
Bulletin of the Transilvania University of Braşov
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Abstract

In this paper, we are mainly interested in finding sufficient conditions
for the q-close-to-convexity of certain families of q-Bessel functions with re-
spect to certain functions in the open unit disk. The strong convexity and
strong starlikeness of the same functions are also the part of our investigation.
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1 Introduction

Let A denote the class of functions f of the form

f(z) = z +

∞∑
n=2

anz
n, (1)

analytic in the open unit disk U = {z : |z| < 1} and S denote the class of all

functions in A which are univalent in U. Let S∗ (α) , C (α), K (α) ,
∼
S∗ (α) and

∼
C (α) denote the classes of starlike, convex, close-to-convex, strongly starlike and
strongly convex functions of order α, respectively, and are defined as:

S∗ (α) =

{
f : f ∈ A and ℜ

(
zf ′ (z)

f (z)

)
> α, z ∈ U, α ∈ [0, 1)

}
,

C (α) =

{
f : f ∈ A and ℜ

(
(zf ′ (z))′

f ′ (z)

)
> α, z ∈ U,α ∈ [0, 1)

}
,
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K (α) =

{
f : f ∈ A and ℜ

(
zf ′ (z)

g (z)

)
> α, z ∈ U, α ∈ [0, 1) , g ∈ S∗(0) :≡ S∗

}
,

∼
S∗ (α) =

{
f : f ∈ A and

∣∣∣∣arg(zf ′ (z)f (z)

)∣∣∣∣ < απ

2
, z ∈ U, α ∈ (0, 1]

}
and

∼
C (α) =

{
f : f ∈ A and

∣∣∣∣arg(1 + zf ′′ (z)

f ′ (z)

)∣∣∣∣ < απ

2
, z ∈ U, α ∈ (0, 1]

}
.

It is clear that

∼
S∗ (1) = S∗ (0) = S∗,

∼
C (1) = C (0) = C and K (0) = K,

where S∗, C andK are the classes of starlike, convex and close-to-convex functions,
respectively. If f and g are two analytic functions, then the function f is said to
be subordinate to g, written as f(z) ≺ g(z), if there exists a Schwarz function w
with w(0) = 0 and |w| < 1 such that f(z) = g(w(z)). Furthermore, if the function
g is univalent in U, then we have the following equivalent relation:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

The q-analogue of the normalized starlike functions was first introduced by Ismail
et al. [7] with the help of q-difference operator Dq. The operator Dq applying on
the analytic functions is defined by

(Dqf) (z) =

{
f(z)−f(qz)
z(1−q) , z ∈ U\{0} , q ∈ (0, 1),

f ′(0), z = 0, q ∈ (0, 1).
(2)

We can easily observe from the definition of (2) that

lim
q→1−

{(Dqf) (z)} = f ′(z), z ∈ U.

By using q-difference operator Dq given by (2) the classes of q-starlike functions
and q-close-to-convex functions are defined as follows:

A function f ∈ A is said to be in the class q-starlike functions S∗q if∣∣∣∣ z

f(z)
(Dqf) (z)−

1

1− q

∣∣∣∣ ≤ 1

1− q
, z ∈ U, q ∈ (0, 1). (3)

It is observed that, when q → 1−, the function class S∗q defined by (3) reduces to
the normalized starlike functions class S∗.

A function f ∈ A is said to be in the class q-close-to-convex functions Kq if
there exists a function h ∈ S∗ such that∣∣∣∣ z

h(z)
(Dqf) (z)−

1

1− q

∣∣∣∣ ≤ 1

1− q
, z ∈ U, q ∈ (0, 1). (4)
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It is observed that when q → 1−, the function class Kq defined by (4) reduces to
the normalized close-to-convex functions class K.

For functions f, g ∈ A given by (1) and g(z) = z +
∞∑
n=2

bnz
n, respectively, the

Hadamard product (or convolution) of these functions is defined by

(f ∗ g) (z) = z +

∞∑
n=2

anbnz
n, z ∈ U.

After the solution of famous Bieberbach conjecture with the help of hyperge-
ometric functions, some special functions have become very attractive for many
mathematicians. The basic q-hypergeometric function was first introduced by Sri-
vastava [14]. In the last three decades, some different geometric properties like
univalence, starlikeness, convexity and close-to-convexity of many special func-
tions were discussed by many authors. These geometric properties of different
special functions can be found in the papers [2, 3, 4, 8, 11, 15, 12] and references
therein. Also, for comprehensive informations about q-calculus we refer [5, 13].

Our main objective in the present paper is to investigate q-close-to-convexity
of certain family of q-Bessel functions. Moreover, we deal with strong starlikeness
and strong convexity of the mentioned functions. The motivation of this paper is
due to the work of Srivastava and Bansal [16] and Raza and Din [10].

This paper is organized as follows: in the rest of this section we remember
the definitions of Jackson’s q-Bessel functions and define some families of q-Bessel
functions by using Hadamard product. Also, we give the set of lemmas which will
be needed in the proofs. In subsection 2.1 we deal with the q-close-to-convexity
of some families of q-Bessel functions with respect to certain functions. In subsec-
tion 2.2 we investigate strong convexity and strong starlikeness of the mentioned
functions.

The Jackson’s second and third q-Bessel functions are defined by [1]

J (2)
v (z; q) =

(
qv+1; q

)
∞

(q; q)∞

∞∑
n=0

(−1)n
(
z
2

)2n+v
(q; q)n (q

v+1; q)n
qn(n+v) (5)

and

J (3)
v (z; q) =

(
qv+1; q

)
∞

(q; q)∞

∞∑
n=0

(−1)n z2n+v

(q; q)n (q
v+1; q)n

q
1
2
n(n+1), (6)

where q ∈ (0, 1) , v > −1, z ∈ C with conditions

(b; q)0 = 1, (b; q)n =

n∏
k=1

(
1− bqk−1

)
, (b; q)∞ =

∞∏
k=1

(
1− bqk−1

)
.

The functions defined by (5) and (6) do not belong to the class A. We consider the
following normalized forms of the Jackson’s second and third q-Bessel functions.

φ(2)
v (z; q) = 2vcv(q)z

1− v
2 J (2)

v (
√
z; q) =

∞∑
n=0

(−1)nqn(n+v)

4n (q; q)n (q
v+1; q)n

zn+1 (7)
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and

φ(3)
v (z; q) = cv(q)z

1− v
2 J (3)

v (
√
z; q) =

∞∑
n=0

(−1)nq
1
2
n(n+1)

(q; q)n (q
v+1; q)n

zn+1, (8)

where cv (q) =
(q;q)∞

(qv+1;q)∞
. As a result of the normalizations defined by (7) and (8),

these functions belong to the class A.
To discuss the q-close-to-convexity of certain families of q-Bessel functions

with respect to the functions z
1−z and z

1−z2 , we consider the following Hadamard
products:

H(2)
v (z; q) =

z

1 + z
∗ φ(2)

v (z; q) = z +

∞∑
n=2

q(n−1)(n−1+v)

4n−1 (q; q)n−1 (q
v+1; q)n−1

zn

and

H(3)
v (z; q) =

z

1 + z
∗ φ(3)

v (z; q) = z +
∞∑
n=2

q
n(n−1)

2

(q; q)n−1 (q
v+1; q)n−1

zn,

where z
1+z =

∑∞
n=0(−1)nzn+1.

The following lemmas will be used in order to prove our main results.

Lemma 1. [16] Let (An) be a sequence of real numbers such that

Bn =
An(1− qn)

1− q
, ∀n ∈ N, q ∈ (0, 1).

Let
1 ≥ B1 ≥ B2 ≥ B3 ≥ ... ≥ Bn ≥ ... ≥ 0

or
1 ≤ B1 ≤ B2 ≤ B3 ≤ ... ≤ Bn ≤ ... ≤ 2.

Then

f(z) = z +
∞∑
n=2

Anz
n ∈ Kq

with respect to g(z) = z
1−z .

Lemma 2. [9] Let (An) be a sequence of real numbers such that

Bn =
An(1− qn)

1− q
, ∀n ∈ N, q ∈ (0, 1).

Let
1 ≥ B3 ≥ B5 ≥ B5 ≥ ... ≥ B2n−1 ≥ ... ≥ 0

or
1 ≤ B3 ≤ B5 ≤ B5 ≤ ... ≤ B2n−1 ≤ ... ≤ 2.

Then

f(z) = z +

∞∑
n=2

A2n−1z
2n−1 ∈ Kq

with respect to h(z) = z
1−z2 .
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Lemma 3. [6] Let M(z) be convex and univalent in the open unit disk with
condition M(0) = 1. Let F (z) be analytic in the open unit disk with condition
F (0) = 1 and F ≺M in the open unit disk. Then ∀ n ∈ N ∪ {0}, we obtain

(n+ 1)z−1−n
z∫

0

tnF (t)dt ≺ (n+ 1)z−1−n
z∫

0

tnM(t)dt.

2 Main results

In this section we present our main results. This section is divided into two
subsections.

2.1 q-Close-to-convexity of the functions H
(2)
v (z; q) and H

(3)
v (z; q)

In this part, we present some sufficient conditions for the q-close-to-convexity

of the functions H
(2)
v (z; q) and H

(3)
v (z; q).

Theorem 1. Let v ≥ 0 and n ∈ N = {1, 2, . . . } .
a. If q ∈

(
0, 12
]
and

4(1− qn)2(1− qv+n) ≥ (1− qn+1)q2n+v−1, (9)

then the function z 7→ H
(2)
v (z; q) is q-close-to-convex in the open unit disk with

respect to p(z) = z
1−z .

b. If q ∈
(
0, 3

10

]
and

(1− qn)2(1− qv+n) ≥ (1− qn+1)qn, (10)

then the function z 7→ H
(3)
v (z; q) is q-close-to-convex in the open unit disk with

respect to p(z) = z
1−z .

Proof.

a. Consider the function z → H
(2)
v (z; q) as follows:

H(2)
v (z; q) = z +

∞∑
n=2

Hnz
n,

where Hn = q(n−1)(n−1+v)

4n−1(q;q)n−1(q
v+1;q)n−1

. By using Lemma 1, the q-close-to-convexity of

function H
(2)
v (z; q) can be process. If we take n = 1 in the inequality (9) , we have

4(1− q)(1− qv+1) ≥ (1 + q)qv+1. (11)

Now, we construct

Bn =
(1− qn)

1− q
Hn, ∀n ∈ N, q ∈

(
0,

1

2

]
.
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It is easily observed that B1 = 1 and all the values of Bn are positive for n ∈ N.
On the other hand, it is easily seen that

B2 =
(1 + q)qv+1

4 (1− q) (1− qv+1)

and from the inequality (11) we have B2 ≤ 1. Now, we would like to show that
Bn+1 ≤ Bn for all n ≥ 2. For this purpose, consider

Bn+1

Bn
=

(1−qn+1)
1−q

qn(n+v)

4n(q;q)n(q
v+1;q)n

(1−qn)
1−q

q(n−1)(n−1+v)

4n−1(q;q)n−1(q
v+1;q)n−1

=
1− qn+1

1− qn

qn(n+v)

4
n∏

k=1
(1−qk)

n∏
k=1

(1−qv+k)

q(n−1)(n−1+v)

n−1∏
k=1

(1−qk)
n−1∏
k=1

(1−qv+k)

=
1− qn+1

1− qn
q2n+v−1

4(1− qn)(1− qv+n)
=

(
1− qn+1

)
q2n+v−1

4(1− qn)2(1− qv+n)
.

The inequality (9) implies that Bn+1

Bn
≤ 1, so the proof is completed.

b. In order to prove the q-close-to-convexity of function H
(3)
v (z; q), consider the

function z → H
(3)
v (z; q) as follows:

H(3)(z; q) = z +
∞∑
n=2

Knz
n,

where Kn = q
n(n−1)

2

(q;q)n−1(q
v+1;q)n−1

.

By making use of the Lemma 1, the q-close-to-convexity of the functionH
(3)
v (z; q)

can be shown. By taking n = 1 in the inequality (10) , we get

(1− q)(1− qv+1) ≥ (1 + q)q. (12)

Now, we construct

Bn =
(1− qn)

1− q
Kn, ∀n ∈ N, q ∈

(
0,

3

10

]
.

It is easily seen that B1 = 1 and all the values of Bn are positive for n ∈ N. On
the other hand, it is easily obtained that

B2 =
(1 + q)q

(1− q) (1− qv+1)

and from the inequality (12) we have B2 ≤ 1. Now, we would like to show that
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Bn+1 ≤ Bn for all n ≥ 2. For this purpose, consider

Bn+1

Bn
=

(1−qn+1)
1−q

q
n(n+1)

2

(q;q)n(q
v+1;q)n

(1−qn)
1−q

q
n(n−1)

2

(q;q)n−1(q
v+1;q)n−1

=
1− qn+1

1− qn

q
n(n+1)

2
n∏

k=1
(1−qk)

n∏
k=1

(1−qv+k)

q
n(n−1)

2

n−1∏
k=1

(1−qk)
n−1∏
k=1

(1−qv+k)

=
1− qn+1

1− qn
qn

(1− qn)(1− qv+n)
=

(
1− qn+1

)
qn

(1− qn)2(1− qv+n)
.

The inequality (10) implies that Bn+1

Bn
≤ 1, which is desired.

Theorem 2. Let v ≥ 0 and n ∈ N = {1, 2, . . . } .

a. If q ∈
(
0, 35
]
and

16(1− q2n)(1− qv+2n−1)(1− qv+2n)
(
1− q2n−1

)2 ≥ (1− q2n+1)q2v+8n−4, (13)

then the function z 7→ H
(2)
v (z; q) is q-close-to-convex in the open unit disk with

respect to k(z) = z
1−z2 .

b. If q ∈
(
0, 25
]
and

(1− q2n−1)2(1− q2n)(1− qv+2n−1)(1− qv+2n) ≥ (1− q2n+1)q5n−1, (14)

then the function z 7→ H
(3)
v (z; q) is q-close-to-convex in the open unit disk with

respect to k(z) = z
1−z2 .

Proof.

a. By using Lemma 2 the q-close-to-convexity of the function H
(2)
v (z; q) with re-

spect to k(z) = z
1−z2 can be proven. If we take n = 1 in the inequality (13) we

have

16(1− q)2(1 + q)(1− qv+1)(1− qv+2) ≥ (1 + q + q2)q2(v+2). (15)

If we consider

Bn =
(1− qn)

1− q
Hn, ∀n ∈ N, q ∈

(
0,

3

5

]
,

then it is easily observed that B1 = 1 and all the values of Bn are positive for
n ∈ N. On the other hand, it is easily seen that

B3 =
q2(v+2)(1 + q + q2)

16 (1− q) (1− q2) (1− qv+1) (1− qv+2)
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and from the inequality (15) we have B3 ≤ 1. Now, we would like to show that
B2n+1 ≤ B2n−1 for all n ≥ 2. For this purpose, consider

B2n+1

B2n−1
=

(1−q2n+1)
1−q

q2n(2n+v)

42n(q;q)2n(q
v+1;q)2n

(1−q2n−1)
1−q

q(2n−2)(2n−2+v)

42n−2(q;q)2n−2(q
v+1;q)2n−2

=
1− q2n+1

1− q2n−1

q2n(2n+v)

16
2n∏
k=1

(1−qk)
2n∏
k=1

(1−qv+k)

q(2n−2)(2n−2+v)

2n−2∏
k=1

(1−qk)
2n−2∏
k=1

(1−qv+k)

=
1− q2n+1

1− q2n−1

q2v+8n−4

16(1− q2n)(1− qv+2n−1)(1− qv+2n) (1− q2n−1)

=

(
1− q2n+1

)
q2v+8n−4

16(1− q2n)(1− qv+2n−1)(1− qv+2n) (1− q2n−1)2
.

The inequality (13) implies that B2n+1

B2n−1
≤ 1, so the proof is completed.

b. With the help of Lemma 2 we show that the function H
(3)
v (z; q) is q-close-to-

convex in the open unit disk with respect to k(z) = z
1−z2 . If we take n = 1 in the

inequality (13), we have

(1− q)2(1 + q)(1− qv+1)(1− qv+2) ≥ (1 + q + q2)q3. (16)

Now, we construct

Bn =
(1− qn)

1− q
Kn, ∀n ∈ N, q ∈

(
0,

2

5

]
.

It is easily observed that B1 = 1 and all the values of Bn are positive for n ∈ N.
On the other hand, it is easily seen that

B3 =
(1 + q + q2)q3

(1− q)2(1 + q)(1− qv+1)(1− qv+2)

and from the inequality (16) we have B3 ≤ 1. Now, we would like to show that
B2n+1 ≤ B2n−1 for all n ≥ 2. For this purpose, consider

B2n+1

B2n−1
=

(1−q2n+1)
1−q

qn(2n+1)

(q;q)2n(q
v+1;q)2n

(1−q2n−1)
1−q

q(n−1)(2n−1)

(q;q)2n−2(q
v+1;q)2n−2

=
1− q2n+1

1− q2n−1

qn(2n+1)

2n∏
k=1

(1−qk)
2n∏
k=1

(1−qv+k)

q(n−1)(2n−1)

2n−2∏
k=1

(1−qk)
2n−2∏
k=1

(1−qv+k)

=
1− q2n+1

1− q2n−1

q5n−1

(1− q2n)(1− qv+2n−1)(1− qv+2n) (1− q2n−1)

=

(
1− q2n+1

)
q5n−1

(1− q2n)(1− qv+2n−1)(1− qv+2n) (1− q2n−1)2
.

The inequality (14) implies that B2n+1

B2n−1
≤ 1, which is desired.
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2.2 Strong convexity and strong starlikeness of the functions H
(2)
v (z; q)

and H
(3)
v (z; q)

In this section, we are mainly interested in finding some sufficient conditions

for the functions H
(2)
v (z; q) and H

(3)
v (z; q) to belong to the function classes of

strongly convex functions of order α and strongly starlike functions of order α,
respectively.

Theorem 3. Let v > −1 and q ∈ (0, 1).

a. If (1− q) (1− qv)− 2qv > 0, then the function z 7→ H
(2)
v (z; q) ∈

∼
C (α) , where

α =
2

π
arcsin

(
κ
√
1− κ2

4
+

κ
2

√
1− κ2

)
and κ =

qv

(1− q) (1− qv)− qv
.

b. If qv

2{(1−q)(1−qv)−qv} < 1, then the function z 7→ H
(2)
v (z; q) ∈

∼
S∗ (α) , where

α =
2

π
arcsin

(
ψ

√
1− ψ2

4
+
ψ

2

√
1− ψ2

)
and ψ =

qv

2 {(1− q) (1− qv)− qv}
.

Proof.

a. By using the well-known triangle inequality

|z1 + z2| ≤ |z1|+ |z2| , (z1, z2 ∈ C) (17)

with the inequalities

(n+ 1)2 ≤ 4n, qn(n+v) ≤ qnv, (1− q)n ≤ (q; q)n , (1− qv)n ≤
(
qv+1; q

)
n
,

for n ∈ N, we obtain∣∣∣∣(zH′(2)
v (z; q)

)′
− 1

∣∣∣∣ ≤ ∞∑
n=1

qn(n+v) (n+ 1)2

4n (q; q)n (q
v+1; q)n

≤ qv

(1− q) (1− qv)

∞∑
n=1

(
qv

(1− q) (1− qv)

)n−1

=
qv

(1− q) (1− qv)− qv
= κ. (18)

From (18), we concluded that(
zH′(2)

v (z; q)
)′

≺ 1 + κz ⇒
∣∣∣∣arg (zH′(2)

v (z; q)
)′∣∣∣∣ < arcsinκ. (19)

With the help of Lemma 3, take n = 0 with F (z) =
(
zH

′(2)
v (z; q)

)′
and M(z) =

1 + κz, we get

zH
′(2)
v (z; q)

z
≺ 1 +

κ
2
z.
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This implies that

H′(2)
v (z; q) ≺ 1 +

κ
2
z.

As a result ∣∣∣argH′(2)
v (z; q)

∣∣∣ < arcsin
κ
2
. (20)

By using (19) and (20), we obtain∣∣∣∣∣∣∣arg

(
zH

′(2)
v (z; q)

)′
H

′(2)
v (z; q)


∣∣∣∣∣∣∣ =

∣∣∣∣arg (zH′(2)
v (z; q)

)′
− arg

(
H′(2)
v (z; q)

)∣∣∣∣
≤
∣∣∣∣arg (zH′(2)

v (z; q)
)′∣∣∣∣+ ∣∣∣arg (H′(2)

v (z; q)
)∣∣∣

< arcsin
κ
2
+ arcsinκ

= arcsin

(
κ
√

1− κ2

4
+

κ
2

√
1− κ2

)
,

which implies that H
(2)
v ∈

∼
C (α) for α = 2

π arcsin

(
κ
√
1− κ2

4 + κ
2

√
1− κ2

)
.

b. By using the well-known triangle inequality given by (17) with the inequalities

2(n+ 1) ≤ 4n, qn(n+v) ≤ qnv, (1− q)n ≤ (q; q)n , (1− qv)n ≤
(
qv+1; q

)
n
,

for n ∈ N, we can write that∣∣∣H′(2)
v (z; q)− 1

∣∣∣ ≤ ∞∑
n=1

qn(n+v) (n+ 1)2

4n (q; q)n (q
v+1; q)n

≤ 1

2

qv

(1− q) (1− qv)

∞∑
n=1

(
qv

(1− q) (1− qv)

)n−1

=
qv

2 {(1− q) (1− qv)− qv}
= ψ. (21)

From (21), we concluded that

H′(2)
v (z; q) ≺ 1 + ψz ⇒

∣∣∣arg (H′(2)
v (z; q)

)∣∣∣ < arcsinψ. (22)

With the help of Lemma 3, take n = 0 with F (z) = H
′(2)
v (z; q) andM(z) = 1+ψz,

we get

H
(2)
v (z; q)

z
≺ 1 +

ψ

2
z.

As a result ∣∣∣∣∣arg
(
H

(2)
v (z; q)

z

)∣∣∣∣∣ < arcsin
ψ

2
. (23)
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By using (22) and (23), we obtain∣∣∣∣∣arg
(
zH

′(2)
v (z; q)

H
(2)
v (z; q)

)∣∣∣∣∣ =
∣∣∣∣∣arg

(
z

H
(2)
v (z; q)

)
− arg

(
H′(2)
v (z; q)

)∣∣∣∣∣
≤

∣∣∣∣∣arg
(

z

H
(2)
v (z; q)

)∣∣∣∣∣+ ∣∣∣arg (H′(2)
v (z; q)

)∣∣∣
< arcsin

ψ

2
+ arcsinψ

= arcsin

(
ψ

√
1− ψ2

4
+
ψ

2

√
1− ψ2

)
,

which implies that H
(2)
v ∈

∼
S∗ (α) for α = 2

π arcsin

(
ψ
√

1− ψ2

4 + ψ
2

√
1− ψ2

)
.

Theorem 4. Let v > −1, q ∈ (0, 1).

a. If (1− q) (1− qv)− 8q
1
2 > 0, then H

(3)
v (z; q) ∈

∼
C (α) , where

α =
2

π
arcsin

(
κ

√
1− κ2

4
+
κ

2

√
1− κ2

)
, (24)

and κ = 4q
1
2

(1−q)(1−qv)−4q
1
2
.

b. If (1− q) (1− qv)− 4q
1
2 > 0, then H

(3)
v (z; q) ∈

∼
S∗ (α) , where

α =
2

π
arcsin

(
µ

√
1− µ2

4
+
ψ1

2

√
1− ψ2

1

)
, (25)

and µ = 2q
1
2

(1−q)(1−qv)−2q
1
2
.

Proof.

a. By using the well-known triangle inequality given by (17) with the inequalities

(n+ 1)2 ≤ 4n, q
n(n+1)

2 ≤ q
n
2 , (1− q)n ≤ (q; q)n , (1− qv)n ≤

(
qv+1; q

)
n
,

for n ∈ N, we obtain∣∣∣∣(zH′(3)
v (z; q)

)′
− 1

∣∣∣∣ ≤ ∞∑
n=1

q
n(n+1)

2 (n+ 1)2

(q; q)n (q
v+1; q)n

≤ 4q
1
2

(1− q) (1− qv)

∞∑
n=1

(
4q

1
2

(1− q) (1− qv)

)n−1

=
4q

1
2

(1− q) (1− qv)− 4q
1
2

= κ. (26)
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From (18), we concluded that(
zH′(3)

v (z; q)
)′

≺ 1 + κz ⇒
∣∣∣∣arg (zH′(3)

v (z; q)
)′∣∣∣∣ < arcsinκ. (27)

With the help of Lemma 3, take n = 0 with F (z) =
(
zH

′(3)
v (z; q)

)′
and M(z) =

1 + κz, we get

zH
′(3)
v (z; q)

z
≺ 1 +

κ

2
z.

This implies that

H′(3)
v (z; q) ≺ 1 +

κ

2
z.

As a result ∣∣∣argH′(3)
v (z; q)

∣∣∣ < arcsin
κ

2
. (28)

By using (27) and (28), we obtain∣∣∣∣∣∣∣arg

(
zH

′(3)
v (z; q)

)′
H

′(3)
v (z; q)


∣∣∣∣∣∣∣ =

∣∣∣∣arg (zH′(3)
v (z; q)

)′
− arg

(
H′(3)
v (z; q)

)∣∣∣∣
≤
∣∣∣∣arg (zH′(3)

v (z; q)
)′∣∣∣∣+ ∣∣∣arg (H′(3)

v (z; q)
)∣∣∣

< arcsin
κ

2
+ arcsinκ

= arcsin

(
κ

√
1− κ2

4
+
κ

2

√
1− κ2

)
,

which implies that H
(3)
v ∈

∼
C (α) for α = 2

π arcsin

(
κ
√
1− κ2

4 + κ
2

√
1− κ2

)
.

b. By using the well-known triangle inequality given by (17) with the inequalities

(n+ 1) ≤ 2n, q
n(n+1)

2 ≤ q
n
2 , (1− q)n ≤ (q; q)n , (1− qv)n ≤

(
qv+1; q

)
n
,

for n ∈ N, we obtain

∣∣∣H′(3)
v (z; q)− 1

∣∣∣ ≤ ∞∑
n=1

q
n(n+1)

2 (n+ 1)

(q; q)n (q
v+1; q)n

≤ 2q
1
2

(1− q) (1− qv)

∞∑
n=1

(
2q

1
2

(1− q) (1− qv)

)n−1

=
2q

1
2

(1− q) (1− qv)− 2q
1
2

= µ. (29)
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From (29) we conclude that

H′(3)
v (z; q) ≺ 1 + µz ⇒

∣∣∣arg (H′(3)
v (z; q)

)∣∣∣ < arcsinµ. (30)

With the help of Lemma 3, take n = 0 with F (z) = H
′(3)
v (z; q) andM(z) = 1+µz,

we get

H
(3)
v (z; q)

z
≺ 1 +

µ

2
z.

As a result ∣∣∣∣∣arg
(
H

(3)
v (z; q)

z

)∣∣∣∣∣ < arcsin
µ

2
. (31)

By using (30) and (31), we obtain∣∣∣∣∣arg
(
zH

′(3)
v (z; q)

H
(3)
v (z; q)

)∣∣∣∣∣ =
∣∣∣∣∣arg

(
z

H
(3)
v (z; q)

)
− arg

(
H′(3)
v (z; q)

)∣∣∣∣∣
≤

∣∣∣∣∣arg
(

z

H
(3)
v (z; q)

)∣∣∣∣∣+ ∣∣∣arg (H′(3)
v (z; q)

)∣∣∣
< arcsin

µ

2
+ arcsinµ

= arcsin

(
µ

√
1− µ2

4
+
µ

2

√
1− µ2

)
,

which implies that H
(3)
v ∈

∼
S∗ (α) for α = 2

π arcsin

(
µ
√
1− µ2

4 + µ
2

√
1− µ2

)
.
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