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GEOMETRY OF KENMOTSU MANIFOLDS ADMITTING
Z-TENSOR
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Abstract

The object of this paper is to study Kenmotsu manifolds admitting Z−tensor,
which is a generalization of Einstein tensor that comes from general rel-
ativity. We define a special type of quarter-symmetric non-metric ϕ and
η-connection on a Kenmotsu manifold and we examine some geometric prop-
erties of such manifolds with Z−tensor. Some semi-symmetry conditions
related to Z−tensor are studied on Kenmotsu manifolds and finally, we ob-
serve our results on a 5-dimensional Kenmotsu manifold.
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1 Introduction

The study of differential equations on a (pseudo)-Riemannian manifold is an
important topic of differential geometry. An important one is the Einstein field
equation. On a (pseudo)-Riemannian manifold M , the Einstein tensor G which
comes from the Einstein fields equation is defined by

G(U1, U2) = Ric(U1, U2)−
1

2
g(U1, U2)scal

for all U1, U2 ∈ Γ(TM), where Ric is the Ricci curvature tensor and scal is
the scalar curvature of M . This tensor describes the curvature of the spacetime
and it is a contracted piece of the Riemann curvature tensor that has vanishing
divergence.

In 2012 Mantica and Molinari [23] introduce a new (0, 2)−tensor as a gen-
eralization of Einstein tensor. This tensor is called the Z-tensor, and it is also

1Department of Mathematics, Ramthakur College, Arundhuti Nagar-799003, West Tripura,
Tripura, India, e-mail: ajitbarmanaw@yahoo.in

2∗ Corresponding author, Department of Computer Engineering, Munzur University, Aktuluk,
Tunceli, Turkey, e-mail: inanunal@munzur.edu.tr



24 Ajit Barman and İnan Ünal

the trace of Q−tensor, which is a generalization of concircular curvature ten-
sor. Mantica and Molinari [23] defined weakly Z-symmetric manifolds and this
was a generalization of the notion of weakly Ricci symmetric manifolds, pseudo
Ricci symmetric manifolds, pseudo projective Ricci symmetric manifolds. Other
authors have studied on Z-symmetric manifolds the notion of weakly cyclic Z-
symmetric manifolds [1], pseudo Z-tensor-symmetric Riemannian manifolds with
harmonic curvature tensors [23], or almost pseudo Z-tensor-symmetric manifolds
[2]. In [3] the authors studied Z-tensor-symmetric manifold admitting concircular
Ricci symmetric tensor. In [31] Ünal studied the N(k)−quasi Einstein manifolds
with Z-tensor.

Contact manifolds have both physical applications and important geometric
properties. The definition of a contact manifold occurred while searching spe-
cial solutions of differential equation systems. With the study of contact mani-
folds, taking into account the properties of complex manifolds, important develop-
ments have been recorded with tensorial perspective. Over time, different classes
of contact manifolds have been defined. One of them is Kenmotsu manifolds.
Kenmotsu manifolds are not compact and they have negative scalar curvature.
Also, these manifolds are normal, but not Sasakian. An almost contact metric
manifold (M2n+1, ϕ, ξ, η, g) is called an almost Kenmotsu manifold if dη = 0 and
dΦ = 2η ∧Φ [19]. Obviously a normal almost Kenmotsu manifold is a Kenmotsu
manifold. Kenmotsu manifolds have been studied in [7, 8, 14, 20, 24].

In Riemannian geometry we use advanced calculus tools to classify Rieman-
nian manifolds. We use linear connection work with calculus tools. The correct
one, the Levi-Civita connection, is a major object to understand the differential
geometric properties of Riemannian manifolds. Levi-Civita connection is a metric
connection, that means it is invariant under the change of the metric, and also
it is a symmetric connection that means it has no torsion. Except for the Levi-
Civita connection, there are many different kinds of connections which are metric
or non-metric and symmetric or non-symmetric. In general, on a Riemannian
manifold M , such connection D is defined as

DU1U2 = ∇U1U2 +H(U1, U2)

for all vector fields U1, U2 ∈ Γ(TM), where ∇ is the Levi-Civita connection and
H is a (1, 2)−type tensor field. Based on different properties of D, this connection
is named as semi-symmetric metric, semi-symmetric non-metric, semi-symmetric
quarter-metric etc. In [29], a generalization of such connections was given. Here,
the notation D is used to state the general connection and ∇̃, ∇̂ etc. will be used
state special connections.

A semi-symmetric connection ∇̃ on a differentiable manifold M was defined
by Friedmann and Schouten [15]. The torsion of ∇̃ is given by

Tor(U1, U2) = u(U2)U1 − u(U1)U2

where u is a 1-form and ρ is a vector field defined by u(U1) = g(U1, ρ), for all
vector fields U1, U2 ∈ Γ(TM). A semi-symmetric metric connection on a Rieman-
nian manifold was defined by Hayden [18]. Then, Yano [32] gave a different type
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of semi-symmetric metric connection as the form ∇̃U1U2 = ∇U1U2 + u(U2)U1 −
g(U1, U2)ρ, where u(U1) = g(U1, ρ). The another type of semi-symmetric connec-
tion which is not metric was defined by Prvanović [27] with the name pseudo-
metric semi-symmetric connection and was just followed by Andonie [6]. These
types of connections are called semi-symmetric non-metric connections.

Agashe and Chafle [4] defined another kind of semi-symmetric non-metric
connections which has the non-invariant metric

(∇̃U1g)(U2, U3) = −u(U2)g(U1, U3)− u(U3)g(U1, U2).

Later, some different kind of semi-symmetric non-metric connections have been
defined and studied in [10] and [21]. Golab [17] defined and studied quarter-
symmetric connection in differentiable manifolds with affine connections. A quarter-
symmetric connection ∇̂ has the torsion

Tor(U1, U2) = η(U2)ϕU1 − η(U1)ϕU2

where η is a 1-form and ϕ is a (1,1) tensor field. ∇̂ reduces ∇̃ if ϕU1 = U1. Barman
[9] studied another type of a quarter-symmetric non-metric connection ∇̂ for which
we get (∇̂U1g)(U2, U3) = 2η(U1)g(U2, U3), where η is a non-zero 1-form and the
author called this a quarter-symmetric non-metric ϕ-connection. Some geometric
properties of Riemannian manifolds with special structures such as complex, con-
tact, golden, statistical, etc. have been changed when consider different types of
connections. Kenmotsu manifolds with different types of connections have been
studied in [5, 13, 28, 25, 33].

In this paper, we define a new type of quarter-symmetric non-metric con-
nection ∇̂ which satisfies the conditions (∇̂U1ϕ)U2 = 0 and (∇̂U1η)U2 = 0. We
call this connection as quarter-symmetric non-metric ϕ and η- connection. This
connection will be a good reference for future works on manifolds with special
contact structures. We investigate the geometry of Kenmotsu manifolds under
special conditions of the Z-tensor using this connection. In Section 3, we obtain
basic curvature properties of Kenmotsu manifolds admitting quarter-symmetric
non-metric ϕ and η- connection. In Section 4, we examine geometric properties of
Kenmotsu manifolds satisfying some special conditions on Z−tensor. We proved
the following results:

• A Kenmotsu manifold is Z-semi-symmetric if and only if it is Ricci semi-
symmetric with respect to ∇.

• On an Einstein Kenmotsu manifold endowed with ∇̂, we have R̂ · Ẑ = 0.

• On a Kenmotsu manifold Z(U1, ξ) ·R = 0 cannot be satisfied.

• If a Kenmotsu manifold satisfies Ẑ(U1, ξ) · R̂ = 0 condition, then it is
η−Einstein.

On the other hand, we consider T−tensor which is a general curvature tensor and
we obtain a classification for special curvature tensor such as conformal, quasi-
conformal, conharmonic, concircular and projective curvature tensor. Finally, we
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consider an example of 5-dimensional Kenmotsu manifolds with respect to ∇̂ to
observe our results.

2 Kenmotsu manifolds

Let M be a (2n + 1)-dimensional differentiable manifold with (1, 1)−tensor
field ϕ, a vector field ξ, a 1-form η and the Riemannian metric g. If the following
conditions are satisfied for all vector fields U1, U2 on Γ(TM), then M is called an
almost contact metric manifold [11]:

ϕ2U1 = −U1 + η(U1)ξ, (1)

η(ξ) = 1, ϕ(ξ) = 0, η ◦ ϕ = 0, g(U1, ξ) = η(U1), (2)

g(ϕU1, ϕU2) = g(U1, U2)− η(U1)η(U2). (3)

We state 4-tuple as S = (ϕ, ξ, η, g) for an almost contact metric structure. S is
reduced to some special structures via different properties of the structure. (M, S)
is called an almost Kenmotsu manifold if the following conditions are satisfied

dη = 0; dΩ = 2η ∧ Ω

where Ω is the 2-form defined by Ω(U1, U2) = g(U1, ϕU2).

Theorem 1. (M, S) is a Kenmotsu manifold if and only if

(∇U1ϕ)U2 = g(ϕU1, U2)ξ − η(U2)ϕU1 (4)

for all U1, U2 ∈ Γ(TM)[19].

From now on, we use only the notation M instead of Kenmotsu manifold
(M, S). By using the above relations, it follows that

∇U1ξ = U1 − η(U1)ξ, (5)

(∇U1η)(U2) = g(U1, U2)− η(U1)η(U2), (6)

R(U1, U2)ξ = η(U1)U2 − η(U2)U1, (7)

R(ξ, U1)U2 = η(U2)U1 − g(U1, U2)ξ, (8)

η(R(U1, U2)U3) = g(U1, U3)η(U2)− g(U2, U3)η(U1), (9)

Ric(ϕU1, ϕU2) = Ric(U1, U2) + 2nη(U1)η(U2), (10)

Ric(U1, ξ) = −2nη(U1), (11)

where R and Ric denote the curvature tensor and the Ricci tensor of M, re-
spectively. M is said to be a η-Einstein manifold if there exists the real valued
functions λ1, λ2 such that Ric(U1, U2) = λ1g(U1, U2) + λ2η(U1)η(U2). From (11),
it is obvious that λ1 + λ2 = −2n.
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3 Quarter-symmetric non-metric ϕ and η-connection
on Kenmotsu manifolds

This section deals with a special type of quarter-symmetric non-metric ϕ and
η-connection on a Kenmotsu manifold. Let us define a map ∇̂ : Γ(TM) → Γ(TM)
on a Kenmotsu manifold by

∇̂U1U2 = ∇U1U2−η(U1)ϕU2+g(U1, U2)ξ−η(U2)U1−η(U1)U2+η(U1)η(U2)ξ. (12)

for all U1, U2 ∈ Γ(TM), where ∇ is the Levi-Civita connection of M . It is easy
to verify that ∇̂ is a linear connection.

Using (12), the torsion tensor Tor of ∇̂ is given by

Tor(U1, U2) = ∇̂U1U2 − ∇̂U2U1 − [U1, U2] = η(U2)ϕU1 − η(U1)ϕU2. (13)

On the other hand, by using basics on tensor calculus we get

(∇̂U1g)(U2, U3) = ∇̂U1g(U2, U3)− g(∇̂U1U2, U3)− g(U2, ∇̂U1U3)

= 2η(U1)g(U2, U3)− 2η(U1)η(U2)η(U3) ̸= 0. (14)

This shows that ∇̂ is a quarter-symmetric non-metric connection. By making
use of (4) and (12), it is obvious that

(∇̂U1ϕ)(U2) = ∇̂U1ϕU2 − ϕ(∇̂U1U2) = 0, (15)

and by using (6) and (12) , we see that

(∇̂U1η)(U2) = ∇̂U1ηU2 − η(∇̂U1U2) = 0. (16)

Thus, ∇̂ defined by (12) to (16) is a special type of quarter-symmetric non-
metric ϕ and η-connection on Kenmotsu manifolds.

Conversely, let us show that ∇̂ is defined on M satisfying (13) to (16) is given
by (12). Let H be a tensor field of type (1, 2) and write

∇̂U1U2 = ∇U1U2 +H(U1, U2). (17)

Then, we conclude that

Tor(U1, U2) = H(U1, U2)−H(U2, U1). (18)

Further, using (17), it follows that

(∇̂U1g)(U2, U3) = −g(H(U1, U2), U3)− g(U2, H(U1, U3)). (19)

In view of (14) and (19) one obtains,

g(H(U1, U2), U3) + g(U2, H(U1, U3)) = −2η(U1)g(U2, U3) + 2η(U1)η(U2)η(U3).(20)
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Also using (18) and (20), we derive that

g(Tor(U1, U2), U3) + g(Tor(U3, U1), U2) + g(Tor(U3, U2), U1) = 2g(H(U1, U2), U3)

+2η(U1)g(U2, U3) + 2η(U2)g(U1, U3)− 2η(U3)g(U1, U2)− 2η(U1)η(U2)η(U3).

From the above equation yields,

g(H(U1, U2), U3) =
1

2
[g(Tor(U1, U2), U3) + g(Tor(U3, U1), U2) (21)

+g(Tor(U3, U2), U1)]− η(U1)g(U2, U3)− η(U2)g(U1, U3)

+η(U3)g(U1, U2) + η(U1)η(U2)η(U3).

Let Tor′ be a tensor field of type (1, 2) given by

g(Tor′(U1, U2), U3) = g(Tor(U3, U1), U2). (22)

Adding (13) and (22), we obtain

Tor′(U1, U2) = g(U1, ϕU2)ξ − η(U1)ϕU2. (23)

From (21) and by using (22), (23) we have

g(H(U1, U2), U3) =
1

2
[g(Tor(U1, U2), U3) + g(Tor′(U1, U2), U2)

+g(Tor′(U2, U1), U1)]− η(U1)g(U2, U3)− η(U2)g(U1, U3)

+η(U3)g(U1, U2) + η(U1)η(U2)η(U3)

= −η(U1)g(ϕU2, U3)− η(U1)g(U2, U3)− η(U2)g(U1, U3) (24)

+η(U3)g(U1, U2) + η(U1)η(U2)η(U3).

Now contracting U3 in (24) and using (2), one obtains that

H(U1, U2) = −η(U1)ϕU2 + g(U1, U2)ξ − η(U2)U1 − η(U1)U2 + η(U1)η(U2)ξ. (25)

Combining (17) and (25), it follows that

∇̂U1U2 = ∇U1U2 − η(U1)ϕU2 + g(U1, U2)ξ − η(U2)U1 − η(U1)U2 + η(U1)η(U2)ξ.

Finally, we can state following theorem;

Proposition 1. The linear connection given by (12) is a special type of quarter-
symmetric non-metric ϕ and η-connection on Kenmotsu manifolds.

By using (1), (2) and (12), the Riemannian curvature of M with respect to ∇̂
is expressed by

R̂(U1, U2)U3 = R(U1, U2)U3 + η(U1)(∇U2ϕ)(U3)− η(U2)(∇U1ϕ)(U3)

+(∇U2η)(U3)U1 − (∇U1η)(U3)U2 + (∇U1η)(U3)η(U2)ξ

−(∇U2η)(U3)η(U1)ξ + η(U1)g(U2, ϕU3)ξ − η(U2)g(U1, ϕU3)ξ

+η(U1)g(U2, U3)ξ − η(U2)g(U1, U3)ξ + η(U1)η(U3)ϕU2

−η(U2)η(U3)ϕU1 + η(U2)η(U3)U1 − η(U1)η(U3)U2, (26)
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for all (U1, U2, U3 ∈ Γ(TM), where

R̂(U1, U2)U3 = ∇̂U1∇̂U2U3 − ∇̂U2∇̂U1U3 − ∇̂[U1,U2]U3. (27)

By making use of (4) and (6) in (26), finally we get

R̂(U1, U2)U3 = R(U1, U2)U3 + g(U2, U3)U1 − g(U1, U3)U2. (28)

So the equation (28) turns into

R̂(U1, U2)U3 = −R̂(U2, U1)U3, (29)

and then

R̂(U1, U2)U3 + R̂(U2, U3)U1 + R̂(U3, U1)U2 = 0. (30)

Taking the inner product of (28) with U4, it follows that

R̂(U1, U2, U3, U4) = R(U1, U2, U3, U4) + g(U2, U3)g(U1, U4)

−g(U1, U3)g(U2, U4), (31)

where U4 ∈ Γ(TM), R̂(U1, U2, U3, U4) = g(R̂(U1, U2)U3, U4) and R̂(U1, U2, U3, U4)
= g(R(U1, U2)U3, U4). From the equation (31), it follows that

R̂(U1, U2, U3, U4) = −R̂(U1, U2, U4, U3).

Let take a local orthonormal basis of Γ(TM) as {X1, ..., X2n+1}. Then by
putting U1 = U4 = Xi in (31) and taking summation over i, 1 ≤ i ≤ 2n + 1 and
also using (2), we get

R̂ic(U2, U3) = Ric(U2, U3) + 2ng(U2, U3), (32)

where R̂ic and Ric denote the Ricci tensor of M with respect to ∇̄ and ∇ respec-
tively. The relation (32), implies that

R̂ic(U2, U3) = R̂ic(U3, U2).

Let ŝcal and scal denote the scalar curvature of M with respect to ∇̄ and ∇
respectively, i.e., ŝcal =

∑2n+1
i=1 R̂ic(Xi, Xi) and r =

∑2n+1
i=1 Ric(Xi, Xi). Then by

putting U2 = U3 = Xi in (32) and taking summation over i, 1 ≤ i ≤ 2n + 1 and
also using (2), it follows that

ŝcal = scal + 2n(2n+ 1).

Summing up all of the above equations we can state the following theorem:

Theorem 2. Let M be a Kenmotsu manifold M with respect to ∇̂. Then,
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1. the curvature tensor R̂ is given by

R̂(U1, U2)U3 = R(U1, U2)U3 + g(U2, U3)U1 − g(U1, U3)U2,

and R̂ has following symmetry properties:

R̂(U1, U2)U3 = −R̂(U2, U1)U3

R̂(U1, U2)U3 + R̂(U2, U3)U1 + R̂(U3, U1)U2 = 0,

R̂(U1, U2, U3, U4) = − ˜̂
R(U1, U2, U4, U3),

2. the Ricci tensor R̂ic is symmetric and given by

R̂ic(U2, U3) = R̂ic(U2, U3) + 2ng(U2, U3),

3. the scalar curvature R̂ is given by

ŝcal = scal + 2n(2n+ 1).

If R̂ = 0, then the equation (31) turns into

R(U1, U2, U3, U) = g(U1, U3)g(U2, U)− g(U2, U3)g(U1, U). (33)

Therefore, g(R(U1, U2)U3, U) = k[g(U2, U3)g(U1, U) − g(U1, U3)g(U2, U)], where
k = −1. It follows that the Kenmotsu manifolds with respect to the Levi-Civita
connection is a space of constant curvature.

In view of above discussions we state the following result:

Corollary 1. If is M is ∇̂−flat, i.e. R̂ = 0, then it has constant curvature with
respect to Levi-Civita connection ∇.

Putting U3 = U1, U = U2 in (33), we get

R(U1, U2, U1, U2) = [g(U1, U1)g(U2, U2)− g(U1, U2)g(U1, U2)].

Then with the help of the above equation, the sectional curvature of M with
respect of the Levi-Civita connection is obtained as −1. A Kenmotsu manifoldM
has constant sectional curvature −1 if and only if M is obtained by a concircular
structure transformation from Cn × R endowed with the canonical cosymplectic
structure [26]. Thus, we can state the following Corollary:

Corollary 2. If M is ∇̂−flat, then M with respect to the Levi-Civita connection
is obtained by a concircular structure transformation from Cn × R endowed with
the canonical cosymplectic structure.
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4 Z-tensor on a Kenmotsu manifold with respect to
the quarter-symmetric non-metric ϕ and η-connection

In this section we examine Z-tensor on a Kenmotsu manifold with respect to
∇̂. We study some semi-symmetry condition with Z-tensor. We use notations Z
and Ẑ for Z-curvature tensor admitting ∇ and ∇̂, respectively.

Z-tensor on a Kenmotsu manifold with respect to ∇̂ is

Ẑ(U1, U2) = R̂ic(U1, U2) + ψg(U1, U2) (34)

for all U1, U2 ∈ Γ(TM), where ψ is an arbitrary non-vanishing function on M
[19].

From (32) we obtain

Ẑ(U1, U2) = Ric(U1, U2) + (ψ + 2n)g(U1, U2). (35)

By taking U1 = U2 = ξ, then we get Ẑ(ξ, ξ) = ψ which is not possible to be zero.
Thus we state:

Corollary 3. A Kenmotsu manifold with respect to ∇̂ cannot be Ẑ-flat.

A Riemannian manifold is called semi-symmetic if R · R = 0. This notion
is a generalization of symmetric spaces. Also we recall that a manifold is Ricci
semi-symmetric if R · Ric = 0. Let us take Z instead of Ricc tensor, then we get
R · Z = 0. We call such manifolds Z-semi-symmetric.

Theorem 3. A Kenmotsu manifold is Z-semi-symmetric if and only if it is Ricci
semi-symmetric with respect to ∇.

Proof. Let U1, U2, U3, U4 ∈ Γ(TM). Then we have

(R(U1, U2) · Z)(U3, U4) = Z(R(U1, U2)U3, U4) + Z(U3, R(U1, U2)U4).

Then from the definition of the Z-tensor and symmetry properties of R we get

(R(U1, U2) · Z)(U3, U4) = (R(U1, U2) ·Ric)(U3, U4)

which gives the proof.

Since an Einstein manifold is Ricci semi-symmetric, we can state:

Corollary 4. An Einstein Kenmotsu manifold is Z-semi-symmetric.

The converse of the above corollary is not true in general.

Lemma 1. On a Kenmotsu manifold we have

(R̂(U1, U2) · Ẑ)(U3, U4) = (R(U1, U2) · Z)(U3, U4) + T(U1, U2, U3, U4)

for all U1, U2, U3, U4 ∈ Γ(TM), where

T(U1, U2, U3, U4) = g(U2, U3)Ric(U1, U4) + g(U2, U4)Ric(U1, U3) (36)

−g(U1, U3)Ric(U2, U4)− g(U1, U4)Ric(U2, U3).
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Proof. For all U1, U2, U3, U4 ∈ Γ(TM), we have

(R̂(U1, U2) · Ẑ)(U3, U4) = Ẑ(R̂(U1, U2)U3, U4) + Ẑ(U3, R̂(U1, U2)U4).

Then from (28) and (34) we get

Ẑ(R̂(U1, U2)U3, U4) = Z(R(U1, U2)U3, U4) + 2n(R(U1, U2, U3, U4))

+g(U2, U3)Ric(U1, U4)− g(U1, U3)Ric(U2, U4)

(2n+ ψ)[g(U2, U4)g(U1, U3)− g(U1, U4)g(U2, U3)]

and

Ẑ(U3, R̂(U1, U2)U4) = Z(U3, R(U1, U2)U4) + 2nR(U1, U2, U4, U3)

+g(U2, U4)Ric(U1, U3)− g(U1, U4)Ric(U2, U3)

+(2n+ ψ)[g(U2, U4)g(U1, U3)− g(U1, U4)g(U2, U3)].

Taking into consideration the last two equalities we obtain (36).

Corollary 5. On a Kenmotsu manifold endowed with the connection ∇̂, (R̂(U1, U2)·
Ẑ) = 0 if and only if M is Z−semi-symmetric and T = 0.

As we can see that if the manifold is Einstein then we have T = 0. Hence,
from Corollary 4 we conclude:

Theorem 4. On an Einstein Kenmotsu manifold endowed with the connection
∇̂, we have R̂(U1, U2) · Ẑ = 0.

In [12] it is proved that a Kenmotsu manifold satisfying R(ξ, U).Ric = 0 is an
Einstein manifold. Thus, from Corollary 4 and Lemma 1 we have:

Corollary 6. LetM be a Kenmotsu manifold with respect to the quarter-symmetric
non-metric ϕ and η-connection. If R(ξ, U) ·Ric = 0, then we have R̂(ξ, U) · Ẑ = 0.

For U1, U2 = ξ, U3, U4, U5 vector fields on M , (Z(U1, ξ) ·R) is defined by

(Z(U1, ξ) ·R)(U3, U4)U5 = [(U1 ∧Z ξ) ·R] (U3, U4)U5

where ∧Z is an endomorphism on Γ(TM) is defined by

(U1 ∧Z U2)U3 = Z(U2, U3)U1 − Z(U1, U3)U2.

Thus, we obtain

((Z(U1, ξ) ·R))(U3, U4)U5 = (U1 ∧Z ξ)R)(U3, U4)U5 −R((U1 ∧Z ξ)U3, U4)U5

−R(U3, (U1 ∧Z ξ)U4)U5 −R(U3, U4)(U1 ∧Z ξ)U5.
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Suppose that ((Z(U1, ξ) ·R))(U3, U4)U5 = 0. Then from the definition of Z-tensor
and using the above equality we get

Z(ξ,R(U3, U4)U5)U1 − Z(U1, R(U3, U4)U5)ξ − Z(ξ, U3)R(U1, U4)U5

+Z(U1, U3)R(ξ, U4)U5 − Z(ξ, U4)R(U3, U1)U5 + Z(U1, U4)R(U3, ξ)U5

−Z(ξ, U5)R(U3, U4)U1 + Z(U1, U5)R(U3, U4)ξ = 0. (37)

By using Ricci and Riemann curvature properties we obtain ;

Z(ξ,R(U3, U4)U5)U1 = (−2n+ ψ)η(R(U3, U4)U5)U1,

Z(U1, R(U3, U4)U5)ξ = Ric(U1, R(U3, U4)U5)ξ + ψR(U3, U4, U5, U1)ξ,

Z(ξ, U3)R(U1, U4)U5 = (−2n+ ψ)η(U3)R(U1, U4)U5,

Z(U1, U3)R(ξ, U4)U5 = η(U5)Ric(U1, U3)U4 + ψη(U5)g(U1, U3)U4

−g(U4, U5)Ric(U1, U3)ξ − ψg(U4, U5)g(U1, U3)ξ,

Z(ξ, U4)R(U3, U1)U5 = (−2n+ ψ)η(U4)R(U3, U1)U5,

Z(U1, U4)R(U3, ξ)U5 = −η(U5)Ric(U1, U4)U3 − ψη(U5)g(U1, U4)U3

+g(U3, U5)Ric(U1, U4)ξ + ψg(U3, U5)g(U1, U4)ξ,

Z(ξ, U5)R(U3, U4)U1 = (−2n+ ψ)η(U5)R(U3, U4)U1,

Z(U1, U5)R(U3, U4)ξ = η(U3)Ric(U1, U5)U4 + ψη(U3)g(U1, U5)U4

−η(U4)Ric(U1, U5)U3 − ψη(U4)g(U1, U5)U3.

We put these equalities into (37). Also, by taking inner product with ξ we get

−2n(−g(U3, U1)η(U5)η(U4) + g(U4, U1)η(U3)η(U5))

−ψ(R(U3, U4, U5, U1) + g(U4, U5)g(U1, U3)− g(U3, U5)g(U1, U4)

+η(U4)η(U5)Ric(U1, U3)− η(U3)η(U5)Ric(U1, U4)

−g(U4, U5)Ric(U1, U3) + g(U3, U5)Ric(U1, U4) = 0. (38)

By choosing U3 = ξ we obtain

2nη(U1)g(ϕU4, ϕU5) = 0

which provides that ((Z(U1, ξ) ·R))(U3, U4)U5 can not be zero. Thus we state:

Theorem 5. On a Kenmotsu manifold Z(U1, ξ) ·R = 0 cannot satisfy.

We consider an η-Einstein Kenmotsu manifold. Since Ric(ξ, ξ) = −2n, we
have λ1 + λ2 = −2n. As we know η-Einstein Kenmotsu manifold is a natural
example of N(k)−quasi-Einstein manifold. In [22], it is proven that:

Theorem 6. An n−dimensional N(k)−quasi-Einstein manifold (Mn, g) satisfies
the condition Z(U, ξ) ·R = 0 if and only if λ1 + λ2 = 0 [22].

By this theorem we can see that an η-Einstein Kenmotsu manifold cannot
satisfy the condition Z(U, ξ) ·R = 0. Thus we state an example for Theorem 5.
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Theorem 7. If a Kenmotsu manifold satisfies Ẑ(U1, ξ) · R̂ = 0 condition then it
is η−Einstein.

Proof. Suppose that Ẑ(U1, ξ) · R̂ = 0. Then we have

Ẑ(ξ, R̂(U3, U4)U5)U1 − Ẑ(U1, R̂(U3, U4)U5)ξ − Ẑ(ξ, U3)R̂(U1, U4)U5

+Ẑ(U1, U3)R̂(ξ, U4)U5 − Ẑ(ξ, U4)R̂(U3, U1)U5 + Ẑ(U1, U4)R̂(U3, ξ)U5

−Ẑ(ξ, U5)R̂(U3, U4)U1 + Ẑ(U1, U5)R̂(U3, U4)ξ = 0. (39)

By using curvature properties of (M, ∇̂) we obtain;

Ẑ(ξ, R̂(U3, U4)U5)U1 = Z(ξ,R(U3, U4)U5)U1 + (2n+ ψ)[η(U3)g(U4, U5)

−η(U4)g(U3, U5)]U1,

Ẑ(U1, R̂(U3, U4)U5)ξ = Z(U1, R(U3, U4)U5)ξ + g(U3, U5)Ric(U1, U4)ξ

−g(U4, U5)Ric(U1, U3)ξ + (2n+ ψ)[g(U3, U5)g(U1, U4)

−g(U4, U5)g(U1, U3)]ξ),

Ẑ(ξ, U3)R̂(U1, U4)U5 = Z(ξ, U3)R(U1, U4)U5 + ψη(U3)[g(U1, U5)U4

−g(U4, U5)U1] + 2η(U3)R(U1, U4)U5,

Ẑ(U1, U3)R̂(ξ, U4)U5 = Z(U1, U3)R(ξ, U4)U5 + g(U3, U5)Ric(U1, U3)ξ

−η(U5)Ric(U1, U3)U4 + ψ[g(U4, U5)g(U1, U3)ξ

−η(U5)g(U1, U3)U4],

Ẑ(ξ, U5)R̂(U3, U4)U5 = Z(ξ, U4)R(U3, U4)U5 + ψη(U4)[g(U1, U3)U1

−g(U1, U5)U3] + 2nη(U4)R(U3, U1)U5,

Ẑ(U1, U4)R̂(ξ, U3)U5 = −Z(U1, U4)R(U3, ξ)U5 − g(U3, U5)Ric(U1, U4)ξ

+η(U5)Ric(U1, U4)U3 − ψ[g(U3, U5)g(U1, U4)ξ

+η(U5)g(U1, U4)U3],

Ẑ(ξ, U5)R̂(U3, U4)U1 = Z(ξ, U5)R(U3, U4)U1 + ψη(U5)[g(U3, U1)U4

−g(U4, U1)U3] + 2η(U5)R(U3, U4)U1,

Ẑ(U1, U5)R̂(U3, U4)ξ = Z(U1, U5)R(U3, U4)ξ + (ψ + 4n)[η(U4)g(U1, U5)U3

−η(U3)g(U1, U5)U4] +Ric(U1, U5)η(U4)U3

−Ric(U1, U5)η(U3)U4.

We introduce these equalities into (39). Then we have

(ψ − 2n)[η(R(U3, U4)U5)U1 −Ric(U1, R(U3, U4)U5)ξ + η(U3)g(U1, U5)U4

−η(U4)g(U1, U5)U1] + 2(ψ + n)[η(U3)g(U4, U5)U1 − η(U4)g(U3, U5)U1]

−ψ[η(U3)R(U1, U4)U5 + η(U4)R(U3, U1)U5 + η(U5)R(U3, U4)U1

−R(U3, U4, U5, U1)ξ + η(U5)g(U1, U3)U4 + η(U5)g(U1, U4)U3

+g(U4, U5)g(U1, U3)ξ + g(U3, U5)g(U1, U4)ξ]− 3[g(U3, U5)Ric(U1, U4)

−g(U4, U5)Ric(U1, U3)]ξ + η(U5){[Ric(U1, U3)−Ric(U1, U4)]ξ

+Ric(U1, U3)U4 +Ric(U1, U4)U3}) = 0.
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By taking inner product ξ and by choosing U3 = ξ, and after a long computation,
we get

0 = η(U5){[(−ψ + 2n)− 3]Ric(ϕU1, ϕU4)− ψg(ϕU1, ϕU4)}.

From (1) and (10) we obtain

Ric(U1, U4) =
ψ

2n− ψ − 3
g(U1, U4)−

2n(2n− ψ − 3) + ψ

2n− ψ − 3
η(U1)η(U4).

This proves that M is η−Einstein.

Let P be any curvature tensor of a type (1, 3). Suppose that P satisfies the
following condition:

g(P(U1, U2)U3, U4) = g(P(U1, U2)U4, U3), (40)

for all U1, U2, U3, U4 vector fields on M . Then, by using (35) we get

(P(U1, U2) · Ẑ)(U3, U4) = (P(U1, U2) ·Ric)(U3, U4).

Therefore, we obtain

Theorem 8. Let M be Kenmotsu manifold and P be a (1, 3)−type curvature
tensor which satisfies (40). If M is P− Ricci semi-symmetric with respect to

Levi-Civita connection ∇, then we have P · Ẑ = 0.

We can state following corollary:

Corollary 7. On a Ricci semi-symmetric Kenmotsu manifold we have R · Ẑ = 0.

In [30], the authors defined a generalization of curvature tensors with named T-
tensors. In same the paper, the authors proved that a T−tensor do not satisfy the
condition (40) in general. Also, they state that quasi- conformal (C̃), conformal
(C), conharmonic (K), concircular (V) and M-projective (W) curvature tensors
satisfy (40). Thus we can state:

Corollary 8. Let M be a Kenmotsu manifold with respect to ∇̂. If M is

• quasi-conformal Ricci semi-symmetric with respect to ∇, then C̃ · Ẑ = 0

• conformal Ricci semi-symmetric with respect to ∇, then C · Ẑ = 0

• conharmonic Ricci semi-symmetric with respect to ∇, then K · Ẑ = 0

• concircular Ricci semi-symmetric with respect to ∇, then V · Ẑ = 0

• M-projective Ricci semi-symmetric with respect to ∇, then W · Ẑ = 0.
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5 An example of Kenmotsu manifolds admitting ∇̂

In this section we consider a 5−dimensional example of Kenmotsu manifold.
In [16] this example was examined by applying the generalized Tanaka-Webster
connection. The authors computed the covariant derivatives of basis vector fields
with respect to the Levi-Civita connection. By using these equalities we apply
our new connection to this example and we verify some results which have been
proved in the sections.

Let M be a 5−dimensional manifold defined by

M = {P : P = (z1, z2, z3, z4, z5) ∈ R5, zi ∈ R, 1 ≤ i ≤ 5}

where (z1, z2, z3, z4, z5) are the standard coordinates in R5. Let consider 5 vector
fields on M as follow;

X1 = e−z5 ∂

∂z1
, X2 = e−z5 ∂

∂z2
, X3 = e−z5 ∂

∂z3
, X4 = e−z5 ∂

∂z4
, X5 = e−z5 ∂

∂z5
.

(41)

Define a Riemannian metric g by g(Xi, Xj) = 0 for i ̸= j, 1 ≤ i, j ≤ 5 and
g(Xi, Xi) = 1. Thus, the vector fields (41) have formed an orthonormal vector
fields set which is the basis of M .

Let ϕ and η be given by

η(U1) = g(U1, X5), for all U1 ∈ Γ(TM)

ϕX1 = X3, ϕX2 = X4, ϕX3 = −X1, ϕX4 = −X2, ϕX5 = 0.

It is obvious that η(X5) = 1. We can write U1 =
∑5

i=1 aiXi for scalars ai on
M . Thus by following easy computations we obtain ϕ2U1 = −U1 + a5X5 which is
equal to

ϕ2U1 = −U1 + η(U1)X5.

We obtain g(ϕU1, ϕU2) = g(U1, U2) − η(U1)η(U2) for U2 =
∑5

j=1 bjXj . Thus
S = (ϕ, η,X5 = ξ, g) defines an almost contact metric structure on M . Moreover,
we get the fundamental 2−form Ω as

Ω(
∂

∂z1
,
∂

∂z3
) = g(

∂

∂z1
, ϕ

∂

∂z3
) = g(

∂

∂z1
,− ∂

∂z1
) = −e2z5

and hence, we obtain Ω = −e2z5dz1 ∧ dz3. Thus, dΩ = −2e2z5dz5 ∧ dz1 ∧ dz3 =
2η ∧ Ω. Also, it can be seen that M is normal. And finally (M,ϕ, ξ, η, g) is a
Kenmotsu manifold.

From the definition of Lie derivation on M , we obtain

[X1, X2] = [X1, X3] = [X1, X4] = [X2, X3] = 0, [X1, X5] = X1,

[X4, X5] = X4, [X2, X4] = [X3, X4] = 0, [X2, X5] = X2, [X3, X5] = X3.
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Recall the classical Kozsul’s formula from the Riemannian geometry.

2g(∇U1U2, U3) = U1g(U2, U3) + U2g(U1, U3)− U3g(U1, U2)− g(U1, [U2, U3])

−g(U2, [U1, U3]) + g(U3, [U1, U2]),

for all U1, U2, U3 ∈ Γ(TM). Taking X5 = ξ and using Koszul’s formula we get the
following

∇X1X1 = −X5, ∇X1X5 = X1, ∇X2X2 = −X5, ∇X2X5 = X2,

∇X3X3 = −X5, ∇X3X5 = X3, ∇X4X4 = −X5, ∇X4X5 = X4,

and the others are zero.
Let consider M with the connection ∇̂ defined in (12). Thus, we obtain

the covariant derivatives of vector fields X1, X2, X3, X4, X5 as ∇̂XiXj = 0 for

1 ≤ i, j ≤ 5. This shows that all the Christoffel symbols of ∇̂ vanish and from
this reason the manifold has become ∇̂−flat. Moreover, we get the Ricci curvature
of M with ∇̂ as R̂ic = 0 and so the scalar curvature is ŝcal = 0.

Ẑ curvature tensor of M is given by

Ẑ(U1, U2) = ψg(U1, U2) = ψ
5∑

i=1

aibi ̸= 0

for U1 =
∑5

i=1 aiXi and U2 =
∑5

j=1 bjXj . Thus M is not Ẑ−flat and then we
verified the Theorem 3.

Since R̂ = 0 from (28), we get

R(U1, U2)U3 = −g(U2, U3)U1 + g(U1, U3)U2 (42)

and thus we obtain

(R(U1, U2) · Z)(U3, U4) = Z(−g(U2, U3)U1 + g(U1, U3)U4, U4)

+Z(U3,−g(U2, U4)U1 + g(U1, U3)U4),

for all U1, U2, U3 ∈ Γ(TM). From the definition of Z we get (R(U1, U2)·Z)(U3, U4) =

T(U1, U2, U3, U4). Since the manifold is flat with respect to ∇̂, we obtain R̂ · Ẑ = 0
and thus the Lemma 1 is verified. On the other hand, by using the definition of
T and since Ric = −4 [16] we get T(X1, X2, X3, X4) = 0. Thus R ·Z = 0 and this
verifies the Corollary 5.

From (42), we get

(Z(U1, U2) ·R)(U3, U5) = −4{η(U3)g(U4, U5)U1η(U3)g(U1, U5)U4 + η(U5)U4

−g(U4, U5)ξ + η(U4)g(U1, U5, U3)− η(U5)U3

+g(U3, U5)ξ + η(U5)g(U1, U4)U3 − η(U5)g(U1, U3)U4

+η(U3)U4 − η(U4)U3}+ ψ{η(U3)g(U4, U5)U1}.

Let take Ui = Xi, 1 ≤ i ≤ 5. Then we obtain

(Z(X1, X2) ·R)(X3, X4)X5 = 4{X3 −X4}.
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Suppose that Z ·R = 0. By taking inner product with X3 we get 4g(X3, X3) = 0,
which is impossible. So, we have a contradiction, Z · R = 0 can not vanish. This
verifies the Theorem 5.
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[26] Pitiş, G., Geometry of Kenmotsu manifolds, Braşov, 2007, page-151.
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