum_{k=1}^{n} a_{k,k} + \lambda \sum_{k=1}^{n} b_{k,k} = Tr(A) + \lambda Tr(B).
$$

(ii)

$$
Tr(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} b_{j,i},
$$

and

$$
Tr(BA) = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{i,j} b_{j,i}.
$$

Thus,

$$
Tr(AB) = Tr(BA).
$$

Furthermore,

$$
|Tr(A)| = |\sum_{k=1}^{n} a_{k,k}|
$$

\n
$$
\leq \sup_{1 \leq k \leq n} |a_{k,k}|
$$

\n
$$
\leq \sup_{1 \leq i,j \leq n} |a_{i,j}| = ||A||.
$$

Hence, the map $Tr : \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ is a continuous linear functional with $|Tr(A)| \leq$ ∥A∥. \Box

We have the following definition.

Definition 4. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. The trace pseudo-spectrum of the matrix pencil (A, B) of the form $A - \lambda B$ is denoted by $Tr_{\varepsilon}(A, B)$ and is defined as

$$
Tr_{\varepsilon}(A,B) = \sigma(A,B) \cup \{ \lambda \in \mathbb{K} : |Tr(A - \lambda B)| \le \varepsilon \}.
$$

The trace pseudo-resolvent of the matrix pencil of the form $A - \lambda B$ is denoted by $Tr \rho_{\varepsilon}(A, B)$ and is defined by

$$
Tr \rho_{\varepsilon}(A, B) = \rho(A, B) \cap \{ \lambda \in \mathbb{K} : |Tr(A - \lambda B)| > \varepsilon \}.
$$

We begin with the following theorems.

Theorem 1. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. Then,

- (i) If $0 < \varepsilon_1 \leq \varepsilon_2$, $Tr_{\varepsilon_1}(A, B) \subset Tr_{\varepsilon_2}(A, B)$,
- (ii) If $\alpha \in \mathbb{K}$ and $\beta \in \mathbb{K} \setminus \{0\}$, then $Tr_{\varepsilon}(\beta A + \alpha B, B) = \beta Tr_{\frac{\varepsilon}{|\beta|}}(A, B) + \alpha$,
- (iii) For all $\lambda, \alpha \in \mathbb{K}$, and $Tr(A) \neq 0$,

$$
Tr_{\varepsilon}(\alpha A, A) = \left\{ \lambda \in \mathbb{K} : |\lambda - \alpha| \leq \frac{\varepsilon}{|Tr(A)|} \right\}.
$$

- Proof. (i) It is clear from the definition of trace pseudo-spectrum of matrix pencil.
	- (ii) Let $\alpha \in \mathbb{K}$ and $\beta \in \mathbb{K} \setminus \{0\}$, then it is easy to see that

$$
\sigma(\beta A + \alpha B, B) = \alpha + \beta \sigma(A, B),
$$

and

$$
Tr_{\varepsilon}(\beta A + \alpha B, B) = \left\{ \lambda \in \mathbb{K} : |Tr(\beta A + \alpha B - \lambda B)| \le \varepsilon \right\}
$$

$$
= \left\{ \lambda \in \mathbb{K} : |\beta||Tr(A - \frac{(\lambda - \alpha)}{\beta}B)| \le \varepsilon \right\}
$$

$$
= \left\{ \lambda \in \mathbb{K} : |Tr(A - \frac{(\lambda - \alpha)}{\beta}B)| \le \frac{\varepsilon}{|\beta|} \right\}.
$$

Hence $\lambda \in Tr_{\varepsilon}(\beta A + \alpha B, B)$ if, and only if, $\frac{\lambda - \alpha}{\beta} \in Tr_{\frac{\varepsilon}{|\beta|}}(A, B)$ i.e $\lambda \in$ $\beta Tr_{\frac{\varepsilon}{|\beta|}}(A,B)+\alpha.$

(iii) Let $\alpha, \lambda \in \mathbb{K}$, then

$$
|Tr(\alpha A - \lambda A)| = |\lambda - \alpha||tr(A)| \le \varepsilon.
$$

Thus

$$
Tr_{\varepsilon}(\alpha A, A) = \left\{ \lambda \in \mathbb{K} : |\lambda - \alpha| \leq \frac{\varepsilon}{|Tr(A)|} \right\}.
$$

 \Box

Theorem 2. Let $A, B, U, V \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. (i) If $U = VAV^{-1}$ and $BV = VB$, then $Tr_{\varepsilon}(A, B) = Tr_{\varepsilon}(U, B)$. (ii) If $U = VAV^{-1}$ and $A = VBV^{-1}$, then $Tr_{\varepsilon}(U, A) = Tr_{\varepsilon}(A, B)$. *Proof.* Let $A, B, U, V \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$.

(i) If $U = VAV^{-1}$ and $BV = VB$, then

$$
\lambda \notin \sigma(A, B) \iff (A - \lambda B) \text{ invertible}
$$

\n
$$
\iff V^{-1}UV - \lambda V^{-1}BV \text{ invertible}
$$

\n
$$
\iff V^{-1}(U - \lambda B)V \text{ invertible}
$$

\n
$$
\iff (U - \lambda B) \text{ invertible}
$$

\n
$$
\iff \lambda \notin \sigma(U, B).
$$

Thus $\sigma(A, B) = \sigma(U, B)$. Furthermore

$$
Tr_{\varepsilon}(A, B) = \sigma(A, B) \cup \left\{ \lambda \in \mathbb{K} : |Tr(A - \lambda B)| \le \varepsilon \right\}
$$

\n
$$
= \sigma(U, B) \cup \left\{ \lambda \in \mathbb{K} : |Tr(V^{-1}UV - \lambda V^{-1}BV)| \le \varepsilon \right\}
$$

\n
$$
= \sigma(U, B) \cup \left\{ \lambda \in \mathbb{K} : |Tr(V^{-1}(U - \lambda B)V)| \le \varepsilon \right\}
$$

\n
$$
= \sigma(U, B) \cup \left\{ \lambda \in \mathbb{K} : |Tr(U - \lambda B)| \le \varepsilon \right\}
$$

\n
$$
= Tr_{\varepsilon}(U, B).
$$

(ii) It is easy to see that $\sigma(A, B) = \sigma(U, A)$. Then

$$
Tr_{\varepsilon}(U, A) = \sigma(U, A) \cup \left\{ \lambda \in \mathbb{K} : |Tr(U - \lambda A)| \le \varepsilon \right\}
$$

\n
$$
= \sigma(A, B) \cup \left\{ \lambda \in \mathbb{K} : |Tr(VAV^{-1} - \lambda VBV^{-1})| \le \varepsilon \right\}
$$

\n
$$
= \sigma(A, B) \cup \left\{ \lambda \in \mathbb{K} : |Tr(V(A - \lambda B)V^{-1})| \le \varepsilon \right\}
$$

\n
$$
= \sigma(A, B) \cup \left\{ \lambda \in \mathbb{K} : |Tr(A - \lambda B)| \le \varepsilon \right\}
$$

\n
$$
= Tr_{\varepsilon}(A, B).
$$

.

We have the following example.

Example 1. Let $\mathbb{K} = \mathbb{Q}_p$ and $\varepsilon > 0$. If

$$
A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} and U = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
$$

Then

$$
Tr_{\varepsilon}(A, U) = Tr_{\varepsilon}(B, U) = \{1\} \cup \{\lambda \in \mathbb{Q}_p : |\lambda - 2|_p \le \varepsilon\}.
$$

Let $r > 0$, $B_f(0,r) = \{\lambda \in \mathbb{K} : |\lambda| \leq r\}$ is the closed ball centered at zero with radius r. We have the following theorem.

Theorem 3. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. Then

$$
Tr_{\delta}(A,B) + B_f\left(0, \frac{\varepsilon}{|Tr(B)|}\right) \subseteq Tr_{\gamma}(A,B)
$$

where $\gamma = \max{\{\delta, \varepsilon\}}$. If $\delta < \varepsilon$, we have

$$
Tr_{\delta}(A,B)+B_{f}\left(0,\frac{\varepsilon}{|Tr(B)|}\right)\subseteq Tr_{\varepsilon}(A,B).
$$

Proof. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. Let $\lambda \in Tr_{\delta}(A, B) + B_f(0, \frac{\varepsilon}{|Tr_{\delta}(A, B)|})$ $\frac{\varepsilon}{|Tr(B)|}$, then there exists $\lambda_0 \in Tr_{\delta}(A, B)$ and $\lambda_1 \in B_f(0, \frac{\varepsilon}{|Tr(G)|})$ $\frac{\varepsilon}{|Tr(B)|}$ such that $\lambda = \lambda_0 + \lambda_1$, hence

 $|Tr(A - \lambda_0 B)| \leq \delta$

and

$$
|\lambda_1||Tr(B)| \le \varepsilon.
$$

Thus,

$$
|Tr(A - \lambda B)| = |Tr(A - \lambda_0 B - \lambda_1 B)|
$$

\n
$$
\leq \max \{ |Tr(A - \lambda_0 B)|, |\lambda_1| |Tr(B)| \}
$$

\n
$$
\leq \max \{ \delta, \varepsilon \}.
$$

We set $\gamma = \max \{ \delta, \varepsilon \}.$ Then,

$$
Tr_{\delta}(A,B)+B_{f}\left(0,\frac{\varepsilon}{|Tr(B)|}\right)\subseteq Tr_{\gamma}(A,B).
$$

If $\delta < \varepsilon$, then $\gamma = \varepsilon$. Consequently,

$$
Tr_{\delta}(A, B) + B_f\left(0, \frac{\varepsilon}{|Tr(B)|}\right) \subseteq Tr_{\varepsilon}(A, B).
$$

 \Box

We introduce the following $\varepsilon - trace$ set of matrix pencils in non-Archimedean finite dimensional Banach spaces.

Definition 5. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. The ε -trace set of matrix pencil (A, B) is denoted by $tr_{\varepsilon}(A, B)$ and is defined as

$$
tr_{\varepsilon}(A,B) = \{ \lambda \in \mathbb{K} : |Tr(A - \lambda B)| \le \varepsilon \}.
$$

Remark 1. For all $\varepsilon > 0$, $tr_{\varepsilon}(A, B) \subseteq Tr_{\varepsilon}(A, B)$.

Consequently we have the following results.

Theorem 4. Let $A, B, C \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. Then,

$$
(i) tr_{\varepsilon}(AB, C) = tr_{\varepsilon}(BA, C)
$$

$$
(ii) tr_{\varepsilon}(A, C) + tr_{\varepsilon}(B, C) \subseteq tr_{\varepsilon}(A + B, C).
$$

Proof.

(i) Let $\lambda \in tr_{\varepsilon}(AB, C)$, hence

$$
\varepsilon \geq |Tr(AB - \lambda C)|
$$

= |Tr(AB) + Tr(-\lambda C)|
= |Tr(BA) + Tr(-\lambda C)|
= |Tr(BA - \lambda C)|.

Thus, $\lambda \in tr_{\varepsilon}(BA, C)$. Then, $tr_{\varepsilon}(AB, C) \subseteq tr_{\varepsilon}(BA, C)$. Similarly, we obtain $tr_{\varepsilon}(BA, C) \subseteq tr_{\varepsilon}(AB, C)$. Hence, $tr_{\varepsilon}(AB, C) = tr_{\varepsilon}(BA, C)$.

(ii) Let $\lambda \in tr_{\varepsilon}(A, C) + tr_{\varepsilon}(B, C)$, then there exists $\lambda_0 \in tr_{\varepsilon}(A, C)$ and $\lambda_1 \in$ $tr_{\varepsilon}(B, C)$ such that $\lambda = \lambda_0 + \lambda_1$. Then

$$
|Tr(A - \lambda_0 C)| \le \varepsilon \text{ and } |Tr(B - \lambda_1 C)| \le \varepsilon.
$$

Thus,

$$
|Tr(A+B-\lambda C)| = |Tr(A+B-\lambda_0C-\lambda_1C)|
$$

=
$$
|Tr(A-\lambda_0C)+Tr(B-\lambda_1C)|
$$

$$
\leq \max \{ |Tr(A-\lambda_0C)|, |Tr(B-\lambda_1C)| \}
$$

$$
\leq \varepsilon.
$$

Consequently, $\lambda \in tr_{\varepsilon}(A+B, C)$. Hence,

$$
tr_{\varepsilon}(A, C) + tr_{\varepsilon}(B, C) \subseteq tr_{\varepsilon}(A + B, C).
$$

 \Box

The following proposition shows that the ε – trace of a matrix pencil is a convex set in the non-Archimedean valued field K.

Proposition 2. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. Let $\lambda, \mu \in \mathit{tr}_{\varepsilon}(A, B)$ and $\alpha \in \mathbb{K}$ such that $|\alpha| \leq 1$. Then $\alpha\lambda + (1 - \alpha)\mu \in tr_{\varepsilon}(A, B)$.

Proof. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. Let $\lambda, \mu \in tr_{\varepsilon}(A, B)$ and $\alpha \in \mathbb{K}$ such that $|\alpha| \leq 1$. Then

$$
|Tr(A - \lambda B)| \le \varepsilon,
$$

and

$$
|Tr(A - \mu B)| \le \varepsilon.
$$

Hence

$$
|Tr(A - (\alpha \lambda + (1 - \alpha)\mu)B)| = |Tr(A - \mu B + \alpha (A - \lambda B - (A - \mu B))|
$$

$$
= \max \{ |Tr(A - \mu B)|, |\alpha||Tr(A - \lambda B)|,
$$

$$
|\alpha||Tr(A - \mu B)| \}
$$

$$
\leq \varepsilon.
$$

Thus,

$$
\alpha\lambda + (1 - \alpha)\mu \in tr_{\varepsilon}(A, B).
$$

Proposition 3. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$ such that $||A|| < \varepsilon$. Let $\lambda, \mu \in$ $tr_{\varepsilon}(A, B)$. Then

 $\lambda - \mu \in tr_{\varepsilon}(A, B).$

Proof. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$ such that $||A|| < \varepsilon$. Let $\lambda, \mu \in \mathit{tr}_{\varepsilon}(A, B)$. By Proposition 1, we have $|Tr(A)| \leq ||A||$. Then

$$
|Tr(A - \lambda B)| \le \varepsilon,
$$

and

$$
|Tr(A - \mu B)| \le \varepsilon.
$$

Hence

$$
|Tr(A - (\lambda - \mu)B)| = |Tr(A - \lambda B) - (A - \mu B) + Tr(A)|,
$$

=
$$
\max \{ |Tr(A - \mu B)|, |Tr(A - \lambda B)|, |Tr(A)| \},
$$

$$
\leq \varepsilon.
$$

Thus,

$$
\lambda - \mu \in tr_{\varepsilon}(A, B).
$$

 \Box

 \Box

3 Determinant spectrum of non-Archimedean matrix pencils

We introduce the following definition.

Definition 6. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. The ε -determinant spectrum of matrix pencil (A, B) is denoted by $d_{\varepsilon}(A, B)$ and is defined as

$$
d_{\varepsilon}(A,B) = \{\lambda \in \mathbb{K} : |det(A - \lambda B)| \le \varepsilon\}.
$$

Remark 2. The definition of determinant spectrum gives for each $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$, $\sigma(A, B) \subseteq d_{\varepsilon}(A, B)$ and $d_0 = \sigma(A, B)$.

Proposition 4. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. Then

- (i) For all $0 < \varepsilon_1 \leq \varepsilon_2$, we have $d_{\varepsilon_1} \subseteq d_{\varepsilon_2}$,
- (ii) $d_{\varepsilon}(\alpha I, I) = {\lambda \in \mathbb{K} : |\lambda \alpha| \leq \varepsilon^{\frac{1}{n}}},$
- (iii) For all $\alpha, \beta \in \mathbb{K}$ such that $\beta \neq 0$, $d_{\varepsilon}(\alpha I + \beta A, I) = \alpha + \beta d_{\frac{\varepsilon}{|\beta|^n}}(A, I)$.

Proof. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$.

- (i) For $0 < \varepsilon_1 \leq \varepsilon_2$. Let $\lambda \in d_{\varepsilon_1}(A, B)$, then $|det(A \lambda B)| \leq \varepsilon_1 \leq \varepsilon_2$. Hence $\lambda \in d_{\varepsilon_2}(A, B).$
- (ii) Let $\alpha \in \mathbb{K}$, then $|\det(\alpha I \lambda I)| = |\lambda \alpha|^n$. Hence

$$
d_{\varepsilon}(\alpha I, I) = \{ \lambda \in \mathbb{K} : |\det(\alpha I - \lambda I)| \leq \varepsilon \}
$$

=
$$
\{ \lambda \in \mathbb{K} : |\lambda - \alpha|^n \leq \varepsilon \}
$$

=
$$
\{ \lambda \in \mathbb{K} : |\lambda - \alpha| \leq \varepsilon^{\frac{1}{n}} \}.
$$

(iii) Let $\alpha, \beta \in \mathbb{K}$ such that $\beta \neq 0$, we have

$$
d_{\varepsilon}(\alpha I + \beta A, I) = \{ \lambda \in \mathbb{K} : |\det(\alpha I + \beta A - \lambda I)| \leq \varepsilon \}
$$

\n
$$
= \{ \lambda \in \mathbb{K} : |\det(\beta A - (\lambda - \alpha)I)| \leq \varepsilon \}
$$

\n
$$
= \{ \lambda \in \mathbb{K} : |\beta|^{n} |\det(A - \frac{(\lambda - \alpha)}{\beta}I)| \leq \varepsilon \}
$$

\n
$$
= \{ \lambda \in \mathbb{K} : \det(A - \frac{(\lambda - \alpha)}{\beta}I)| \leq \frac{\varepsilon}{|\beta|^{n}} \}.
$$

Hence,

$$
\lambda \in d_{\varepsilon}(\alpha I + \beta A, I) \iff \frac{\lambda - \alpha}{\beta} \in d_{\frac{\varepsilon}{|\beta|^{n}}}(A, I)
$$

$$
\iff \lambda \in \alpha + \beta d_{\frac{\varepsilon}{|\beta|^{n}}}(A, I).
$$

 \Box

We give some examples of ε -determinant spectrum.

Example 2. Let $\mathbb{K} = \mathbb{Q}_p$ and $\varepsilon > 0$. We consider

$$
A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} and B = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}.
$$

It is easy to see that

$$
d_{\varepsilon}(A, B) = \{ \lambda \in \mathbb{Q}_p : |\det(A - \lambda B)|_p \le \varepsilon \}
$$

=
$$
\{ \lambda \in \mathbb{Q}_p : |1 - \lambda|_p |1 - 2\lambda|_p \le \varepsilon \}.
$$

Example 3. Let $\mathbb{K} = \mathbb{Q}_p$ with $p \geq 2$ and $\varepsilon > 0$. We consider

$$
A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} and B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$

It is easy to see that

$$
d_{\varepsilon}(A, B) = \{ \lambda \in \mathbb{Q}_p : |\det(A - \lambda B)|_p \le \varepsilon \}
$$

=
$$
\{ \lambda \in \mathbb{Q}_p : |1 - \lambda|_p |2 + \lambda|_p \le \varepsilon \}.
$$

Example 4. Let $\mathbb{K} = \mathbb{Q}_p$ with $p \neq 2$ and $\varepsilon > 0$. Let $a, b \in \mathbb{Q}_p$ such that $a \neq 0$ and $a^2 + b^2 \neq 0$, we consider

$$
A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.
$$

It is easy to see that

$$
d_{\varepsilon}(A, B) = \{ \lambda \in \mathbb{Q}_p : |\det(A - \lambda B)|_p \le \varepsilon \}
$$

=
$$
\{ \lambda \in \mathbb{Q}_p : |a^2 - 2\lambda a + b^2|_p \le \varepsilon \}
$$

=
$$
\{ \lambda \in \mathbb{Q}_p : |det(A) - \lambda Tr(A)|_p \le \varepsilon \}.
$$

Example 5. Let $\mathbb{K} = \mathbb{Q}_p$ with $p \geq 2$ and $\varepsilon > 0$. We consider

$$
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & a \\ 0 & 0 \end{pmatrix} \text{ with } a \in \mathbb{Q}_p.
$$

It is easy to see that

$$
d_{\varepsilon}(A, B) = \{ \lambda \in \mathbb{Q}_p : |\det(A - \lambda B)|_p \le \varepsilon \}
$$

=
$$
\{ \lambda \in \mathbb{Q}_p : |\lambda - 1|_p \le \varepsilon \}.
$$

We have the following proposition.

Proposition 5. Let $D \in \mathcal{L}(\mathbb{Q}_p^n)$ be a diagonal operator such that for all $i \in$ $\{1, \dots, n\},\; De_i = \lambda_i e_i \text{ with } \lambda_i \in \mathbb{Q}_p, \; \lambda_i \neq \lambda_{i+1}. \text{ Then}$

$$
d_{\varepsilon}(D,I) = \{\lambda \in \mathbb{Q}_p : |\lambda - \lambda_1|_p \cdots |\lambda - \lambda_n|_p \leq \varepsilon\}.
$$

Proof. Let $\varepsilon > 0$. Then $D - \lambda I$ has the form

for all
$$
i \in \{1, \dots, n\}
$$
, $(D - \lambda)e_i = (\lambda_i - \lambda)e_i$

where $(e_i)_{1 \leq i \leq n}$ is the canonical base of \mathbb{Q}_p^n .

Then, $|\det(D - \lambda I)|_p = |a_1 - \lambda_1|_p \cdots |a_n - \lambda_n|_p$.

$$
d_{\varepsilon}(D,I) = \{\lambda \in \mathbb{Q}_p : |\det(D - \lambda I)|_p \leq \varepsilon\} = \{\lambda \in \mathbb{Q}_p : |\lambda - \lambda_1|_p \cdots |\lambda - \lambda_n|_p \leq \varepsilon\}.
$$

4 Trace pseudo-spectrum of linear operator pencils on p-adic Hilbert space E_{ω}

We have the following definition.

Definition 7. ([2]) For $A \in \mathcal{L}(E_\omega)$, we define the trace of A to be

$$
Tr(A) = \sum_{k=0}^{\infty} \frac{\langle Ae_s, e_s \rangle}{\omega_k}
$$

if this series converges in K. We denote by $\mathfrak{T}(\mathcal{E}_{\omega})$ the subspace of all Trace class operators, namely, those bounded operators for which the trace exists.

Remark 3. ([2]) Let $A \in \mathcal{L}(E_\omega)$. Then $A \in \mathfrak{TC}(E_\omega)$ if and only if $\lim_{k \to \infty} a_{k,k} = 0$. Moreover,

$$
Tr(A) = \sum_{k=0}^{\infty} a_{k,k}.
$$

We introduce the following definition.

Definition 8. Let $A, B \in \mathcal{TC}(E_{\omega})$ and $\varepsilon > 0$. The ε – trace set of bounded linear operator pencil $A - \lambda B$ is denoted by $tr_{\varepsilon}(A, B)$ and is defined as

$$
tr_{\varepsilon}(A,B) = \{\lambda \in \mathbb{K} : |Tr(A - \lambda B)| \le \varepsilon\}.
$$

Remark 4. Let X be a free Banach space over K, let $A, B \in \mathcal{T}C(X)$, the Definition 8, is valid.

We start with the following statements.

Theorem 5. Let $A, B \in \mathcal{TC}(E_\omega)$ and $\varepsilon > 0$. Then,

- (i) If $0 < \varepsilon_1 \leq \varepsilon_2$, $tr_{\varepsilon_1}(A, B) \subset tr_{\varepsilon_2}(A, B)$
- (ii) If $\alpha \in \mathbb{K}$ and $\beta \in \mathbb{K} \setminus \{0\}$, then $tr_{\varepsilon}(\beta A + \alpha B, B) = \beta tr_{\frac{\varepsilon}{|\beta|}}(A, B) + \alpha$,

(iii) For all $\lambda, \alpha \in \mathbb{K}$, and $Tr(A) \neq 0$, we have

$$
tr_{\varepsilon}(\alpha B,B)=\Big\{\lambda\in\mathbb{K}:|\lambda-\alpha|\leq\frac{\varepsilon}{|Tr(A)|}\Big\}.
$$

- *Proof.* (i) It is clear from the definition of ε −trace set of linear operator pencils having trace.
	- (ii) Let $\alpha \in \mathbb{K}$ and $\beta \in \mathbb{K}\backslash\{0\}$, then

$$
tr_{\varepsilon}(\beta A + \alpha B, B) = \left\{ \lambda \in \mathbb{K} : |Tr(\beta A + \alpha B - \lambda B)| \le \varepsilon \right\}
$$

$$
= \left\{ \lambda \in \mathbb{K} : |\beta||Tr(A - \frac{(\lambda - \alpha)}{\beta}B)| \le \varepsilon \right\}
$$

$$
= \left\{ \lambda \in \mathbb{K} : |Tr(A - \frac{(\lambda - \alpha)}{\beta}B)| \le \frac{\varepsilon}{|\beta|} \right\}.
$$

Hence $\lambda \in tr_{\varepsilon}(\beta A + \alpha B, B)$ if, and only if, $\frac{\lambda - \alpha}{\beta} \in tr_{\frac{\varepsilon}{|\beta|}}(A, B)$ i.e $\lambda \in$ $\beta Tr_{\frac{\varepsilon}{|\beta|}}(A,B)+\alpha.$

(iii) Let $\alpha, \lambda \in \mathbb{K}$, then

$$
|Tr(\alpha A - \lambda A)| = |\lambda - \alpha||tr(A)| \le \varepsilon.
$$

Thus

$$
tr_{\varepsilon}(\alpha A, A) = \left\{ \lambda \in \mathbb{K} : |\lambda - \alpha| \leq \frac{\varepsilon}{|Tr(A)|} \right\}.
$$

Example 6. Let $\mathbb{K} = \mathbb{Q}_p$, and $a, b \in \mathbb{Q}_p$ such that $|a|_p < 1$ and $|b|_p < 1$, and suppose for all $s \in \mathbb{N}$, $|\omega_s| = 1$. Let $A = (a_{i,j})$ and $B = (b_{i,j})$ two linear operators are defined on E_{ω} respectively by

$$
a_{i,j} = 1 if i < j
$$

= $a^i if i = j$
= $0 if i > j$.

And

$$
b_{i,j} = 1 \text{ if } i < j
$$
\n
$$
= b^i \text{ if } i = j
$$
\n
$$
= 0 \text{ if } i > j.
$$

It is easy to see that

$$
Tr(A - \lambda B) = \sum_{k=0}^{\infty} a_{k,k} - \lambda \sum_{k=0}^{\infty} b_{k,k}
$$

=
$$
\frac{1}{1-a} - \lambda \frac{1}{1-b}
$$

=
$$
\frac{1-b - \lambda(1-a)}{(1-a)(1-b)}.
$$

Then,

$$
tr_{\varepsilon}(A, B) = \{ \lambda \in \mathbb{Q}_p : |Tr(A - \lambda B)|_p \le \varepsilon \}
$$

=
$$
\{ \lambda \in \mathbb{Q}_p : |1 - b - \lambda(1 - a)|_p \le \varepsilon \}
$$

=
$$
\{ \lambda \in \mathbb{Q}_p : |\lambda - \frac{1 - b}{1 - a}|_p \le \varepsilon \}.
$$

We finish with the following theorems.

Theorem 6. Let $A, B \in \mathfrak{TC}(E_\omega)$ and $\varepsilon > 0$. Then

$$
tr_{\delta}(A,B)+B_{f}(0,\frac{\varepsilon}{|Tr(B)|})\subseteq tr_{\gamma}(A,B),
$$

where $\gamma = \max{\{\delta, \varepsilon\}}$. If $\delta < \varepsilon$, we have

$$
tr_{\delta}(A, B) + B_f(0, \frac{\varepsilon}{|Tr(B)|}) \subseteq tr_{\varepsilon}(A, B).
$$

Proof. Let $A, B \in \mathfrak{TC}(E_{\omega})$ and $\varepsilon > 0$. Let $\lambda \in tr_{\delta}(A, B) + B_f(0, \frac{\varepsilon}{|Tr(\varepsilon)|})$ $\frac{\varepsilon}{|Tr(B)|}$, then there exists $\lambda_0 \in tr_{\delta}(A, B)$ and $\lambda_1 \in B_f(0, \frac{\varepsilon}{|Tr(\delta)|})$ $\frac{\varepsilon}{|Tr(B)|}$ such that $\lambda = \lambda_0 + \lambda_1$. Then

$$
|Tr(A - \lambda_0 B)| \le \delta,
$$

and

$$
|\lambda_1 Tr(B)| \leq \varepsilon.
$$

Thus

$$
|Tr(A - \lambda B)| = |Tr(A - \lambda_0 B - \lambda_1 B)|
$$

\n
$$
\leq \max \{ |Tr(A - \lambda_0 B)|, |\lambda_1| |Tr(B)| \}
$$

\n
$$
\leq \max \{ \delta, \varepsilon \}.
$$

Setting, $\gamma = \max \{ \delta, \varepsilon \}.$ Hence,

$$
tr_{\delta}(A, B) + B_f(0, \frac{\varepsilon}{|Tr(B)|}) \subseteq tr_{\gamma}(A, B).
$$

If $\delta < \varepsilon$, then $\gamma = \varepsilon$. Consequently,

$$
Tr_{\delta}(A, B) + B_f(0, \frac{\varepsilon}{|Tr(B)|}) \subseteq Tr_{\varepsilon}(A, B).
$$

 $C(E_{\omega})$ denote the set of all completely continuous operators on E_{ω} . We have the following theorem.

Theorem 7. [2] Suppose $A, B \in C(E_{\omega})$, then $Tr(AB) = Tr(BA)$.

Theorem 8. Let $A, B, C \in \mathcal{T}C(E_\omega)$ and $\varepsilon > 0$. We have the following statements:

- (i) If $A, B \in C(E_{\omega})$, then $tr_{\varepsilon}(AB, C) = tr_{\varepsilon}(BA, C)$,
- (ii) $tr_{\varepsilon}(A, C) + tr_{\varepsilon}(B, C) \subseteq tr_{\varepsilon}(A + B, C).$

Proof.

(i) Let $\lambda \in tr_{\varepsilon}(AB, C)$. Since $A, B \in C(E_{\omega})$, by Theorem 7, we have $Tr(AB)$ = $Tr(BA)$, hence:

$$
\varepsilon \geq |Tr(AB - \lambda C)|
$$

= |Tr(AB) + Tr(-\lambda C)|
= |Tr(BA) + Tr(-\lambda C)|
= |Tr(BA - \lambda C)|.

Thus, $\lambda \in Tr_{\varepsilon}(BA, C)$. Then, $Tr_{\varepsilon}(AB, C) \subseteq Tr_{\varepsilon}(BA, C)$. Similarly, we obtain $Tr_{\varepsilon}(BA, C) \subseteq Tr_{\varepsilon}(AB, C)$. Hence, $Tr_{\varepsilon}(AB, C) = Tr_{\varepsilon}(BA, C)$.

 \Box

(ii) Let $\lambda \in Tr_{\varepsilon}(A, C) + Tr_{\varepsilon}(B, C)$, then there exists $\lambda_0 \in Tr_{\varepsilon}(A, C)$ and $\lambda_1 \in$ $Tr_{\varepsilon}(B, C)$ such that $\lambda = \lambda_0 + \lambda_1$. Then

$$
|Tr(A - \lambda_0 C)| \le \varepsilon \text{ and } |Tr(B - \lambda_1 C)| \le \varepsilon.
$$

Thus,

$$
|Tr(A+B-\lambda C)| = |Tr(A+B-\lambda_0C-\lambda_1C)|
$$

= $|Tr(A-\lambda_0C)+Tr(B-\lambda_1C)|$
 $\leq \max \{ |Tr(A-\lambda_0C)|, |Tr(B-\lambda_1C)| \}$
 $\leq \varepsilon.$

Consequently, $\lambda \in Tr_{\varepsilon}(A+B,C)$. Hence,

$$
Tr_{\varepsilon}(A, C) + Tr_{\varepsilon}(B, C) \subseteq Tr_{\varepsilon}(A + B, C).
$$

References

- [1] Ammar, A., Jeribi, A., and Mahfoudi, M., Generalized trace pseudo-spectrum of matrix pencils, CUBO A Mathematical Journal 21 (2019), no. 2, 65-76.
- [2] Basu, S., Non-compact Trace class operators and Schatten-class operators in p-adic Hilbert spaces, Contemporary Mathematics 704 (2018).
- [3] Diagana, T., and Ramaroson, F., Non-archimedean operators theory, Springer, 2016.
- [4] Dorsselaer, J. L. M. van, Pseudospectra for matrix pencils and stability of equilibria, BIT, (1997), 833-845.
- [5] El Amrani, A., Ettayb, J., and Blali, A., On pencil of bounded linear operators on non-Archimedean Banach spaces, Bol. Soc. Paran. Mat., to appear.
- [6] Hassani, R. A., El Amrani, A., Blali, A., and Ettayb, J., Pseudospectra and essential Pseudospectra of a Pencil of bounded linear operators on non archimedean Banach spaces, Filomat, to appear.
- [7] Horn, R.A., and Johnson, C. R., Topics in matrix analysis, Cambridge University Press, 1991.
- [8] Krishna Kumar. G., Determinant spectrum: A generalization of eigenvalues, Funct. Anal. Approx. Comput. 10 (2018), no. 2, 1-12.
- [9] Möller, M., and Pivovarchik, V., Spectral theory of operator pencils, Hermite-Biehler functions, and their applications, Birkhäuser, 2015.
- [10] Rooij, A. C. M. van., Non-Archimedean functional analysis. Monographs and Textbooks in Pure and Applied Math., 51 Marcel Dekker, Inc., New York, 1978.
- [11] Trefethen, L. N., and Embree, M., Spectra and pseudospectra: The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, 2005.