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Abstract

The orthodox system of diagnosis in medicine requires that laboratory
procedures should be performed to obtain the results of diagnostic queries.
While this practice is standard, the field of machine learning is now revo-
lutionizing medical diagnoses. Data (medical histories) of different parents
archived over long periods can be used to make predictions on new cases
with reasonable accuracies using suitable machine learning methods. More-
over, in many instances where the current situations of patients do not yet
justify the cost of expensive laboratory test procedures, machine learning
methods can be used to learn past medical data, with which new cases can
be diagnosed. Moreover, cost is more reasonable and justifiable with this
approach. In this work, we apply radial basis function neural network to
the evaluation of semen quality (viability) using some attributes relating to
the patients. Important parameters used to assess the performance of the
considered model include precision, recall, accuracy and F1 score based on
a 10-fold cross-validation scheme.
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1 Introduction

Modern lifestyle is fast changing so many aspects of human life and the quest
to keep up with our now fast paced environment is driving us towards living con-
ditions that adversely affect our health. One of these is the purported decline in
seminal fluid quality which is claimed to be somewhat related to environmental
factors such as pollution and diet change [1], [2]. Recently, many health organi-
zations and agencies are raising awareness on this health issue. Going further,
it becomes necessary that semen analysis is carried out to determine whether its
quality suggest that fertilization capability is not affected; better still, such anal-
ysis is aimed at determining the viability of seminal fluid such that fertilization
chance is unaffected. Generally, laboratory tests are employed for performing the
analysis of semen quality. These laboratory tests are expensive and more so even
tedious [3]. However, there is an emerging trend in employing machine learning
methods for profiling semen in order to ascertain viability. For example, Lin-
neberg, Salamon, Svarer, et al. in their work employed machine learning for the
evaluation of the human sperm head based on morphological features [4]. In the
work, shape discrimination was achieved using Fourier analysis and neural net-
work. The work developed a framework for classifying processed sperm cells as
normal and abnormal; a test error of 25% was reported within this same work.
More recently, Gil, Jose, De Juan et al. applied artificial intelligence methods for
the prediction of seminal quality [5]. They employed artificial intelligence tech-
niques such as decision trees, multilayer perceptron and support vector machine
within the work for learning extracted features (attributes) which are charac-
teristics of seminal quality; the experimental results reported suggest that such
artificial intelligence techniques are capable of assessing seminal fluid quality with
reasonable precision, recall and accuracy.

In this work, we consider some critical factors that are shown to be related to
the quality (or viability) of seminal fluid such as the season in which examination
is carried out (winter, spring, summer, fall), age of subject (18-36 years), childish
disease (i.e. chicken pox, measles, mumps, polio), accident (or serious trauma),
surgical intervention, history of high fever spanning over the last one year, fre-
quency of alcohol consumption, smoking habit and number of hours spent sitting
per day for classifying semen as normal or altered [6]. Note that normal is trans-
lated as viable and altered is translated as non-viable. Particularly, we employ
radial basis function neural network (RBFNN) for learning the mapping of the
aforementioned factors (attributes) relating to seminal quality to the classes nor-
mal or altered. Table 1 shows the details of considered attributes. Attributes
presented in Table 1 are normalized into the range 0 to 1; that is, a value range
that is suitable for neural network input.
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Table 1. Fertility data set with details of attributes and range of values

2 Radial basis function neural network (RBFNN)

The radial basis function neural network (RBFNN) relies on the learning ca-
pability of interconnected artificial neurons as is evident in many applications
[7]-[15]. RBFNN typically have three layers which are the input layer, one hid-
den layer and output layer. The input layer presents the input attributes to the
network. The hidden layer contains neurons which are positioned in the space
defined by training data using some pre-defined techniques. The hidden layer
neurons compose radial basis functions centred on points of the same dimension-
ality as the training data. The neurons in the hidden layer compute Euclidean
distances of neurons centres from inputs, then apply radial basis functions to the
distance to obtain the outputs of the hidden layer. The output layer solely per-
forms a linear combination of the hidden layer output using weights associated
with each of the hidden layer neuron. Generally, radial basis functions are chosen
to have the nice property such that their responses (outputs) are monotonically
decreasing with respect to distances from their central points.

The radial basis function neural network (RBFNN) can be seen as universal
function approximators relying on the expansion of input data into a higher di-
mensional space [16]; it also features a simpler and much faster training scheme
than the back propagation neural network (BPNN). In RBFNN, the hidden layer
activations rely on radial basis functions. One of the highlights of the RBFNN
is that input data are project onto a higher dimensional feature space using the
hidden layer neurons. Accordingly to Covers theorem, the probability of data lin-
ear separability increases when features are expanded onto a higher dimensional
hidden space.
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For example, consider a dataset {Xn, tn}, where Xn are input pattern vectors
and tn are corresponding target vectors. Hidden layer neurons are centred on
each training data giving n set of basis functions, with the form φ‖Xn −Xc‖ as
activations of hidden layer neurons [17]; where the operation φ(·) is the non-linear
radial basis function and Xc are centred hidden neurons. The activations of output
neurons can be computed using Equation (1), since output layer neurons have
activations which are just linear combinations of hidden layer neuron activations.
Where, j indexes hidden layer neurons, wj are the hidden-output layer weights
and n is the number of hidden layer basis functions [18].

Y =
n∑

j=1

wjφ ‖Xn −Xc‖ (1)

The aim of learning in RBFNN is to obtain a set of weights wj which allows
the function Y to go through the data points contained in the training data.
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From multivariate interpolation analysis, it can be said that given a training
dataset {xn, tn} with N different examples, where xn ∈ Rm and tn ∈ R1, then the
aim is to find a function F : Rm → R1 that for all N satisfies F (xn) = tn; hence
we can write a system of simultaneous linear equations as Equation (2). Where
φnc = φ‖Xn −Xc‖ for (n, c) = 1, 2, 3.....N . If we let w = [w1, w2, w3, . . . , wn] and
t = [t1, t2, t3, . . . , tn], then we can rewrite Equation (2) as Equation (3).

φw = t (3)

where φ is referred to as the interpolation matrix. Note that we can analyti-
cally obtain w as in Equation (4) when φ is a non-singular matrix.

w = φ−1t (4)

The critical point about obtaining w is to ascertain that φ is indeed a non-
singular matrix. Fortunately, we can guarantee this for several types of radial
basis functions under some specific constraints. The most common type of radial
basis function used is the Gaussian, which is also used within this work. Equation
(5) expresses the Gaussian function [19].

φ(r) = exp

(
−r2

2σ2

)
(5)

Where, r = ‖Xn −Xc‖ and σ is the smoothing parameter or spread constant
for the Gaussian function.
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3 Experiments

Radial basis function neural network is designed for the mapping of aforemen-
tioned semen attributes (model inputs) to viability (model output). The model
has nine input attributes as discussed in Section 1; the model has two output
neurons to accommodate the two classes herein for viability decision. i.e. normal
(viable) or altered (non-viable). The Gaussian function has been used in the hid-
den layer, while the Logistic-Sigmoid function is used in the output layer. The
Logistic-Sigmoid function is given in Equation (6). Figure (1) shows the topology
of the designed neural network.

Ok =
1

1 + exp(−T.Pk)
(6)

where, T.P is the neurons k total potential, which can be computed using Equation
(7). Note that Oj is the hidden layer neuron j output.

T.Pk =
m∑
j=1

wkjOj (7)

Several experiments are performed to determine the suitable value for the
spread constant. The number of hidden neurons has been set equal to the num-
ber of training data points (i.e. 100 hidden neurons) as in the typical RBFNN
architecture. Also, there are 2 output layer neurons; either of these neurons re-
sponds maximally to the two classes within this work. i.e. normal (viable) semen
and altered (non-viable) semen. Note that since the dataset is small (100 data
points), a 10-fold cross validation scheme is implemented for training in order to
better capture input attributes distribution.

Figure 1: The designed radial basis function neural network topology
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That is, data is partitioned into 10 different segments; 9 of the 10 segments
are used for learning while the remaining 1 segment is used for testing the model
for generalization. This procedure is repeated 10 times by selecting combinations
of different segments for training and the left out segment for testing. The av-
erage training time for the RBFNN is 0.402 seconds. Table 2 shows the training
performances of the models with different spread constant values. Note that the
performances reported within this work are averages (and standard deviations) of
10 experiments based on the 10-cross validation scheme earlier discussed. It will
be seen that RBFNN5 with a spread constant of 1.0 achieved the highest perfor-
mance on many of the performance metrics. The performance metrics reported
within this work include precision, recall, F1-score and accuracy. i.e. Table 2, 3
and 4.

Table 2. Performance parameters on training data for RBFNNs with different
spread constants where, expressions for performance metrics are:

precision = TP/(TP+FP); Recall = TP/(TP+FN);

F1-score = 2(precisionrecall)/(precision+recall);

Accuracy = (TP+TN)/(TP+TN+FP+FN).

4 Experimental results and discussion

The RBFNN models described in section 3 are built using training data ob-
tained from the 10-fold cross validation scheme also described within the same
section. However, it is not enough to rely on the performance of such models
based solely on training data; to ascertain that trained models have good gener-
alization capability, we also report on the performances of the trained models on
testing data obtained from the aforementioned 10-fold cross validation scheme.
Table 3 shows the averages and standard deviations of models on the considered
performance metrics.

From Table 3, it will be seen that RBFNN2 with a spread constant of 0.3
achieved the highest performances on many of the performance metrics. Also, it
will be seen that though RBFNN5 achieved the highest performances on many
performance metrics based on the training data (i.e. Table 2); there is a drastic



Seminal quality evaluation with RBF neural network 143

decline in performance on the testing data (i.e. Table 3). Hence, it can be said that
overfitting is observed in RBFNN5. Conversely, the performances of RBFNN2 on
both training and testing data are quite decent; that is when models performances
on training and testing data are considered. Hence, suitable learning is observed
in RBFNN2. Furthermore, in Table 4, we provide a comparative analysis of the
best experimental results (i.e. from RBFNN2) obtained within this work with
an earlier work which employed machine learning methods such as multilayer
perceptron (MLP), support vector machine (SVM) and decision tree (DT) [5].

Table 3. Performance parameters on testing data for RBFNNs with different
spread constants

Table 4. Comparison of experimental results with an earlier work

Table 4 shows that the best model obtained within this work provides com-
petitive performance in comparison with other models from the aforementioned
earlier work. More important is that we consider the time required to build mod-
els. Also, in Table 4, we report the average training time for the RBFNN model
and estimated training times for the models from the earlier work considered.

Although, the earlier work did not report training times for the developed
models, it is not unreasonable to have our estimates presented in Table 4. That is,
the training times for the MLP and SVM models are far greater than one second;
the training time for the DT cannot be estimated (though it should be very small)
therefore denoted ’XX’; while the training time for our model, RBFNN, is 0.4.
Hence, when the performance metrics of the model presented within this work
is compared with models performances from the earlier work relative to training
times, it can be seen RBFNN is promising for such an application.
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5 Conclusion

Laboratory procedures are usually carried out to determine the quality of sem-
inal fluid. However, artificial intelligence methods are significantly being adopted
in many support decisions systems. Moreover, they provide relatively inexpensive
approach for medical diagnosis as against laboratory setups. In this work, we
consider the problem of semen quality analysis. We employ radial basis function
neural network for learning the classification of patients attributes which emerg-
ing researches suggest are related to semen quality (i.e. concentration) which
inevitably affects fertilization power. The framework presented allows the evalua-
tion of seminal fluid to determine whether it is normal or altered. We evaluate the
performance of the designed radial basis function neural network using metrics
which include precision, recall, F1-score and accuracy. The experimental results
obtained from the employed model based on a 10-fold cross validation scheme are
promising and suggest that they can be successfully deployed as an application.
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